2/88

CMCRCZ 17(2), 67-128(1988)

KANNER SERIES

AN INTERNATIONAL EDITION OF THE ASSOCIATION OF GREEK CHEMISTS

CHIMIKA CHRONIKA, NEW SERIES

Volume 17, No 2, p.p. 67-128 June (1988)

CHIMIKA CHRONIKA / NEW SERIES

Βιβλιοθήκη ζας Αν Κώνστα

Published by the Association of Greek Chemists 27, Kaningos Street, Athens 106 82, Greece

MANAGING CCMMITEE Dimitrios KESSISOGLOU, Georgia MARGOMENOU-LEONIDOPOULOU, Angeliki PAPATHA-NASOPOULOU, Theodora VAKIRJI, Roula SCOULICA Ex. officio Members: X. PAPAIOANNOU (Repr. Gen. Secietary of G.C.A.) J. KARABASSIS (Treasurer of G.C.A.) EDITORS - IN - CHIEF I. DILARIS, G. MARGOMENOU-LEONIDOPOULOU

EDITORIAL ADVISORY BOARD

N ALEXANDROU Org. Chem., Univ. Salonica A ANAGNOSTOPOULOS Inorg. Chem., Tech. Univ. Salonica D BOSKOU Food Chem. Univ. Salonica P. CATSOULACOS Pharm. Chem., Univ. Patras C A DEMOPOULOS Biochemistry, Univ. Athens C.E. EFSTATHIOU Anal. Chem., Univ. Athens A.E. EVANGELOPOULOS Biochemistry, N.H.R.F., Athens S. FILIANOS Pharmacognesy, Univ. Athens D.S. GALÁNOS Food Chem., Univ. Athens P. GEORGAKOPOULOS Pharm. Techn., Univ. Salonica I. GEORGATSOS Biochemistry, Univ. Salanica M.P. GEORGIADIS Org./Med. Chem., Agr. Univ. Athens N. HADJICHRISTIDIS Polymer Chem., Univ. Athens T.P. HACJIIOANNOU Anal. Chem., Univ. Athens N. HADJILIADIS Gen. Inorg. Chem., Univ. Ioannina E. HADJOUDIS Photochem., N.R.C. -D-, Athens P.V. IOANNOU Depart. Chem. Univ. Patras D. JANNAKOUDAKIS Phys. Chem., Univ. Salonica V. KAPOULAS Biochemistry, Univ Ioannina;

M.L. KARAYANNIS Anal. Chem., Univ. Ioannina N KATSANOS Phys Chem., Univ. Patras A.KEHAYOGLOU Org. Chem. Tech., Univ. Salonica A. KOSMATOS Urg. Chem., Univ. Joanning S.B. LITSAS Bioorg. Chem., Arch. Museum, Ashens G MANOUSSAKIS Inorg. Chem., Univ. Salonica S MYLONAS Org. Chem., Univ. Athens I. NIKOKAVOURAS Photochem., N.R.C. +D+, Athens D.N. NICOLAIDES Org. Chem., Univ. Salonica C.M. PALEOS N.R.C. -Democritos-, Athens V. PAPADOPOULOS N.R.C. -Democritos- Athens G. PAPAGEORGIOU Biophysics. N.R.C. -D-, Athens V.P. PAPAGEORGIOU Nat. Products, Tech. Univ. Salonica S. PARASKEVAS Org. Chem., Univ. Athens G PHOKAS Pharmacognosy, Univ. Salonica S. PHILIPAKIS N.R.C. - Democritos .. Athens G. PNEUMATIKAKIS Inorg. Chem., Univ. Athens K. SANDRIS Organic Chem., Tech. Univ. Athens M.J. SCOULLOS Env./Mar. Chem., Univ. Athens

C.E. SEKERIS Mol. Biology, N.H.R.F. Athens G. SKALCS Microanalysis Tech. Univ. Athens G.A. STALIDIS Phys. Chem., Univ. Salanica Ch. STASSINOPOULOU N.R.C. -Democritos-, Athens A. STASSINOPOULOS Areo AEBE Athens A STAVEOPOULOS Ind. Technol., G.S.I.S., Piracs? C THOMOPOULOS Food Techn., Tech. Univ. Athens I.M. TSANGARIS Inurg. Chem., Univ. Joanning A.K. TSOLIS Chem. Technol., Univ. Parras A. VALAVANIDIS Org. Chem., Univ. Athens G. VALCANAS Org. Chem., Tech. Univ. Athens A.G. VARVOGLIS Ors. Chem., Univ. Salonica G.S. VASSILIKIOTIS Anal. Chem., Univ. Salanica S. VOLIOTIS Instrum. Analysis, Univ. Patras E.K. VOUDOURIS Food Chem., Univ. Joannin D. VRANTI Tech. Univ. Athens

Phototypesetted and Printed in Greece by EPTALOFOS S.A.

ARDITTOU STR. 12-16, 116-36 ATHENS

Correspondence, submission of papers, subscriptions, renewals and changes of address should be sent to Chimika Chronika. New Series, 27 Kaningos street, Athens, Greece. The Guide to Authors is published in the first issue of each volume, or sent by request. Subscriptions are taken by volume at 1000 drachmas for members and 2000 drach mas for Corporations in Greece and 28 U.S. dollars to all other countries except Cyprus, where subscriptions are made on request.

Υπεύθυνος σύμφωνα με το νόμο: Βασίλειος Μπούλιας, Κάνιγγος 27, Αθήνα 106 82.

CONTENTS

Pyrrolizidine alkaloids of the plant Onosma Heterophylla (in Greek) by A.S.Mellidis, V.P.Papageorgiou......67 Inhibitory action of benzyl-triphenyl-phosphonium cations on the Cd^{2+} and Zn^{2+} discharge at the dropping mercury electrode (in English) by A.Anastopoulos, A.Christopoulou, I.Moumtzis......74 Molecular orbital study of the tetrahedral distortion in four-coordinate copper(II)polyamine complexes(in English) Alkalimental anions (in Greek) by J. Papaioannou, I. Providaki-Molinou, A. Mayridis.....101 Optimum contitions for single column anion chromatographic determination of F , Cl , NO₂, Br , NO₃, and SO₄⁻ in aqueous environmental samples(*in English*) by R.Tzimou-Tsitouridou..... The reaction of 2-phenyliodonio-dimedonate with KSCN (in English)

June 1988

ΠΥΡΡΟΛΙΖΙΔΙΝΙΚΑ ΑΛΚΑΛΟΕΙΔΗ ΤΟΥ ΦΥΤΟΥ ONOSMA HETEROPHYLLA

ΑΝΤΩΝΙΟΣ Σ. ΜΕΛΛΙΔΗΣ και ΒΑΣΙΛΕΙΟΣ Π. ΠΑΠΑΓΕΩΡΓΙΟΥ

Εργαστήριο Οργανικής Χημείας, Τμήματος Χημικών Μηχανικών, Πολυτεχνικής Σχολής, Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης,Θεσσαλονίκη 54006.

(Ελήφθη 19 Φεβρουαρίου 1986)

Key words : Onosma heterophylla, Boraginaceae, Pyrrolizidine alkaloids, Heliotridine, 1-Methylenepyrrolizidine, GC/MS.

ΕΙΣΑΓΩΓΗ

Στα πλαίσια ενός προγράμματος επί της μελέτης διάφορων εκχυλισμάτων από φυτά της οικογένειας Boraginaceae, μελετήσαμε τα χημικά συστατικά του φυτού Onosma heterophylla¹. Η Onosma heterophylla (Boraginaceae) είναι ένα πολυετές φυτό με όλα τα μορφολογικά χαρακτηριστικά, όπως περιγράφονται στη διεθνή βιβλιογραφία², το οποίο ανευρίσκεται στη Βαλκανική Χερσόνησο.

Στις ρίζες των φυτών ορισμένων γενών της οικογένειας *Boraginaceae* απαντούν, εκτός των άλλων, ισοεξενυλο-ναφθαζαρίνες και πυρρολιζιδινικά αλκαλοειδή³.

Οι ισοεξενυλο-ναφθαζαρίνες, περισσότερο γνωστές ως αλκαννίνες ή σικονίνες, αποτελούν μία τάξη λιπόφιλων ερυθρών χρωστικών με πολύ ενδιαφέρουσες βιολογικές και φαρμακολογικές ιδιότητες^{4,5}. Σημαντικότερη απ' αυτές τις ιδιότητες είναι η επουλωτική δράση, την οποία εμφανίζουν τα ελαιώδη εκχυλίσματα ριζών 150 τουλάχιστον φυτικών ειδών που ανήκουν στα γένη *Litho*spermum, Echium, Onosma, Anchusa και Cynoglossum, της οικογένειας Boraginaceae, στα οποία απαντούν ισοεξενυλο-ναφθαζαρίνες.

