References for Exactly Solvable Problems in Quantum Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

1 : Rodney Loudon, One-Dimensional Hydrogen Atom
Am. J. Phys. 27, 649 (1959) [DOI: 10.1119/1.1934950]
2 : Larry K. Haines and David H. Roberts, One-Dimensional Hydrogen Atom
Am. J. Phys. 37, 1145 (1969) [DOI: 10.1119/1.1975232]
3 : J. F. Gomes and A. H. Zimerman, One-dimensional hydrogen atom
Am. J. Phys. 48, 579 (1980) [DOI: 10.1119/1.12067]
4 : M. Andrews, Singular potentials in one dimension
Am. J. Phys. 44, 1064 (1976) [DOI: 10.1119/1.10585]
5 : C. L. Hammer and T. A. Weber, Comments on the one-dimensional hydrogen atom [Am. J. Phys. 27, 649 (1959); Am. J. Phys. 37, 1145 (1969); Am. J. Phys. 44, 1064 (1976)]
Am. J. Phys. 56, 281 (1988) [DOI: 10.1119/1.15668]
6 : M. Andrews, Comment on the "One-dimensional hydrogen atom"
Am. J. Phys. 49, 1074 (1981) [DOI: 10.1119/1.12648]
7 : J. F. Gomes and A. H. Zimerman, Reply to "Comment on the 'One-dimensional hydrogen atom'"
Am. J. Phys. 49, 1074 (1981) [DOI: 10.1119/1.12649]
8 : Mark Andrews, The one-dimensional hydrogen atom
Am. J. Phys. 56, 776 (1988) [DOI: 10.1119/1.15476]
9 18 : G. Q. Hassoun, One- and two-dimensional hydrogen atoms
Am. J. Phys. 49, 143 (1981) [DOI: 10.1119/1.12546]
10 26 : R. E. Moss, The hydrogen atom in one dimension
Am. J. Phys. 55, 397 (1987) [DOI: 10.1119/1.15144]
11 23 : Michael Martin Nieto, Hydrogen atom and relativistic pi-mesic atom in N-space dimensions
Am. J. Phys. 47, 1067 (1979) [DOI: 10.1119/1.11976]
12 : I. Richard Lapidus, One-dimensional Bohr atom
Am. J. Phys. 56, 92 (1988) [DOI: 10.1119/1.15762]
13 : I. Richard Lapidus, One-dimensional hydrogen atom in an infinite square well
Am. J. Phys. 50, 563 (1982) [DOI: 10.1119/1.12805]
14 : I. Richard Lapidus, Periodic boundary conditions and the one-dimensional hydrogen atom
Am. J. Phys. 52, 1151 (1984) [DOI: 10.1119/1.13751]
15 : B. Zaslow and Melvin E. Zandler, Two-Dimensional Analog to the Hydrogen Atom
Am. J. Phys. 35, 1118 (1967) [DOI: 10.1119/1.1973790]
16 : Jacob Wen-Kuang Huang and Allen Kozycki, Hydrogen atom in two dimensions
Am. J. Phys. 47, 1005 (1979) [DOI: 10.1119/1.11670]
17 : Ronald Rockmore, On the isotropic oscillator and the hydrogenic atom in classical and quantum mechanics
Am. J. Phys. 43, 29 (1975) [DOI: 10.1119/1.10010]
19 : K. Eveker, D. Grow, B. Jost, C. E. Monfort III, K. W. Nelson, C. Stroh, and R. C. Witt, The two-dimensional hydrogen atom with a logarithmic potential energy function
Am. J. Phys. 58, 1183 (1990) [DOI: 10.1119/1.16249]
20 : Hugh F. Henry, Trigonometric solution of the polar function of the Schrödinger equation for hydrogen
Am. J. Phys. 45, 584 (1977) [DOI: 10.1119/1.11029]
21 : G. R. Fowles, Solution of the Schrödinger Equation for the Hydrogen Atom in Rectangular Coordinates
Am. J. Phys. 30, 308 (1962) [DOI: 10.1119/1.1941997]
22 : M. Bander, C. Itzykson, Group Theory and the Hydrogen Atom