Τα πυρρολιζιδινικά αλκαλοειδή απαντούν τόσο ως τριτοταγείς βάσεις όσο και ως Ν-οξείδια αυτών σε φυτικά είδη που ανήκουν σε διάφορα γένη των οικογενειών Boraginaceae, Compositae και Leguminosae⁶. Τα πυρρολιζιδινικά αλκαλοειδή των οικογενειών Compositae και Leguminosae καθώς και εκείνα μερικών γενών της οικογένειας Boraginaceae (Heliotropium, Cynoglossum και

68 Α.Σ. ΜΕΛΛΙΔΗΣ και Β.Π. ΠΑΠΑΓΕΩΡΓΙΟΥ

Echium) απετέλεσαν αντικείμενο εκτεταμένων μελετών. Αντίθετα, τα αλκαλοειδή των γενών Anchusa, Lithospermum και Onosma (Boraginaceae) έχουν μελετηθεί ελάχιστα⁷⁻¹⁰ Πυρρολιζιδινικά αλκαλοειδή έχουν ανευρεθεί επίσης, ως εξωγενή συστατικά, σε εξειδικευμένα όργανα ζωικών οργανισμών¹¹ καθώς και στο μέλι διάφορων Πολιτειών της Αμερικής¹²

Πυρρολιζιδινικά αλκαλοειδή με ακόρεστο 1,2-δεϋδρο- ή 1-υδροξυμεθυλοσύστημα είναι τοξικά στον άνθρωπο και στα ζώα. Ο βαθμός τοξικότητας εξαρτάται επίσης και από άλλα δομικά χαρακτηριστικά αυτών των ενώσεων¹³ Τα ακόρεστα πυρρολιζιδινικά αλκαλοειδή εμφανίζουν μία μεγάλη ποικιλία βιολογικών δράσεων (ηπατοτοξική, πνευμονοτοξική, αιμολυτική, αντιμιτωτική, τερατογόνο, μεταλλαξιογόνο και καρκινογόνο)¹³⁻¹⁸ Εστέρες της ήλιοτριδίνης και της ρετρονεκίνης εμφανίζουν αντικαρκινική δράση¹⁹ και ημισυνθετικοί εστέρες της ηλιοτριδίνης τοπική αναισθητική ενέργεια²⁰

ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΖΗΤΗΣΗ

Η μελέτη μας εντοπίσθηκε στα αλκαλοειδή των ριζών, δεδομένου ότι η κατανομή των αλκαλοειδών στα διάφορα μέρη των φυτών (ρίζες, φύλλα, άνθη) ποσοτικά μπορεί να ποικίλει, ποιοτικά όμως παρουσιάζει συνήθως ελάχιστες διαφοροποιήσεις.

Οι ρίζες του φυτού αρχικά εκχυλίσθηκαν με κ-εξάνιο (για την απομάκρυνση των λιπόφιλων συστατικών των ριζών) και στη συνέχεια με μεθανόλη. Το μεθανολικό εκχύλισμα υποβλήθηκε σε δύο ξεχωριστές διαδικασίες: (α) στην κλασσική διαδικασία απομονώσεως αλκαλοειδών και (β) στη διαδικασία αναγωγής Ν-οξειδίων. Τα κλάσματα των δύο αυτών διαδικασιών συγκρίθηκαν με TLC ανάλυση²¹ από την οποία προέκυψε ότι είχαν ποιοτικά την ίδια σύσταση. Η απόδοση του κλάσματος της δεύτερης διαδικασίας ήταν υπερδιπλάσια της πρώτης για μερικές κηλίδες.

Ακολούθησε, GC-MS ανάλυση του κλάσματος των αλκαλοειδών. Ευκρινή φάσματα μαζών ελήφθησαν μόνο σε δύο περιπτώσεις και έτσι τελικά διευκρινίσθηκαν οι δομές μόνο δύο συστατικών του κλάσματος. Η μελέτη του τρόπου θραυσματοποιήσεώς τους στα φάσματα μαζών μας οδήγησε να προτείνουμε για τα δύο αυτά συστατικά τις δομές της ηλιοτριδίνης (ή της επιμερούς στον C-7 ρετρονεκίνης, Ι) και της 1-μεθυλενο-πυρρολιζιδίνης ΙΙ).

II

ΠΥΡΡΟΛΙΖΙΔΙΝΙΚΑ ΑΛΚΑΛΟΕΙΔΗ ΤΗΣ ΟΝΟSMA HETEROPHYLLA

Ο τρόπος θραυσματοποιήσεως του ενός συστατικού στο φάσμα μαζών του συμφωνεί απόλυτα με τον τρόπο θραυσματοποιήσεως αυθεντικού δείγματος ηλιοτριδίνης²² Πράγματι, στο φάσμα μαζών του συστατικού αυτού (εικ. 1),εκτός από το μοριακό ιόν M^{+.} 155, εμφανίζονται και τα βασικής σημασίας θραύσματα m/z 137 (M^{+.}-18), 111 και 106 καθώς και τα χαρακτηριστικά για τα πυρρολιζιδινικά αλκαλοειδή θραύσματα m/z 94 και 80 (σχ.1).

Πρέπει να τονισθεί το γεγονός ότι οι πυρρολιζιδινικές βάσεις σπανίως απαντούν στα φυτά υπό ελεύθερη (μή εστεροποιημένη) μορφή, ενώ συνηθέστατα απαντούν υπό μορφή εστέρων με ορισμένα οξέα (νεκικά οξέα)²³

Στο φάσμα μαζών του άλλου συστατικού (εικ. 2) εμφανίζεται το μοριακό ιόν Μ⁺⁻ 123 καθώς και τα βασικής σημασίας θραύσματα m/z 83[M⁺⁻(CH₂=C=CH₂)]

και 94. Κατόπιν αυτού προτείνεται για το συστατικό αυτό η δομή της 1-μεθυλενο-πυρρολιζιδίνης (ΙΙ), η οποία έχει απομονωθεί από το φυτό *Crotalaria anagyroides*²⁴, της οικογένειας *Leguminosae*.

ΕΙΚ. 1 : Φάσμα μαζών ενός συστατικού (ηλιοτριδίνης) του κλάσματος των αλκαλοειδών, των ριζών της Onosma heterophylla.

ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ

Το φυτικό υλικό συλλέχθηκε από τις νότιες ακτές της λίμνης Μεγ. Πρέσπα. Ταυτοποιήθηκε μορφολογικά και ανατομικά, αλλά κυρίως με χρωμοσωμική

ΣΧΗΜΑ 1 : Μηχανισμός θραυσματοποιήσεως της ηλιοτριδίνης (ή της επιμερούς ρετρονεκίνης).

ΕΙΚ. 2 : Φάσμα μαζών της 1-μεθυλενο-πυρρολιζιδύνης (συστατικού του κλάσματος των αλκαλοειδών των ριζών της Onosma heterophylla).

εξέταση των ανθέων του και έτσι αποδείχθηκε ότι πρόκειται για το είδος heterophylla, του γένους Onosma,της οικογένειας Boraginaceae (χρωμοσωμικός αριθμός 2η=26, η=13).

Απομόνωση του κλάσματος των αλκαλοειδών

100g κονιοποιημένων ριζών του φυτού Onosma heterophylla εκχυλίζονται εξαντλητικά με κ-εξάνιο σε συσκευή Soxhlet, για την απομάκρυνση των λιπόφιλων συστατικών των ριζών (ισοεξενυλο-ναφθαζαρινών, λιπιδίων και άλλων ομάδων ουσιών).

Ακολουθεί εκχύλιση των ριζών με μεθανόλη επί 24 ώρες στην ίδια συσκευή. Μετά την απομάκρυνση του διαλύτη υπό ελαττωμένη πίεση, λαμβάνονται 24,1g ιξώδους υπολείμματος σκοτεινού χρώματος (προκαταρκτικό μεθανολικό εκχύλισμα).

Για την αναγωγή των Ν-οξειδίων του μίγματος των αλκαλοειδών, σε κωνική φιάλη φέρονται 10g προκαταρκτικού μεθανολικού εχκυλίσματος, προστίθενται 100ml διαλύματος 2N θειικού οξέος καθώς και 0,5g σκόνης ψευδαργύρου και το μίγμα αναδεύεται μαγνητικά επί 8 ώρες σε θερμοκρασία δωματίου. Ακολουθεί διήθηση και το όξινο διήθημα εκχυλίζεται με χλωροφόρμιο (για την απομάκρυνση άλλων συνυπαρχόντων συστατικών).

Το παραπάνω όξινο διήθημα εξουδετερώνεται με διάλυμα αμμωνίας (ρύθμιση του pH στην περιοχή 9-10) και στη συνέχεια εκχυλίζεται με χλωροφόρμιο. Η χλωροφορμική στιβάδα ξηραίνεται με άνυδρο θειικό νάτριο και τέλος απομακρύνεται ο διαλύτης υπό ελαττωμένη πίεση, οπότε λαμβάνονται 0,2g κίτρινου υπολείμματος (κλάσμα αλκαλοειδών).

Προκαταρκτική ανάλυση του κλάσματος των αλκαλοειδών

Το κλάσμα των αλκαλοειδών υποβάλλεται σε προκαταρκτική TLC ανάλυση (έτοιμες πλάκες Merck πάχους 0.2mm, με Kieselgel 60F₂₅₄), με υγρό αναπτύξεως βενζόλιο/οξικό αιθυλεστέρα/διαιθυλαμίνη (70/20/10).

Ακολουθεί ψεκασμός μιάς χρωματογραφικής πλάκας με το αντιδραστήριο Dragendorff (γενικό αντιδραστήριο αλκαλοειδών) και μιάς άλλης με το ιωδολευκοχρυσικό αντιδραστήριο (ειδικό για πυρρολιζιδινικά αλκαλοειδή), τα οποία παρασκευάζονται κατά τα γνωστά²⁵ Με το αντιδραστήριο Dragendorff εμφανίζονται στη χρωματογραφική πλάκα πορτοκαλλέρυθρες κηλίδες (ένδειξη παρουσίας μίγματος αλκαλοειδών), ενώ με το ιωδολευκοχρυσικό αντιδραστήριο εμφανίζονται κηλίδες καφέ και μπέζ χρώματος (ένδειξη παρουσίας μίγματος αλκαλοειδών με πυρρολιζιδινική δομή).

72 Α.Σ. ΜΕΛΛΙΔΗΣ και Β.Π. ΠΑΠΑΓΕΩΡΓΙΟΥ

GC-MS ανάλυση του κλάσματος των αλκαλοειδών

Το κλάσμα των αλκαλοειδών αρχικά υποβάλλεται σε GLC ανάλυση και διαχωρίζεται στα επί μέρους συστατικά του. Στη συνέχεια με συνδυασμένη GC-MS ανάλυση λαμβάνονται τα φάσματα μαζών των επί μέρους συστατικών του κλάσμα+ τος.

Οι συνθήκες της GC-MS αναλύσεως είναι οι ακόλουθες: Τριχοειδής στήλη (30m) με SE-54. Προγραμματισμένη θερμοκρασία στήλης 150-300⁰ (5⁰/min).Φέρον αέριο ήλιο (20ml/min). Θερμοκρασία χώρου εγχύσεως δείγματος 250⁰. Ανιχνευτής MS (Varian MAT 311A). Ενέργεια δέσμης ηλεκτρονίων 70eV.

ΕΥΧΑΡΙΣΤΙΕΣ

Ευχαριστούμε θερμά τον κ. Γ. Παυλίδη (Λέκτορα του Εργαστηρίου Συστηματικής Βοτανικής και Φυτογεωγραφίας, του Τμήματος Βιολογίας, της Σχολής Θετικών Επιστημών του Α.Π.Θ.) για τη συλλογή και ταυτοποίηση του φυτικού υλικού. Επίσης, ευχαριστούμε θερμά τον Prof. Dr. H. Teppner (Institut für Systematische Botanik der Universität Graz, Austria) για τη χρωμοσωμική εξέταση του φυτικού υλικού.

ΠΕΡΙΛΗΨΗ

Στην εργασία αυτή μελετάται το κλάσμα των πυρρολιζιδινικών αλκαλοειδών, το οποίο λαμβάνεται από τις ρίζες του φυτού Onosma heterophylla, της οικογένειας Boraginaceae. Με συνδυασμένη GC-MS ανάλυση διευκρινίσθηκαν οι δομές δύο πυρρολιζιδινικών αλκαλοειδών, της ηλιοτριδίνης και της 1-μεθυλενο-πυρρολιζιδίνης.

SUMMARY

PYRROLIZIDINE ALKALOIDS OF THE PLANT ONOSMA HETEROPHYLLA

ANTONIOS S. MELLIDIS and VASSILIOS P. PAPAGEORGIOU

Laboratory of Organic Chemistry, Department of Chemical Engineering, College of Engineering, University of Thessaloniki, Thessaloniki 54006, Greece.

The alkaloid fraction, isolated from the roots of the plant *Onosma heterophylla* (family *Boraginaceae*), is studied in this paper. The structures of two pyrrolizidine alkalois (helitridine and 1-methylenepyrrolizidine) were identified by GC/MS.

ΒΙΒΛΙΟΓΡΑΦΙΑ

- (a) Mellidis, A.S. and Papageorgiou, V.P., *Phytochemistry*, <u>26</u>, 842 (1987); (b) Mellidis, A.S. and Papageorgiou, V.P., *J. Nat. Prod.*, <u>50</u>, 618 (1987).
- Ball, P.W., "Onosma" in Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M. and Webb, D.A., *Flora Europaea*, Vol. 3, p.93, Cambridge University Press, Cambridge (1972).

- 3. Hegnauer, R., Chemotaxonomie der Pflanzen, Vol. 3, pp. 290-297, Birkhauser Verlag, Basel (1964). 4. Papageorgiou, V.P., Experientia 34, 1499 (1978).

- Papageorgiou, V.P., *Planta Med.*, <u>38</u>, 193 (1980).
 Warren, F.L., "Senecio Alkaloids" in Manske, R.H.F., *The Alkaloids*, Chemistry and Physiology, Vol. XII, Ch. 4, Academic Press, New York (1970).
- 7. Menshikov, G.P. and Petrova, M.F., J. Gen. Chem. USSR 22, 1499 (1952).
- 8. Huizing, H.J. and Malingré, T.M., J. Chromatogr., <u>176</u>, 274 (1979).
- 9. Broch-Due, A.I. and Aasen, A.J., Acta Chem. Scand., <u>B34</u>, No1, 75 (1980).
- 10. Roeder, E., Wiedenfeld, H. and Schraut, R., Phytochemistry, 23, 2125 (1984).
- 11. (a) Culvenor, C.C.J. and Jago, M.V., "Carcinogenetic Plant Products and DNA" in Grover, P.L., Chemical Carcinogens and DNA, Vol. I, p.161, CRC Press, Boca Raton Florida (1979); (b) Hooper, P.T. and Scanlan, W.A., Austral. Vet. J., <u>53</u>, 109 (1977); (c) Smith, L.W. and Culvenor, C.C.J., J. Nat. Prod., <u>44</u>, 129 (1981).
- 12. Deinzer, M.L., Thomson, P.A., Burgett, D.M. and Isaakson, D.L., Science 195 (No 4277), 497 (1977).
- 13. Bull, L.B., Culvenor, C.C.J. and Dick, A.T., Frontiers of Biology (Neuberger, A. and Tatum, E.L., Eds.), Vol. 9, pp. 1-293, North-Holland, Amsterdam (1968).
- 14. McLean, E.K., Pharm. Rev., <u>22</u>, 429 (1970).
- Schoental, R., Cancer Res., <u>35</u>, 20 (1975).
 Green, C.R. and Chriestie, G.S., Br. J. Exp. Pathol., <u>42</u>, 369 (1961).
- 17. Rao, M.S. and Reddy, J.K., Br. J. Cancer 37, 289 (1978).
- 18. Johnson, W.D., Robertson, K.A., Pounds, J.G. and Allen, J.K., J. Natl. Cancer Inst., <u>61</u>, 85 (1978).
- 19. Culvenor, C.C.J., J. Pharm. Sci., <u>57</u>, 1112 (1968).
- 20. Suri, O.P., Sawhney, R.S. and Atal, C.K., Indian J. Pharm., <u>37</u>, 36 (1975).
- 21. Šantavý, F., "Pyrrolizidine Alkaloids" in Stahl, E., Thin-Layer Chromatography, a Laboratory Handbook, p. 435, Springer-Verlag, Berlin (1969).
- 22. Pedersen, E. and Larsen, E., Org. Mass Spectrom., <u>4</u>, 249 (1970).
- 23. Crout, D.H., Benn, M.H., Imaseki, H. and Geissman, T.A., *Phyto*chemistry <u>5</u>, 1 (1966).
- 24. (a) Culvenor, C.C.J. and Smith, L.W., Austral. J. Chem., <u>12</u>, 255 (1959); (b) Culvenor, C.C.J. and Smith, L.W., *ibid.*, <u>15</u>, 121 (1962).
- 25. Zweig, G. and Sherma, J., CRC Handbook of Chromatography, Vol. II, p. 113, Chemical Rubber Company Press, Cleveland, Ohio (1972).

Chimika Chronika, New Series, 17, 74-84 (1988)

INHIBITORY ACTION OF BENZYL-TRIPHENYL-PHOSPHONIUM CATIONS ON THE Cd^{2+} and Zn^{2+} discharge at the dropping mercury electrode

A.ANASTOPOULOS, A.CHRISTODOULOU and I.MOUMTZIS

Laboratory of Physical Chemistry, Chemistry Department, Aristotelian University of Thessaloniki, 54006 Thessaloniki, Greece.

(Received November 24,1986)

SUMMARY

The inhibitory action of benzyl-triphenyl-phosphonium cations on the reduction of Cd^{2+} and Zn^{2+} at the dropping mercury electrode is studied by means of polarographic i - E and i - t measurements. This study is carried out at limiting current potentials, where the effect of the variation of the ψ_1 potential on the kinetics of the Cd^{2+} and Zn^{2+} discharge is negligible. Formal and standard rate constants are determined in the presence of benzyl-triphenyl-phosphonium cations and it is found that a logarithmic relation exists between the rate constant and the degree of the surface coverage. This means that the strong inhibitory action of benzyl-triphenyl-phosphonium cations, mainly electrostatic, between surfactant cations and the activated complex particles predominantly define the mechanism of the inhibitory action.

Key words: Inhibition, phosphonium cations, cadmium and zinc discharge.

INTRODUCTION

The quantitative study of the inhibition of simple electrode reactions in the presence of various surface active ionic and non-ionic substances is a subject which attracts the attention of many investigators from the early 50's up to now^{1,2}. In these frames, research is mainly focused on the elucidation of the mechanism of the electrode reaction itself as well as on the mechanism of inhibitory action from the experimental and also the theoretical point of view.

A large number of non-ionic inhibitors $^{1-5}$ has been examined systematically. On the other hand, the study of ionic surfactants, especially of the positively charged ones, is much less extensive although it is known that the film formation of these substances $^{6-8}$ presents interesting characteristics which are usually reflected to their inhibitory action.

The study of the inhibition behaviour of quarternary phosphonium cations, the film formation of which is accompanied by reorientation and crystallization effects, was initiated by Dörfler et al⁸. Later, in a work from our laboratory⁹ we studied the adsorption of benzyl-triphenylphosphonium cations, $(BzPh_3P)^+$, at the dropping mercury electrode, (DME), and to qualitative level we examined the inhibitory action of this substance on the reduction of a series of organic compounds. However, these works do not constitute a systematic study of the inhibition behaviour of phosphonium cations, thus not allowing a sound determination of their inhibition mechanism. In the present work we attempt such a quantitative study for the influence of the adsorption of $(BzPh_3P)^+$ cations on the kinetics of Cd^{2+} and Zn^{2+} reduction at the DME. This is achieved by determining the dependence of the surface coverage and the bulk concentration of $(BzPh_3P)^+$ cations.