Rev. Modern Phys. 38, 330 (1966) [DOI: 10.1103/RevModPhys.38.330]
24 : Ashok Chattergee, Large-N expansions in quantum mechanics, atomic physics and some O(N) invariant systems
Phys. Report 186, 249 (1990) [DOI: 10.1016/0370-1573(90)90048-7]
25 : Keith Andrew and James Supplee, A hydrogenic atom in d-dimensions
Am. J. Phys. 58, 1177 (1990) [DOI: 10.1119/1.16248]
27 : James J. Klein, Eigenfunctions of the Hydrogen Atom in Momentum Space
Am. J. Phys. 34, 1039 (1966) [DOI: 10.1119/1.1972444]
28 : Boris Podolsky and Linus Pauling, The momentum distribution in hydrogen-like atoms
Phys. Rev. 34, 109 (1929) [DOI: 10.1103/PhysRev.34.109]
29 : V. Fock, Zur Theorie des Wasserstoffatoms
Z. Phys. 98, 145 (1935) [DOI: 10.1007/BF01336904]
30 : Tai-ichi Shibuya and Carl E. Wulfman, The Kepler Problem in Two-Dimensional Momentum Space
Am. J. Phys. 33, 570 (1965) [DOI: 10.1119/1.1971931]
31 : Egil A. Hylleraas, Wellengleichung des Keplerproblems im Impulsraume
Z. Phys. 74, 216 (1932) [DOI: 10.1007/BF01342375]
32 81 : O. L. de Lange and R. E. Raab, An operator solution for the hydrogen atom with application to the momentum representation
Am. J. Phys. 55, 913 (1987) [DOI: 10.1119/1.14953]
33 82 142 : J. D. Newmarch and R. M. Golding, Ladder operators for some spherically symmetric potentials in quantum mechanics
Am. J. Phys. 46, 658 (1978) [DOI: 10.1119/1.11225]
34 : E. Ley-Koo and S. Mateos-Cortés, The hydrogen atom in a semi-infinite space limited by a conical boundary
Am. J. Phys. 61, 246 (1993) [DOI: 10.1119/1.17299]
35 : E. Ley-Koo and R. M. G. García-Castelán, The hydrogen atom in a semi-infinite space limited by a paraboloidal boundary
J. Phys. A Math. Gen. 24, 1481 (1991) [DOI: 10.1088/0305-4470/24/7/021]
36 : A. F. Yano and F. B. Yano, Hydrogenic Wave Functions for an Extended, Uniformly Charged Nucleus
Am. J. Phys. 40, 969 (1972) [DOI: 10.1119/1.1986723]
37 : J. Zablotney, Energy levels of a charged particle in the field of a spherically symmetric uniform charge distribution
Am. J. Phys. 43, 168 (1975) [DOI: 10.1119/1.9884]
38 : E. Ley-Koo, E. Castaño, D. Finotello, E. Nahmad-Achar and S. Ulloa, Alternative form of the hydrogenic wave functions for an extended, uniformly charged nucleus
Am. J. Phys. 48, 949 (1980) [DOI: 10.1119/1.12365]
39 : Henry Zatzkis, Thomson Atom
Am. J. Phys. 26, 635 (1958) [DOI: 10.1119/1.1934721]
40 : R. Crandall, R. Whitnell, and R. Bettega, Exactly soluble two-electron atomic model
Am. J. Phys. 52, 438 (1984) [DOI: 10.1119/1.13650]
41 89 : Soo-Y. Lee, The hydrogen atom as a Morse oscillator
Am. J. Phys. 53, 753 (1985) [DOI: 10.1119/1.14306]
42 : David S. Bateman, Clinton Boyd, and Binayak Dutta-Roy, The mapping of the Coulomb problem into the oscillator
Am. J. Phys. 60, 833 (1992) [DOI: 10.1119/1.17065]
43 : H. A. Gersch, An exactly soluble one-dimensional, two-particle problem
Am. J. Phys. 52, 227 (1984) [DOI: 10.1119/1.13682]
44 : Gary Simons, Model Potential for Pseudopotential Calculations