In the course of this study,the formal standard potentials of the electrode reactions are determined, the standard rate constants and the charge transfer coefficients as well as the rate constant of the reaction on the uncovered part of the electrode are estimated and finally the proper equation which corresponds to the inhibition mechanism is selected. At a preliminary level, a series of adsorption characteristics, such as the coverage vs. potential dependence, the maximum surface concentration and the area per adsorbed $(BzPh_3P)^+$ cation, are also determined.

EXPERIMENTAL

The kinetic parameters of Cd^{2+} and Zn^{2+} discharge were determined by d.c.polarography measurements of the polarographic current against potential and time at the DME. Adsorption characteristics of the $(BzPh_3P)^+$ cations were determined by tensametric measurements. For these measurements Radiometer "Polariter PO-4" and Metrohm"Polarecord E-506" systems were used in connection to a Houston Inst."Omnigraphic 2000" X-Y recorder.

The solutions were deaereted by a stream of purified nitrogen and they were kept at constant $25 \pm 0.05^{\circ}$ C tempetature. The characteristics of the DME were 2.121 mg·s⁻¹(flow rate) and a drop time of 5 s at a reservoir height of 40 cm. The water and mercury were used after double distillation. KNO_3 (Merck,puriss p.a.), $Cd(NO_3)_2$ (Merck,puriss p.a.) and $Zn(NO_3)_2$ (Merck,puriss p.a.) were used without further purification,while BzPh_3PC1 (Aldrich, 99%) was once recrystallized from water-methanol mixtures and afterwards dried at 150°C.

All potentials were measured against a large area calomel electrode saturated with KCl.

RESULTS AND DISCUSSION

Adsorption characteristics of $(BzPh_zP)^+$ cations

The electrode coverage against potential curves of 0.2 M KNO₃ in the presence of BzPh₃PCl additions, obtained from tensametric measurements, are provided in figure 1.

FIG.1: Dependence of surface coverage of the DME against the electrode potential for the following BzPh_3PCl additions in mM:1)0.08, 2)0.09, 3) 0.10, 4)0.125, 5)0.15, 6)0.20 in 0.2 M KNO₃ aqueous solutions.

For a concentration of BzPh₃PCl equal to 2×10^{-4} M, limiting coverage is obtained and for this reason higher concentrations are not incorporated in figure 1. From this figure, the potential of maximum adsorption of $(BzPh_3P)^+$ cations in aqueous solutions is found at $E_{max} = -1.10$ V/SCE. The smooth shape of the θ vs. E curves is an evidence for the absence of any rearrangements, viz. condensation or reorientation, in the adsorption layer of $(BzPh_3P)^+$ cations. The adsorption equilibrium of these cations is controlled by diffusion as it is evidenced by the linear dependence of the time required for the attainment of saturation coverage, t_g , on the inverse square of the bulk concentration, $1/a^2$, of BzPh_3PCl, shown in figure 2. This is in agreement to the equation of Koryta¹⁰

$$t_s = 1.82 \times 10^6 \frac{\Gamma_s}{D \sigma^2} \tag{1}$$

FIG.2: Dependence of the time required for saturation coverage on the inverse square of BzPh3PCl concentration, for $Cd^{2+}(a)$ and $Zn^{2+}(b)$ reduction. Electrode potentials in V/SCE provided on the figure. Base solution:aqueous 0.2 M KNO₃.

From equation (1), the important adsorption parameters, Γ_s and $S_{org.}$, the saturation surface concentration and the area occupied by each adsorbed $(BzPh_3P)^+$ particle, can be obtained. For this calculation, the value of diffusion coefficient, D, of $(BzPh_3P)^+$ equal to $5 \times 10^{-6} \text{ cm}^2 \cdot \text{s}^{-1}$, derived polarographically, is used. The value of Γ_s thus obtained is equal to $(2.56\pm0.02)\times10^{-10} \text{ mol}\cdot\text{cm}^{-2}$ leading – by means of the relation $S_{org.} = 10^{14}N^{-1}\Gamma_s^{-1}$, where N is the Avogadro number – to $S_{org.} = 0.64\pm0.01 \text{ nm}^2$ per adsorbed $(BzPh_3P)^+$ particle at saturation.

Influence of $(BzPh_3P)^+$ adsorption on the kinetics of Cd^{2+} and Zn^{2+} discharge

The electrochemical rate constants of Cd^{2+} and Zn^{2+} discharge in the presence of adsorbed $(BzPh_3P)^+$ were obtained from d.c.polarographic current-voltage and current-time measurements provided in figures 3 and 4. Polarographic i - t curves of Cd^{2+} and Zn^{2+} in the presence of $BzPh_3PCl$ addition were recorded over a wide range of potentials, fron -0.80 to -1.50 V/SCE, corresponding to the limiting diffusion current of the respective uninhibited reactions:

$$Cd^{2+} + 2_e \longrightarrow Cd(Hg)$$
 (2)

$$Zn^{2+} + 2e \longrightarrow Zn(Hg)$$
 (3)

and only some of them are provided in figure 4.

FIG.3: Polarographic curves of Cd^{2+} (a) and Zn^{2+} (b) reduction in the presence of the following BzPh₃PCl concentrations in mM:1)0.00, 2)0.065, 3) 0.08, 4)0.09, 5)0.10, 6)0.125, 7)0.15, 8)0.20, 9)0.30. Base solution: a-queous 0.2 M KNO₃.

FIG.4: Polarographic current-time curves for the $Cd^{2+}(a)$ and $Zn^{2+}(b)$ reduction at a standard electrode potential E = -1.2 V/SCE, in the presence of the following B2Ph_3PCl additions in mM:1)0.00, 2)0.065, 3)0.08, 4)0.09, 5)0.10, 6)0.125, 7)0.15, 8)0.20, 9)0.30.Base solution:aqueous 0.2 M KNO₃.

78

For the calculation of the electrochemical rate constants the method of Koutecký 11 was used. For this purpose, the following equations were used:

$$\frac{i_t}{i_d} = \frac{\varphi(\chi)}{1 + \sqrt{\frac{D_O}{D_R}} \exp\left[\frac{nF}{RT} (E - E_f^O)\right]}$$
(4)

 $x = \sqrt{\frac{12t}{7D_O}} k_f \left\{ 1 + \sqrt{\frac{D_O}{D_R}} \exp\left[\frac{nF}{RT} (E - E_f^O)\right] \right\}$ (5)

In equations (4) and (5), i_t and i_d are the instantaneous at time t and diffusion limiting currents, $\varphi(\chi)$ is a tabulated function of χ^{11} , D_O and D_R are the diffusion coefficients of the oxidized and reduced form of the depolarizer, n is the number of electrons involved in the electrode reaction, E_f^o is the standard electrode potential of the reactions (2) and (3).

In equation (5), k_f is the formal rate constant of the reaction which is expressed by

$$k_{f} = k_{s} \exp\left[-\frac{\alpha nF}{RT} \left(E - E_{f}^{Q}\right)\right]$$
(6)

where k_s and α are the standard rate constant and the charge transfer coefficient respectively.

The standard potentials of the electrode reactions (2) and (3) were determined by a method suggested by Tamamushi and Tanaka¹² and they were found equal to: $E_{f}^{O}(Cd^{2+}) = -0.603$ V/SCE and $E_{f}^{O}(Zn^{2+}) = -1.032$ V/SCE.

Equations (4) and (5) are much simplified by the assumption, which is frequently encountered in literature, that $D_O = D_R$. The values of the diffusion coefficients of Cd^{2+} and Zn^{2+} were found polarographically equal to 6.87×10^{-6} and 6.32×10^{-6} cm²·s⁻¹ respectively. Using these values and i - t data, we calculated the dependence of $\log k_f$ against $\log c$ by means of equations (4) and (5) for the various systems used, some of which are provided in figure 5, at θ values greater than 0.7.

The slopes of figure 5 reveal a strong concentration dependence of the rate constants. According to Lipkowski and Galus¹ this is typical of deposition type electrode reactions which is the case of reactions (2) and (3). The slopes of $\log k_f - \log c$ plots combined with the equation¹:

$$\log k_f = -(r^{\dagger}/r_{\rm j}) \log c + \text{const}$$
(7)

FIG.5: Dependence of the logarithm of the formal rate constant of the reduction of $Cd^{2+}(a)$ and $Zn^{2+}(b)$ on the logarithm of BzPh₃PCl concentration at E = -1.2 V/SCE. Base solution: aqueous 0.2 M KNO₃.

where r^{\ddagger} and r_{i} are the number of solvent molecules replaced on the electrode surface for the adsorption of a particle of the activated complex and the surfactant respectively, are used to obtain information about the size ratio r^{\ddagger}/r_{i} . These calculations have shown that the slopes of the $\log k_{f}$ - $\log c$ plots are generally equal to 1.50 ± 0.02 , a value typical for deposition reactions (>1.00) which is in reasonable agreement with

FIG.6: Dependence of $\log k_f$ on $(E - E_f^0)$ of the reduction of Cd^{2+} (a) and $Zn^{2+}(b)$ in the following BzPh_3PCl additions in mM:1)0.08, 2)0.09, 3)0.10, 4)0.125, 5)0.15, 6)0.20, 7)0.30. Base solution:aqueous 0.2 M KNO3.

literature data¹³.

From the plots of figure 5 we derived the plot of $\log k_f$ against $(E - E_f^O)$ at various BzPh_3PCl concentrations, some of which are shown in figure 6. The fair linearity of these plots, combined with equation (6), enables the determination of the standard rate constant, k_s and the transfer coefficient, α , of reactions (2) and (3) in the presence of adsorbed -(BzPh_3P)⁺ cations. The values obtained are listed in the following table.

TABLE I. Standard rate constants and charge transfer coefficients of reactions (2) and (3) in the presence of adsorbed $(BzPh_3P)^+$ cations.

BzPh₃PC1 concentration (mM)	$Cd^{2+} + 2a$	$\sim cd(u_{\alpha})$	$7n^{2+} + 2 = -7n(Ha)$				
		- çu(ng)	$2\pi + 2e \longrightarrow 2\pi(Hy)$				
	$k_{s} \cdot 10^{5} (\text{cm} \cdot \text{s}^{-1})$	α	$k_{s} \cdot 10^{5} (\text{cm} \cdot \text{s}^{-1})$	a			
0.08	5.48	0.015	2.12	0.037			
0.09	5.29	0.014	1.53	0.035			
0.10	4.06	0.018	1.36	0.031			
0.125	3.98	0.015	1.29	0.030			
0.15	2.70	0.014	1.29	0.030			
0.20	2.20	0.011	1.29	0.030			
0.30	2.20	0.011	1.29	0.030			

The values of k_s and α , listed in table I, generally correspond to surface coverage 0.7<0<1. It is seen that at high $(BzPh_3P)^+$ coverages these values are very low. These low values correspond to certain areas of the polarographic currents which are almost independent of potential. This is classified in the literature² as the *Loskharev effect*.

The weak concentration dependence of the transfer coefficient offers a safe evidence 14 that the inhibition mechanism does not change within the range of coverage values from 0.70 to 1.00.

The most important part of a work dealing with the effect of surface active substances on electrochemical kinetics is the determination:a) of the mechanism of the electrode reaction and b) of the inhibition mecanism. For the former, the works of Lipkowski and coworkers¹⁵ have evidently shown that reaction (2) is of a two step mechanism with Cd⁺ as intermediate product. The same can be also presumed for reaction (3). The latter is a problem similar to the selection of the appropriate adsorption isotherm.

82 INHIBITION OF Cd²⁺ AND Zn²⁺ DISCHARGE BY PHOSPHONIUM CATIONS

The determination of the inhibition mechanism is achieved by the selection of the proper equation¹⁻⁴ describing the dependence of the rate constant, $k_{f,\theta}$, on electrode coverage θ which, for the case of $(BzPh_3P)^+$ cations, is a non-linear one. This is a safe evidence that blocking effect plays only a secondary role in the inhibition mechanism. The non-linear dependence of $k_{f,\theta}$ on coverage shows that the adsorption of $(BzPh_3P)^+$ cations affects the activation energy of the electrode reaction and the inhibition mechanism is governed by the interactions between the activated complex and the surfactant particles.

For the case of Cd^{2+} and Zn^{2+} discharge, $k_{f,\theta}$ was found to be related to electrode coverage by the expression:

$$\log k_{f,\theta} = \log k_{f,0} + b \log (1 - \theta)$$
(8)

The linearity of the plots of figure 7:

FIG.7: Dependence of the logarithm of the formal rate constant of the reduction of $Cd^{2+}(a)$ and $Zn^{2+}(b)$ on the logarithm of $(1 - \theta)$ in the presence of BzPh_3PCl at the following potentials in V/SCE:1)-0.80, 2)-1.00, 3)-1.20, 4)-1.30, 5)-1.40. Base solution:aqueous 0.2 M KNO₃.

enables the calculation of the $k_{f,0}$ and b, the formal rate constant on the *free* surface and the interaction parameter respectively. The values of these two parameters are listed in table II.

Attempts to assign a physical meaning to parameter b were made by Sathyanarayana³ and Lipkowski^{1,13}. However, the values of b determined by us, do not agree with these views.

The slope *b* of $\log k_{f,\theta} - \log(1 - \theta)$ plots cannot be correlated to the size ratio determined by equation (7) or, in other words, the equality $r^{\dagger} = b$ is not confirmed. However, the positive values of *b*, according to Sathyanarayana, can by considered as representing repulsive inter-

A.ANASTOPOULOS, A.CHRISTODOULOU, I.MOUMTZIS

-E(V/SCE)	Cd ²	+ + 2 e Cd(Hg)	Zn ²⁺ + 2 <i>e</i> Zn(Hg)		
	Ъ	$k_{f,0} \cdot 10^4 (\text{cm} \cdot \text{s}^{-1})$	Ъ	$k_{f,0} \cdot 10^4 (\text{cm} \cdot \text{s}^{-1})$	
0.80	0.71	2.19	-	-	
1.00	0.69	2.45	-	_	
1.20	0.63	2.74	1.033	1.13	
1.30	-	-	1.114	1.67	
1.40	0.61	2.69	0.692	1.04	

TABLE II. Formal rate constants at the free surface and interaction parameter in the presence of adsorbed $(BzPh_{3}P)^{+}$ cations

actions between the depolarizer and the inhibitor, especially when *b*-values are greater then unity. In any way, the extent of the inhibitory action of $(BzPh_3P)^+$ cations must mainly attributed to such a repulsive interaction which decelerates the approach of depolarizer particles to the reaction plane. Only such strong interactions of electrostatic character can justify the small values of $k_{f,\theta}$ and $k_{f,0}$ obtained in the present work.

Of course, a crystallization overvoltage must also have some contribution due to the removal of the reaction plane from the electrode surface when $\theta \rightarrow 1$, which further enhances the inhibitory action of $(BzPh_3P)^+$ cations.

ΠΕΡΙΛΗΨΗ

Παρεμποδιστική δράση των κατιόντων του Βενζυλο-τριφαινυλο-φωσφωνίου πάνω στην εκφόρτιση των κατιόντων Co²⁺ και In²⁺στο σταχονικό ηλεκτρόδιο του υδραρχύρου

Η παρεμποδιστική δράση των κατιόντων του Βενζυλο-τριφαίνυλο-φωσφωνίου πάνω στην αναγωγή των κατιόντων Cd^{2+} και Zn^{2+} στο σταγονικό ηλεκτρόδιο του υδραργύρου μελετάται με πολαρογραφικές μετρήσεις ρεύματος-δυναμικού και ρεύματος-χρόνου. Η μελέτη αυτή γίνεται στα δυναμικά που αντιστοιχούν στο ορικό ρεύμα, όπου η επίδραση της μεταβολής του δυναμικού ψ₁ πάνω στην κινητική των δράσεων αυτών είναι αμελητέα. Προσδιορίζονται οι φαινομενικές και οι κανονικές σταθερές ταχύτητας παρουσία των κατιόντων του Βενζυλοτριφαίνυλο-φωσφωνίου και βρίσκεται ότι ανάμεσα στη σταθερά ταχύτητας και την ηλεκτροδιακή επικάλυψη ισχύει μια σχέση λογαριθμικής μορφής. Αυτό σημαίνει ότι η ισχυρή παρεμποδιστική δράση των κατιόντων του φωσφωνίου δε μπορεί να αποδοθεί σε μια απλή στερεοχημική παρεμπόδιση. Ο μηχανισμός της παρεμποδιστικής δράσης καθορίζεται κύρια από ηλεκτροστατικές απώσεις ανάμεσα στα προσροφημένα κατιόντα και στα σωματίδια του ενεργοποιημένου συμπλόκου.

LITERATURE

- 1.Lipkowski, J and Galus, Z.: J.Electroanal.Chem., 61, 11(1975).
- 2.Damaskin, B.B. and Afanasev, B.N.: Elektrokhimiya, 13, 1099(1977).
- 3.Sathyanarayana, S.: J. Electroanal. Chem., 10, 119(1965).
- 4.Niki, K. and Hackerman, N.: J. Electroanal. Chem., 32, 257(1971).
- 5.Ayabe, Y.: J. Electroanal. Chem., 81, 215(1977).
- 6.Koryta, J. and Vavrićka, S.: J. Electroanal. Chem., 10, 451(1965).
- 7.Koryta, J.: *Electrochim.Acta*, 6,67(1962).
- 8.Dörfler, H. and Müller, E.: J. Electroanal. Chem., 121, 153(1981).
- 9.Anastopoulos, A., Christodoulou, A. and Jannakoudakis, D.:Z. Phys. Chem., N.F., <u>137</u>,231(1983).
- 10. Koryta, J.: Coll. Czech. Chem. Commun., 18, 206 (1953).
- 11.Koutecký, J.:Coll.Czech.Chem.Commun., 18,597(1953).
- 12.Tamamushi, R and Tanaka, N.:Z.Phys.Chem., N.F., 39, 117(1963).
- 13.Lipkowski, J., Kosinska, E., Goledzinowski, M., Nieniewska, J. and Galus, Z.: J. Electroanal. Chem., 59, 344 (1975).
- 14.Goledzinowski, M.,Kisova, L.,Lipkowski, J. and Galus, Z.: *J.Electroanal.* Chem.,95,43(1979).
- 15.Kisova, L., Goledzinowski, M. and Lipkowski, J.: *J.Electroanal.Chem.*, <u>95</u>, 29(1979).