J. Chem. Phys. 55, 756 (1971) [DOI: 10.1063/1.1676142]
45 : E. Fues, Das Eigenschwingungsspektrum zweiatomiger Moleküle in der Undulationsmechanik
Ann. Phys. 385, 367 (1926) [DOI: 10.1002/andp.19263851204]
46 : P. L. Goodfriend, Model Pseudopotentials as a Source of Useful Problems for Quantum Chemistry Courses
J. Chem. Educ. 55, 639 (1978) [DOI: 10.1021/ed055p639]
47 : Harold N. Spector and Johnson Lee, Relativistic one-dimensional hydrogen atom
Am. J. Phys. 53, 248 (1985) [DOI: 10.1119/1.14132]
48 : Paul R. Auvil and Laurie M. Brown, The relativistic hydrogen atom: A simple solution
Am. J. Phys. 46, 679 (1978) [DOI: 10.1119/1.11231]
49 : H. Gali&cced;, Fun and frustration with hydrogen in a 1+1 dimension
Am. J. Phys. 56, 312 (1988) [DOI: 10.1119/1.15630]
50 : D. M. Thomson, Geometrical Relations for Charged Particles in a Uniform Magnetic Field
Am. J. Phys. 40, 1673 (1972) [DOI: 10.1119/1.1987010]
51 : C. A. Scholl and N. H. Fletcher, Quantum cyclotron
Am. J. Phys. 44, 186 (1976) [DOI: 10.1119/1.10501]
52 : D. M. Thomson, Motion of a Wave Packet Constructed from Landau Gauge Solutions
Am. J. Phys. 40, 1669 (1972) [DOI: 10.1119/1.1987009]
53 : J. Katriel and G. Adam, A System with Infinitely Degenerate Bound States
Am. J. Phys. 37, 565 (1969) [DOI: 10.1119/1.1975689]
54 : Mark P. Silverman, An exactly soluble quantum model of an atom in an arbitrarily strong uniform magnetic field
Am. J. Phys. 49, 546 (1981) [DOI: 10.1119/1.12670]
55 : Miguel Calvo, Quantum mechanics of a chargeless spinning particle in a periodic magnetic field: A simple, soluble system
Am. J. Phys. 55, 552 (1987) [DOI: 10.1119/1.15114]
56 : I. I. Rabi, Space Quantization in a Gyrating Magnetic Field
Phys. Rev. 51, 652 (1937) [DOI: 10.1103/56_PhysRev.51.652]
57 : J. Fernando Perez and F. A. B. Coutinho, Schrödinger equation in two dimensions for a zero-range potential and a uniform magnetic field: An exactly solvable model
Am. J. Phys. 59, 52 (1991) [DOI: 10.1119/1.16714]
58 : Lars Melander, Coulomb and Resonance Integrals in Molecular Orbital Theory
J. Chem. Educ. 39, 343 (1962) [DOI: 10.1021/ed039p343]
59 : Edward A. Johnson and H. Thomas Williams, Quantum solutions for a symmetric double square well
Am. J. Phys. 50, 239 (1982) [DOI: 10.1119/1.13046]
60 : B. Cameron Reed, A single equation for finite rectangular well energy eigenvalues
Am. J. Phys. 58, 503 (1990) [DOI: 10.1119/1.16457]
61 : R. M. Kolbas and N. Holonyak Jr., Man-made quantum wells: A new perspective on the finite square-well problem
Am. J. Phys. 52, 431 (1984) [DOI: 10.1119/1.13649]
62 : E. U. Condon and P. M. Morse, Quantum Mechanics of Collision Processes I. scattering of particles in a definite force field
Rev. Modern Phys. 3, 43 (1931) [DOI: 10.1103/RevModPhys.3.43]
63 : Paul H. Pitkanen, Rectangular Potential Well Problem in Quantum Mechanics
Am. J. Phys. 23, 111 (1955) [DOI: 10.1119/1.1933912]