MOLECULAR ORBITAL STUDY OF THE TETRAHEDRAL DISTORTION IN FOUR-COORDINATE COPPER(II) POLYAMINE COMPLEXES

E. G. BAKALBASSIS and G. A. KATSOULOS

Department of General and Inorganic Chemistry, Aristotle University, Thessaloniki 54006, Greece

(Received January 5, 1987)

SUMMARY

EHMO calculations have been used in the analysis of the bonding in the four-coordinate $[Cu(en)_2]^{2+}$ and $[Cu(bipyam)_2]^{2+}$ complexes and in a series of complexes ranging from $[Cu(en)_2]^{2+}$ (D_{2h}) to $[Cu(en)_2]^{2+}$ (D_{2d}) . The absence of a $[Cu(en)_2]^{2+}$ complex exhibiting an elongated-tetrahedral configuration is well understood in terms of both the calculated sum of one-electron energy diagram and the net charges of Cu and N atoms of the series of complexes. Moreover, the tendency of the square-planar $[Cu(en)_2]^{2+}$ complex to increase its coordination capacity by adding two more ligands in the axial positions and subsequently producing a tetragonally distorted octahedral one is discussed. The broad and intense absorption band envelopes in the visible region of both $[Cu(en)_2]^{2+}$ and $[Cu(bipyam)_2]^{2+}$ complexes should be attributed to MLCT transitions. Furthermore, no out-of-plane π -interaction between Cu and ligand π orbitals occur in the ground states of these two complexes. Finally, the agreement between their calculated and experimental g_{ii} and A_{ii} values is remarkably good.

Key words: Copper(II) polyamine complexes, EHMO calculations, electronic structure, electronic spectral data, EPR parameters; stereochemical study.

INTRODUCTION

In the last years the number of attempts to interpret by quantum chemical calculations all the properties depending on the electronic structure of the complexes has steadily increased.¹⁻⁵ In this connection the treatment of the cova-

lence properties of mononuclear Cu(II) complexes by EPR studies, ⁶⁻⁹ according to the criteria established by Maki and McGarvey was of interest.¹⁰ Recently, our attention has focused on fully understanding the electronic properties of a series of new copper(II) polyamine complexes^{11,12} exhibiting five- and six-coordinate geometries in the framework of the structural pathway established for them.¹³ In order to expand the knowledge in this area, as well as to investigate the cause of the non existence of [Cu(en)₂]²⁺ complex, exhibiting an elongated tetrahedral configuration. EHMO calculations were performed on both ICu- $(en)_{2}^{2+}$ and $[Cu(bipyam)_{2}](ClO_{4})_{2}$ complexes (en = ethylenediamine, bipyam = 2,2'-bipyridylamine), and in a series of complexes ranging from [Cu(en)₂]²⁺ (D_{2b}) to $[Cu(en)_2]^{2+}$ (D_{2d}) . The two $[Cu(en)_2]^{2+}$ and $[Cu(bipyam)_2]^{2+}$ complexes of known structure were selected because they are representative examples in the CuN4 structural pathway; still their electronic and EPR spectra have not been interpreted thoroughly, so far. Consequently, the results of our attempts for a better understanding of the electronic and EPR spectral data available for these two compounds are presented in this paper. We also provide further evidence¹⁴ of the tetrahedral distortion of a square-coplanar CuN₄ chromophore in [Cu(en)₂]²⁺ and [Cu(bipyam)₂]²⁺, despite their crystallographic descriptions.¹⁵

EXPERIMENTAL

Computational Details

Calculations were carried out in the framework of the extended Hückel LCAO-MO method,¹⁶⁻¹⁸ with off-diagonal matrix elements given by the expression of Wolfsberg-Helmholz.¹⁹ For the reasons described previously,¹² option 0 of the FORTICON-8 program was used.²⁰ To have reasonable diagonal matrix elements that allow for a good fit between experimental and theoretical ligand field transitions of the compounds, the appropriate H_{dd} for copper and K values were determined¹² following a series of calculations (H_{dd} = -12.64 eV and K = 1.75 for all complexes). The values of all other diagonal matrix elements H_{ii}, for carbon, nitrogen, and hydrogen, along with their orbital exponents, were those given in the literature.^{12,16-18,20} The basis set of valence AO's for Cu consisted of 3d, 4s and 4p, with the last two being single Slater-type orbitals, whereas the 3d functions were considered as contracted linear combinations of two Slater-type functions. The exponents of the two d AO's were taken as 5.95 and 2.30

with corresponding relative weights of 0.5933 and 0.5744. The 4s and 4p exponents for Cu were taken as 2.05 and 1.325, respectively.

FIG. 1. Structures of the complexes used for the calculations along with the coordinate systems.

The X-ray crystal data for the compounds studied were taken from the literature ^{15,21} However, all the fractional atomic coordinates¹⁵ of the [Cu(bipyam)₂]²⁺ were checked by using the BONDLA crystallographic program of the XRAY-76 system,²² and the coordinates of the N(3), C(5), C(9) and H(N(2)) atoms were redetermined by using the BONDAT program of the aforesaid system. A schematic representation of the two complexes, along with the coordinate system used are given in Fig. 1. Complexes [Cu(en)₂]²⁺ and [Cu(bipyam)₂](ClO₄)₂ possess square-planar (D_{2h}) and tetrahedrally distorted squareplanar (approximately C_{2v}) stereochemistries, respectively. The C_{2v} symmetry is preferred for the latter compound as it better reflects the molecular symmetry.¹⁴ Finally, the two en moieties of the former compound were rotated in opposite directions, around the x-axis, to get an elongated tetragonal distortion of a tetrahedral configuration (D_{2d}) around the Cu(II) ion.

RESULTS AND DISCUSSION

Electronic Structure of Complexes

The calculated ground-state one-electron energies, charge distributions, and partial wave analyses for the valence molecular orbitals associated with

88 E.G. BAKALBASSIS, G.A. KATSOULOS

both the central atom and ligand valence AO's of the complexes under investigation are summarized in Tables I and II.

	Energy	C	harge	distrib	Basis functions ^c			
Levela	(ev)	Cu	4N	4C	8H(N)	8H(C)	Cu	N ₄
11b _{3u}	26.998	61	5	0	22	12	P _x	sσ*,p _x σ*
8b _{2u}	11.466	77	8	4	7	4	Pv	ρ _γ σ*,ρ _χ σ*
10a _a	0.217	30	32	28	7	3	S	po*,so*
9a _a	-1.916	50	25	20	1	4	S,d _z 2	po*
2b _{1u}	-3.162	95	3	0	1.	1	p, -	ρ π*
5b ₁₀	-10.412	55	44	0	0	1	d	p, σ , p , σ
8a,	-12.272	87	11	1	0	1	d ₇ 2,d ₇ 2, ₂	p,o,p,o
7a	-12.500	98	1	1	0	0	d_2_2.d_2	iy ax
2b3g	-12.552	97	1	1	1	0	d.,	
3b2	-12.559	98	1	0	1	0	, dyr i	
4b ₁₀	-13.934	35	42	14	0	9	d,	p. J.D. J
5a.	-14.019	15	31	26	2	26	d_2.s	D.J.D.J
3b ₁ ,	-14.965	9	57	19	9	6	d	D
1b2	-28.970	8	69	11	11	1	D.,	Sσ
1b _{3u}	-31.125	. 10	43	36	9	2	p _x	SO

TABLE I. Valence molecular orbitals of the square-planar (D_{2h}) [Cu(en)₂]²⁺ complex.

^a The highest occupied level is 5b_{1g}. ^b Percentage of the MO's total population located on the indicated atoms. ^cThe basis functions appear in decreasing order.

The occupied valence molecular orbitals of the compounds have energies in the range -33.34 to -9.94 eV. Moreover, there is an efficient mixing of metal and ligand orbitals for all complexes studied. However, in each case the SOMO (single occupied molecular orbital) corresponded to the expected ground state according to the symmetry of the complex. The electronic ground state of the square-planar (D_{2h}) [Cu(en)₂]²⁺ complex is ...(3b_{2g})²(2b_{3g})²(7a_g)²(8a_g)²(5b_{1g})¹ = ²B_{1g}. The in-plane σ bonding of the complex results mainly from the bonding 4b_{1g} and the antibonding 5b_{1g} MO's having 35% and 55% metal d_{xy} character, respectively. Furthermore, the LUMO (2b_{1u}) is mainly localized on the 4p_z AO of the copper atom. The form of the LUMO accounts well for the great tendency of the complex to add two more ligands in the axial positions affording the more stable tetragonally distorted octahedral complexes.¹² Finally, the corresponding filled d orbitals $8a_g (d_{z^2})$, $7a_g (d_{x^2-y^2})$, $2b_{3g} (d_{yz})$, and $3b_{2g} (d_{xz})$ have almost pure metal d character with less than 3% ligand character. Most of these predominantly metal d orbitals contain linear combinations of d functions allowed by symmetry.

Charge distribution^b (%) Basis functions^c Energy Level^a (eV) Cu 4N 2N' 20C 18H Cu N⊿ 40.539 21 23 2 49 5 29b₂ s,p_xσ* pγ 21,760 5 30 0 36 29 pσ* 26b p_x 17 5 2.641 62 6 pσ*,s 45a₁ 10 s,p, 1.836 84 7 0 7 2 po* 44a p_z,s 21 -9.282 0 79 0 17b₂ 0 po* d_x2_{-y}2 -9.945 45 25 0 30 0 34a₁ pσ -10.706 22 14 0 62 2 dx2_v2 33a i pσ d_{xz} 13b₁ -11.421 62 16 5 17 0 $p_x \sigma, p_v \sigma$ d_{yz} d_z2 -11.672 84 8 0 8 0 16b₂ p_vσ 3 -11.861 95 0 2 0 32a₁ 6a₂ -11.90892 2 1 5 0 d_{xy} 5 7 -12.839 20 21 47 12b₁ d_{xz} $p_x \sigma, p_z \sigma$ -13.146 13 12 3 66 6 30a₁ $d_{x^{2}.v^{2}}$ p_xσ -31.854 2 36 0 1 2a1 61 s pz -33.140 2 $1b_2$ 4 38 0 56 s p_{y}, p_{x} 2 -33.340 4 24 24 46 s 1b₁ p_{x}, p_{v}

TABLE II. Valence molecular orbitals of the tetrahedrally distorted square-planar (C_{2v}) [Cu(bipyam)₂]²⁺ complex.

^a The highest occupied level is 34a₁. ^b Percentage of the MO's total population located on the indicated atoms. ^c The basis functions appear in decreasing order.

In contrast to the previous compound, only three antibonding predominantly metal d orbitals with almost pure d character existed in the tetrahedrally distorted square-planar ($C_{2\nu}$) [Cu(bipyam)₂]²⁺ complex, whose electronic ground state is ...($6a_2$)²($32a_1$)²($16b_2$)²($13b_1$)²($33a_1$)²($34a_1$)¹ = ²A₁. Therefore, two of the metal d AO's ($|x^2-y^2\rangle$ and $|xz\rangle$) were highly mixed with the ligand σ LGO's to form the MO's that describe the σ bonding in the complex. The major contribu-

90 E.G. BAKALBASSIS, G.A. KATSOULOS

tion to the σ bonding arises from the following five MO's which are also delocalized over the entire molecule, namely the 30a₁, 33a₁, and 34a₁ MO's with 13%, 22% and 45% metal d_x2-y² character, respectively, and the 12b₁, and 13b₁ MO's with 20% and 62% metal d_{xz} character, respectively. The three predominantly metal d orbitals that are almost pure d orbitals were the 6a₂, 32a₁, and 16b₂ MO's with 92%, 95% and 84% metal d character, respectively. The LUMO (17b₂) is totally delocalized on the b₂ LGO's of the ligands and consequently, this complex should not exhibit the same tendency to increase its coordination number as the square-planar one. Finally, the presence of a relatively small HOMO-LUMO gap in the complex encourages a tetrahedral distortion⁵ experimentally observed in its crystal structure.¹⁵

Compound	Point	Cu-X	Enorgy	Overlap	Net charge		
	group		(eV)	population	Q(Cu)	Q(X)	
[Cu(en) ₂] ²⁺	D _{2h}	Cu-N	0.912	-0.0404	1.722	-0.548	
[Cu(bipyam) ₂] ²⁺	C _{2v}	Cu-N ₁ Cu-N ₃ Cu-N ⁷ 1 Cu-N ⁷ 3	-3.326 -2.704 -3.397 -2.690	0.2863 0.2436 0.2891 0.2405	0.959	-0.515 -0.562 -0.606 -0.590	

TABLE III. Two-center energy terms and overlap population for the coordination bonds along with the net charges of the bonded atoms for the four-coordinated Cu(II) complexes.

From the preceding molecular orbital analysis of the chemical bonding in the four-coordinate complexes under study, it is obvious that there is difference in the number of the metal d AO's involved in the σ bonding. This could provide **a** sound explanation for the variation of their electronic properties. Moreover, no out-of-plane π bonding is present in both complexes. Finally, another interesting feature to emerge from this analysis is that the metal 4s and 4p AO's have an appreciable participation in the virtual (unoccupied) MO's of lower energies

Table III gives the two-center energy terms and the Mulliken overlap population for the coordination bonds together with the Mulliken net charges on the bonded atoms of the complexes under investigation. From the examination of these results the following conclusions concerning the nature and strength of

COPPER(II) POLYAMINE COMPLEXES

the coordination bonds can be drawn. For the $[Cu(en)_2]^{2+}$ complex both the positive energy component and the very small overlap population of the Cu-N bonds strongly suggest for the antibonding character and the high ionicity of the coordination bonds. Moreover, the high positive net charge on the copper atom of the $[Cu(en)_2]^{2+}$ complex in relation to the corresponding one of the $[Cu(bipy-am)_2]^{2+}$ complex is also indicative for a higher ionicity of the Cu-N bonds of the former compound. All these account well for the relative instability of the $[Cu(en)_2]^{2+}$ complex and its tendency to increase its coordination number. The opposite is true for the $[Cu(bipyam)_2]^{2+}$ complex. In this case, all data account for the bonding character of the Cu-N bonds.

Interpretation of the Electronic Spectra

Assignments (Tables IV and V) were made by associating the observed bands with the transitions they most nearly match in energy.

v (k	v (kK)		Electronic transition			General classification			
Obsv.	Calcd.	Electronic transition			General Gassincalion				
41.49	46.52 42.69 38.29 36.71	3b _{3u} 3b _{2u} 4b _{3u} 4b-	→ → +	5b _{1g} 5b _{1g} 5b _{1g} 5b	M(d)	←	L(ơ)		
19.92	22.03 19.78	5b _{2u} 6b _{2u}	→ →	5b _{1g} 5b _{1g} 5b _{1g}	M(d)	←	L(σ)		
17.31	17.32 17.26	3b _{2g} 2b _{3g}	→ →	5b _{1g} 5b _{1o}	M(d)	←	M(d)		
14.86	16.84 15.00	7a _g 8a _g	→ →	5b _{1g} 5b _{1g}	M(d)	←	M(d)		

TABLE IV. Electronic absorptions and assignments for the [Cu(en)₂]²⁺ complex.

For the square-planar $[Cu(en)_2]^{2+}$ complex the broad absorption band envelope in the visible region covers the four spin-allowed but symmetry-forbidden d-d transitions along with the two symmetry-allowed x- and y-polarized $5b_{2u}$, $6b_{3u} \rightarrow 5b_{1g}$ LMCT transitions. The band maximum occurs at the region where the two LMCT transitions are predicted to occur. The presence of the

	v (KK)		E	Electronic transition			General classification				
Obsy	v.	Calcd.									
40.3	2	40.90		8b1	-	34a ₁	M(d)	←-	L(ơ)		
		40.84		13b ₂	>	36a ₁	L(π*)	. ←	L(π)		
		40.41		10b ₂	\rightarrow	35a ₁	L(π*)	←	L(π)		
		40.35		10b ₂	\rightarrow	17b ₂	L(π*)	←	L(π)		
		40.19		$16b_2$	→	18b ₂	L(π*	. +-	M(d)		
		40.16		25a ₁	\rightarrow	35a ₁	- L(π*)	←	L(π)		
		40.10		25a ₁	→	17b ₂	L(π*)	+ +	' L(π)		
		39.91		$4a_2$	\rightarrow	34a ₁	M(d)	←-	L(n)		
33.7	8sh	34.07		26a1	\rightarrow	34a ₁	M(d)	←	L(π)		
		33.55		27a ₁	\rightarrow	34a,	M(d)	←	L(σ)		
		33.34		33a1	\rightarrow	39a ₁	L(π*)	←	M(d)		
31.4	5	32.14		14b ₂	→	17b ₂	L(π*) ←	L(π)		
		31.52		28a ₁	→	34a ₁	M(d)	←	L(σ)		
		31.23		30a1	→	35a ₁ -	L(π*) ←	L(π)		
		31.17		30a1	_	17b ₂	L(π*) ←	L(π)		
		30.18		31a1	→	35a ₁	L(π*) ←	L(π)		
18.4	0	19:34		16b ₂	\rightarrow	35a ₁	L(σ*		M(d)		
		19.28		16b ₂	→	17b ₂	L(σ*) ←	M(d)		
		18.94		34a₁	\rightarrow	38a ₁	L(σ*) ←	M(d)		
		18.09		33a₁	→	36a1	L(π*) ←	M(d)		
		17.89		34a1	→	37a1	L(σ*) ←	M(d)		
	•	17.78		33a₁	\rightarrow	14b ₁	L(π*)	M(d)		
		17.72		15b ₂	→	34a₁	M(d)		L(ơ)		
		17.32		13b₁	\rightarrow	35a₁	L(o*) ←	M(d)		
15.7	0	15.83		$6a_2$	→	34a1	M(d	. ←	M(d)		
		15.45		32a₁	→	34a₁	M(d		M(d)		
13.5	60	13.93		16b2	→	34a₁	M(d		M(d)		
10.4	0	11.95		34a₁	• →	36a₁	L(π*) ←	M(d)		
		11.91		13b₁	→	34a1	M(d)	· •	M(d)		
	ک	11.64		34a ₁	→	14b1	L(π*) ←	M(d)		
		11.55		33a₁		35a√	L(π*) ←	M(d)		
		11.49		33a ₁	→	17b ₂	L(π*) ←	M(d)		

TABLE V. Electronic absorptions and assignments for the $[Cu(bipyam)_2]^{2+}$ complex.

LMCT transitions under the crystal field band envelope explains the relatively high intensity of the forbidden d-d transitions through an intensity-borrowing

92

mechanism.²³ Therefore, the previous assignment of the band maximum to a dd transition only seems to be incorrect.^{24,25}

For the tetrahedrally distorted square-planar [Cu(bipyam)₂]²⁺ complex the following points can be deduced on the basis of EHMO calculations. The absorption band envelope at *ca.* 18.4 kK of the visible region covers eight symmetry allowed x-, y-, and z-polarized MLCT and LMCT transitions. No d-d transitions are involved in this region of the spectrum. Therefore, the very intense band at *ca.* 18.4 kK, observed in the polarized single-crystal electronic spectra, involves only CT transitions. In our opinion, this is an unambiguous confirmation for the real nature of this band, firstly suggested by Hathaway *et al.*¹⁴ Moreover, all d-d transitions are involved in the lower-energy region of the visible region also covers the four d-d transitions along with the four symmetry-allowed x-, y-, and z-polarized 34a₁ \rightarrow 14b₁, 34a₁ \rightarrow 36a₁, 33a₁ \rightarrow 35a₁, and 33a₁ \rightarrow 17b₂ MLCT transitions. The presence of the MLCT transitions under the crystal field band envelope accounts well for the relatively high intensity of the forbidden d-d transitions through an intensity-borrowing mechanism.