64 : S. W. Doescher and M. H. Rice, Infinite Square-Well Potential with a Moving Wall
Am. J. Phys. 37, 1246 (1969) [DOI: 10.1119/1.1975291]
65 : Mark Goodman, Path integral solution to the infinite square well
Am. J. Phys. 49, 843 (1981) [DOI: 10.1119/1.12720]
66 : Terrance C. Dymski, Agreement Between Classical and Quantum Mechanical Solutions for a Linear Potential Inside a One-Dimensional Infinite Potential Well
Am. J. Phys. 36, 54 (1968) [DOI: 10.1119/1.1974411]
67 : Noble M. Johnson and John N. Churchill, Comments on "Agreement between Classical and Quantum Mechanical Solutions for a Linear Potential inside a One-Dimensional Infinite Potential Well"
Am. J. Phys. 37, 1287 (1969) [DOI: 10.1119/1.1975321]
68 : Noble M. Johnson and John N. Churchill, Position Expectation Values for an Electron in an Infinite Tilted Well
Am. J. Phys. 38, 487 (1970) [DOI: 10.1119/1.1976371]
69 : John N. Churchill and Floyd O. Arntz, The Infinite Tilted-Well: An Example of Elementary Quantum Mechanics with Applications toward Current Research
Am. J. Phys.37, 693 (1969) [DOI: 10.1119/1.1975775]
70 : R. Delbourgo, On the linear potential hill
Am. J. Phys. 45, 1110 (1977) [DOI: 10.1119/1.10958]
71 : F. E. Cummings, The particle in a box is not simple
Am. J. Phys. 45, 45 (1977) [DOI: 10.1119/1.10981]
72 : Ying Q. Liang, Hong Zhang, and Yves X. Dardenne, Momentum Distributions for a Particle in a Box
J. Chem. Educ. 72, 148 (1995) [DOI: 10.1021/ed072p148]
73 : Rolf G. Winter, Construction of some soluble quantal problems
Am. J. Phys. 45, 569 (1977) [DOI: 10.1119/1.10942]
74 : Herbert Massmann, Illustration of resonances and the law of exponential decay in a simple quantummechanical problem
Am. J. Phys. 53, 679 (1985) [DOI: 10.1119/1.14284]
75 : Peter Senn, Time evolutions of quantum mechanical states in a symmetric double-well potential
Am. J. Phys. 60, 228 (1992) [DOI: 10.1119/1.16900]
76 : W. Edward Gettys, Quantum Theory of a Square Well Plus Delta Function Potential
Am. J. Phys. 41, 670 (1973) [DOI: 10.1119/1.1987329]
77 : T. M. Kalotas and A. R. Lee, A new approach to one-dimensional scattering
Am. J. Phys. 59, 48 (1991) [DOI: 10.1119/1.16705]
78 : T. M. Kalotas and A. R. Lee, The bound states of a segmented potential
Am. J. Phys. 59, 1036 (1991) [DOI: 10.1119/1.16643]
79 113 : Guy Fogleman, Quantum strings
Am. J. Phys. 55, 330 (1987) [DOI: 10.1119/1.15201]
80 148 : Ranabir Dutt, Avinash Khare, and Uday P. Sukhatme, Supersymmetry, shape invariance, and exactly solvable potentials
Am. J. Phys. 56, 163 (1988) [DOI: 10.1119/1.15697]
83 : W. Edward Gettys and H. W. Graben, Quantum solution for the biharmonic oscillator
Am. J. Phys. 43, 626 (1975) [DOI: 10.1119/1.9763]
84 : William S. Porter, Oscillator in a Uniform Field
Am. J. Phys. 33, 504 (1965) [DOI: 10.1119/1.1971750]
85 : Jeff D. Chalk, Tunneling through a truncated harmonic oscillator potential barrier
Am. J. Phys. 58, 147 (1990) [DOI: 10.1119/1.16223]
86 : J. L. Marin and S. A. Cruz, On the harmonic oscillator inside an infinite potential well
Am. J. Phys. 56, 1134 (1988) [DOI: 10.1119/1.15738]
87 : Paul H. E. Meijer and Tomoyasu Tanaka, Quantum Mechanics of Beats between Weakly Coupled Oscillators
Am. J. Phys. 31, 161 (1963) [DOI: 10.1119/1.1969339]
88 : Göran Grimvall and Olle Gunnarsson, Concepts in Many-Body Systems Illustrated by Coupled Oscillators
Am. J. Phys. 41, 1241 (1973) [DOI: 10.1119/1.1987536]
90 125 : Vernon W. Myers, Some Exact Solutions of the Time-Dependent Schrödinger Equation
Am. J. Phys. 28, 114 (1960) [DOI: 10.1119/1.1935072]
91 : Edward H. Kerner, Note on the forced and damped oscillator in quantum mechanics
Can. J. Phys. 36, 371 (1958) [DOI: 10.1139/p58-038]
92 : R. W. Fuller, S. M. Harris, and E. Leo Slaggie, -Matrix Solution for the Forced Harmonic Oscillator
Am. J. Phys. 31, 431 (1963) [DOI: 10.1119/1.1969575]
93 : P. Carruthers and M. M. Nieto, Coherent States and the Forced Quantum Oscillator
Am. J. Phys. 33, 537 (1965) [DOI: 10.1119/1.1971895]
94 : D. M. Gilbey and F. O. Goodman, Quantum Theory of the Forced Harmonic Oscillator
Am. J. Phys. 34, 143 (1966) [DOI: 10.1119/1.1972813]
95 : F. Ninio, The Forced Harmonic Oscillator and the Zero-Phonon Transition of the Mössbauer Effect
Am. J. Phys. 41, 648 (1973) [DOI: 10.1119/1.1987323]
96 : Bernard Yurke, Quantizing the damped harmonic oscillator
Am. J. Phys. 54, 1133 (1986) [DOI: 10.1119/1.14730]
97 : William Band, Forced Vibrations of a Harmonic Lattice in Quantum Mechanics
Am. J. Phys. 30, 646 (1962) [DOI: 10.1119/1.1942151]
98 : C. F. Lo, An aging harmonic oscillator
Am. J. Phys. 56, 827 (1988) [DOI: 10.1119/1.15459]
99 : C. Eftimiu, Exactly solvable three-dimensional scattering problem
Am. J. Phys. 51, 709 (1983) [DOI: 10.1119/1.13151]
100 : I. Richard Lapidus, Interaction of a charge and an electric dipole in one dimension
Am. J. Phys. 48, 51 (1980) [DOI: 10.1119/1.12240]
101 : Stephen K. Knudson, of a simple inelastic scattering problem
Am. J. Phys. 43, 964 (1975) [DOI: 10.1119/1.10021]
102 : J. G. Loeser, H. Rabitz, A. E. DePristo, and E. A. Rohlfing, A simple model for inelastic scattering
Am. J. Phys. 49, 1046 (1981) [DOI: 10.1119/1.12580]
103 : A. H. Kahn, Phase-Shift Method for One-Dimensional Scattering
Am. J. Phys. 29, 77 (1961) [DOI: 10.1119/1.1937700]
104 : Joseph B. Keller, Uniform solutions for scattering by a potential barrier and bound states of a potential well
Am. J. Phys. 54, 546 (1986) [DOI: 10.1119/1.14560]
105 : B. Bagchi and R. G. Seyler, Integral equations and scattering solutions for a square-well potential
Am. J. Phys. 47, 945 (1979) [DOI: 10.1119/1.11617]
106 : I. Richard Lapidus, Phase Shifts for Scattering by a One-Dimensional Delta-Function Potential
Am. J. Phys. 37, 930 (1969) [DOI: 10.1119/1.1975948]
107 : Clinton DeW. Van Siclen, Scattering from an attractive delta-function potential
Am. J. Phys. 56, 278 (1988) [DOI: 10.1119/1.15667]
108 : J. C. Martinez, A three-particle problem in one dimension
Am. J. Phys. 63, 164 (1995) [DOI: 10.1119/1.17975]
109 : Waikwok Kwong, Jonathan L. Rosner, Jonathan F. Schonfeld, C. Quigg, and H. B. Thacker, Degeneracy in one-dimensional quantum mechanics
Am. J. Phys. 48, 926 (1980) [DOI: 10.1119/1.12203]
110 : Lawrence H. Buch and Harry H. Denman, Solution of the Schrödinger Equation for Some Electric Field Problems
Am. J. Phys. 42, 304 (1974) [DOI: 10.1119/1.1987677]
111 : M. M. Moya and J. S. Helman, Analytical and numerical solution of the Schrödinger equation for a surface potential barrier including spin-orbit interaction
Am. J. Phys. 47, 452 (1979) [DOI: 10.1119/1.11815]
112 : M. Razavy, An exactly soluble Schrödinger equation with a bistable potential
Am. J. Phys. 48, 285 (1980) [DOI: 10.1119/1.12141]
114 : R. Aldrovandi and P. Leal Ferreira, Quantum pendulum
Am. J. Phys. 48, 660 (1980) [DOI: 10.1119/1.12332]
115 : R. L. Gibbs, The quantum bouncer
Am. J. Phys. 43, 25 (1975) [DOI: 10.1119/1.10024]
116 : P. W. Langhoff, Schrödinger Particle in a Gravitational Well
Am. J. Phys. 39, 954 (1971) [DOI: 10.1119/1.1986333]
117a : Otto Halpern, The Condensation Phenomenon of an Ideal Einstein-Bose Gas
Phys. Rev. 86, 126 (1952) [DOI: 10.1103/PhysRev.86.126]
117b : Otto Halpern, Condensation Phenomenon of an Ideal Einstein-Bose Gas. II
Phys. Rev. 87, 520 (1952) [DOI: 10.1103/PhysRev.87.520]
118 : V. C. Aguilera-Navarro, H. Iwamoto, E. Ley-Koo, and A. H. Zimerman, Quantum bouncer in a closed court
Am. J. Phys. 49, 648 (1981) [DOI: 10.1119/1.12453]
119 : Wai-Kee Li, A Particle in an isoceles Right Triangle
J. Chem. Educ. 61, 1034 (1984) [DOI: 10.1021/ed061p1034]
120 : Wai-Kee Li and S. M. Blinder, Particle in an Equilateral Triangle: Exact Solution of a Nonseparable Problem
J. Chem. Educ. 64, 130 (1987) [DOI: 10.1021/ed064p130]
121 : J. Mathews, R. L Walker, Mathematical Methods for Physicists, 2nd Ed. Benjamin, N.Y. 1970
122 : H. R. Krishnamurthyt, H. S. Mani and H. C. Verma, Exact solution of the Schrödinger equation for a particle in a tetrahedral box
J. Phys. A Math. Gen. 15, 2131 (1982) [DOI: 10.1088/0305-4470/15/7/024]
123 : Wai-Kee Li and S. M. Blinder, Solution of the Schrödinger equation for a particle in an equilateral triangle
J. Math. Phys. 26, 2784 (1985) [DOI: 10.1063/1.526701]
124 : G. B. Shaw, Degeneracy in the particle-in-a-box problem
J. Phys. A Math. Gen. 7, 1537 (1974) [DOI: 10.1088/0305-4470/7/13/008]
126 : O. L. de Lange, An operator solution for the Hulthén potential
Am. J. Phys. 59, 151 (1991) [DOI: 10.1119/1.16596]
127 : Jeff D. Chalk, A study of barrier penetration in quantum mechanics
Am. J. Phys. 56, 29 (1988) [DOI: 10.1119/1.15425]
128 : Budh Ram, Quark confining potential in relativistic equations
Am. J. Phys. 50, 549 (1982) [DOI: 10.1119/1.12820]
129 : K. R. Brownstein, Calculation of a bound state wavefunction using free state wavefunctions only
Am. J. Phys. 43, 173 (1975) [DOI: 10.1119/1.9892]
130 : Mark J. Thomson and Bruce H. J. McKellar, The solution of the Dirac equation for a high square barrier
Am. J. Phys. 59, 340 (1991) [DOI: 10.1119/1.16546]
131 : Avinash Khare and Rajat K. Bhaduri, Exactly solvable noncentral potentials in two and three dimensions
Am. J. Phys. 62, 1008 (1994) [DOI: 10.1119/1.17698]
132 : Bill Sutherland, Exact Results for a Quantum Many-Body Problem in One Dimension
Phys. Rev. A 4, 2019 (1971) [DOI: 10.1103/PhysRevA.4.2019]
133 : J. B. McGuire, Study of Exactly Soluble One-Dimensional N-Body Problems
J. Math. Phys. 5, 622 (1964) [DOI: 10.1063/1.1704156]
134 : M. A. Gregório and A. S. de Castro, A particle moving in a homogeneous time-varying force
Am. J. Phys. 52, 557 (1984) [DOI: 10.1119/1.13620]
135 : Michael Martin Nieto, Exact wave-function normalization constants for the B0 tanhz- U0 cosh-2z and Pöschl-Teller potentials
Phys. Rev. A 17, 1273 (1978) [DOI: 10.1103/PhysRevA.17.1273]
136 : N. Rosen and Philip M. Morse, On the Vibrations of Polyatomic Molecules
Phys. Rev. 42, 210 (1932) [DOI: 10.1103/PhysRev.42.210]
137 : D. S. Onley and A. Kumar, Time dependence in quantum mechanics - Study of a simple decaying system
Am. J. Phys. 60, 432 (1992) [DOI: 10.1119/1.16897]
138 : W. Elberfeld and M. Kleber, Time-dependent tunneling through thin barriers: A simple analytical solution
Am. J. Phys. 56, 154 (1988) [DOI: 10.1119/1.15695]
139 : D. L. Weaver, Solving spin-1 problems using spin-1/2 methods
Am. J. Phys. 46, 721 (1978) [DOI: 10.1119/1.11275]
140 141 150 : Fred Cooper and Joseph N. Ginocchio, Relationship between supersymmetry and solvable potentials
Phys. Rev. D 36, 2458 (1987) [DOI: 10.1103/PhysRevD.36.2458]
143 : Dennis Aebersold, Integral Equations in Quantum Chemistry
J. Chem. Educ. 52, 434 (1975) [DOI: 10.1021/ed052p434]
144 : L. Infield and T. E. Hull, The Factorization Method
Rev. Modern Phys. 23, 21 (1951) [DOI: 10.1103/RevModPhys.23.21]
145 : Ranjan Das and A. B. Sannigrahi, The Factorization Method and Its Applications in Quantum Chemistry
J. Chem. Educ. 58, 383 (1981) [DOI: 10.1021/ed058p383]
146 : J. Douglas Milner and Carl Peterson, Notes on the Factorization Method for Quantum Chemistry
J. Chem. Educ. 62, 567 (1985) [DOI: 10.1021/ed062p567]
147 : Paulo Henrique A. Santana and Abel Rosato, Use of the Laplace Transform Method to Solve the One-Dimensional Periodic-Potential Problem
Am. J. Phys. 41, 1138 (1973) [DOI: 10.1119/1.1987504]
149 : L. É. Gendenshteĩn, Derivation of exact spectra of the Schrödinger equation by means of supersymmetry
JETP Lett. 38, 356 (1983) [Source: jetpletters.ac.ru/ps/1822/article_27857.shtml]
151 152 : John W. Norbury, The quantum mechanical few-body problem
Am. J. Phys. 57, 264 (1989) [DOI: 10.1119/1.16050]
153 : Jan Makarewicz, Exact solvable three-dimensional models of many-body systems
Am. J. Phys. 54, 178 (1986) [DOI: 10.1119/1.14686]