For the $[Cu(en)_2]^{2+}$ complex the ultraviolet region of the spectrum is dominated by four symmetry-allowed LMCT transitions. No pure intraligand $\sigma \rightarrow \sigma^*$ transitions have been observed in this region of the spectrum. All these transitions are covered under a single band, with a maximum at 41.49 kK.²⁴ On the contrary the ultraviolet region of the spectrum of the $[Cu(bipyam)_2]^{2+}$ complex is dominated by a number of symmetry-allowed LMCT and MLCT transitions along with pure intraligand transitions which are of the $\pi \rightarrow \pi^*$ type. All these transitions are covered under the same band envelope with two maxima and one shoulder.²⁶

Study of the Tetrahedral Distortion of the Complexes

A convenient way to express the degree of distortion from square-planar towards tetrahedral or pseudotetrahedral geometry is in terms of the dihedral angle ω between the pairs of ligand atoms. Consequently, in CuN₄ chromophores the ω value gives a direct measure of the flattening of the tetrahedron, while the main off-axial distortion is in the intraligand N-Cu-N angles which should also vary regularly with ω .

Using the crystallographic data available for the $[Cu(en)_2]^{2+}$ complex, a series of EHMO calculations was performed by varying the dihedral angle ω (Fig.

94 E.G. BAKALBASSIS, G.A. KATSOULOS

1) of the tetragonal distortion.²¹ To accomplish this the ω angle was gradually varied from 0° (square-planar) to 90° (elongated tetrahedral). The correlation diagram thus derived (Fig. 2) shows that the energies of d-d transitions decrease progressively as ω varies from 0° to 90°. This effect has been observed in the spectra of a series of analogous copper(II) polyamine complexes.²⁷⁻²⁹ A similar trend has also been observed in the series of [Cu(bipyam)₂]²⁺ with other analogous complexes.³⁰ Moreover, with respect to d_{x²-y²} and d_{z²}, the d_{xz} and d_{yz} orbitals are destabilized as ω varies from 0° to 90°, providing thus two crossing points. The first point, located at around 13°, is related to the destabilization of the degenerate d_{xz} and d_{yz} orbitals with respect to the d_{x²-y²} one. The second crossing point, located at around 33°, has to do with the destabilization of the slightly non degenerate d_{xz} and d_{yz} orbitals with respect to the d_{z² one.}

FIG. 2. $[Cu(en)_2]^{2+}$: The one-electron orbital correlation diagram between a square-planar D_{2h} ($\omega = 0^\circ$), a tetrahedrally distorted square-planar (90° < ω < 0°), and an elongated tetrahedral D_{2d} ($\omega = 90^\circ$) configuration. ω is the angle between the pairs of ligand atoms.

Above this point the destabilization of the d_{xz} orbital, as shown in Fig. 2, is stronger. As far as d_{z^2} , $d_{x^2-y^2}$ and d_{xy} orbitals are concerned, the first two are slightly stabilized while this phenomenon is much stronger for d_{xy} as ω varies in the same way.

The one-electron orbital sequence derived for the complexes were as follows: $|xy\rangle > |z^2\rangle > |x^2-y^2\rangle > |yz\rangle > |xz\rangle$ for $[Cu(en)_2]^{2+}$, and $|x^2-y^2\rangle > |xz\rangle > |yz\rangle > |z^2\rangle > |z^2\rangle > |xy\rangle$ for $[Cu(bipyam)_2]^{2+}$ in fair agreement with those derived experimentally.^{14,24} The one-electron orbital sequence of the latter is in accordance with an ω value >50° in close agreement with the crystallographic data available for the complex. Moreover, a relatively low energy for the d_{xz}, d_{yz} \rightarrow d_x²-y² transitions is a good criterion for a distortion from the tetrahedral stereochemistry.¹⁴

FIG. 3. [Cu(en)₂]²⁺: Dependence of the total energy on the distortion angle ω

The sum of one-electron energy curve of the system $[Cu(en)_2]^{2+} (D_{2h}) \Leftrightarrow [Cu(en)_2]^{2+} (D_{2d})$, which depends on the distortion parameter ω , is shown in Fig. 3. The EHMO calculations yielded no minimum for the system studied. However, the square-planar configuration of the CuN_4 chromophore appears to be stabilized with respect to the elongated tetrahedral one. This is in accordance with the absence of a $[Cu(en)_2]^{2+}$ moiety exhibiting a tetrahedrally distorted square-planar or a distorted tetrahedral configuration.

(x /9)	net ch	narge
ω (*)	Cu	N
0	1.722	-0.548
10	1.720	-0.547
20	1.716	-0.546
30	1.710	-0.546
40	1.704	-0.545
50	1.698	-0.545
55.6	1.696	-0.545
60	1.695	-0.545
70	1.695	-0.545
80	1.699	-0.548
90	1.709	-0.548

TABLE VI. Variation of the calculated ne	et charges with the dihedral angle w.
--	---------------------------------------

Moreover, the net atomic charges computed for Cu (1.722 e) and N (-0.548 e) for the square-planar conformation ($\omega = 0^{\circ}$) decrease by rotation reaching a minimum (Cu = 1.695 e, and N = -0.545 e) at $\omega = 70^{\circ}$ and increase further (Cu = 1.709 e, and N = -0.548 e) at the elongated tetrahedral conformation ($\omega = 90^{\circ}$). The calculated net charges are given in Table VI.

The net charges on the N atoms, being smaller at $\omega = 70^{\circ}$, implies a lesser extend of back-donation of electrons from copper. Similar conclusions have also been reported by others.^{31,32} However, due to the increase of the net atomic charges calculated at $\omega = 80^{\circ}$ and 90° an elongated tetrahedral configuration for the [Cu(en)₂]²⁺ complex could not be excluded entirely. Certainly, the stability of the square-planar structure of [Cu(en)₂]²⁺ over the conformations corresponding to $\omega = 70^{\circ}$ and 90° is partially due to the increase of the bonding capacity.

Calculations of the EPR Parameters

The calculated g_{ii} and A_{ii} tensors for the compounds under study along with the eigenvectors of the antibonding MO's and the corresponding electronic transition values are presented in Table VII.

The conventional perturbation approach developed for Cu(II) complexes^{6,33} was used for the calculation of the g_{ii} and A_{ii} tensors of both complexes. Thus,

COPPER(Ii) POLYAMINE COMPLEXES

for the $[Cu(en)_2]^{2+}$ complex (D_{2h} point group and $|xy\rangle$ ground state) the g_{ii} tensors were estimated by using the expressions given by Gersmann and Swalen.³⁴ These values were further corrected by taking into account the mixing of the $|x^2-y^2\rangle$ and $|z^2\rangle$ states, according to the functions given by Waite and

Cu coefficients Complex Orbital ΔE EPR parameters (cm⁻¹) d AO Symbol^a Value (Cu(en))12+ 5b_{1a} g_{xx}=2.059^b 2 065 C α --0.8140XV g_{vv}=2.063^b 7a_q x²-v² ß -0.95792.064C g_{zz}=2.199^b 8a_a z² 0.8754 2.2340 A_{xx}^d=18.1^b 3b2a ΧZ -0.9959 -16.60^C δı 2b_{3q} A_{vv}=17.6^b -0.9844 -19.65^C νz δე 2b_{2g} Azz=-108.0^b xz δ3 0.0715 42295 -143.17^C 1b_{3g} -0.0702 51786 уz δ₄ x2-v2 [Cu(bipyam)]2+ 34a1 a 0.6757 g_{xx}=2.040^C g_{vv}=2.038^c 13b1 xz δı -0.7001 12b₂ γz -0.764313933 g₇₇=2.250^C δ2 72 32a1 βı 0.7868 6a2 хγ β2 -0.8001 0.1149 16915 5a2 xγ βз 15b₂ -0.2047 γz δз 12b1 -0.3983 23344 ΧZ δ₄ 11b₁ δ5 ΧZ -0.0950 24646 14b₂ yz 0.2237 26798 δ₆ z² 29a₁ 0.1313 29510 β4 11b₂ γz δ7 -0.1183 29680 10b₂ -0.1111 хz δგ 29957

TABLE VII. Cu coefficients involved in the antibonding MO's along with the corresponding electronic transition values (ΔE) and the calculated values of EPR parameters for the investigated compounds.

^a The symbols listed are those defined in ref. 3. The appropriate Cu coefficient symbols used in the equations given in refs. 28 and 29 can be easily derived from the Table. ^{b,c} Values were derived by using the equations given in refs. 28, 29 and 3, respectively. Our estimated values for the overlap integral and the a coefficient for the b_{1g} LGO were -0.1188 and 0.2709, respectively. ^d All A_{ii} values are in units of 10^{-4} cm⁻¹.

Hitchman.³⁵ Moreover, for comparison reasons, the g_{ii} tensors were also calculated by using the expressions given by Maroney *et al.*³ Both approaches

97

yielded almost identical g_{ii} values in very good agreement with the experimental ones⁷ of $g_{\perp} = (g_{xx} + g_{yy})/2 = 2.045$ and $g_{||} = g_{zz} = 2.200$.

For the tetrahedrally distorted square-planar $[Cu(bipyam)_2]^{2+}$ complex $(C_{2v}$ point group and $|x^2-y^2\rangle$ ground state) the g_{ii} tensors were calculated by using the expressions given by Maroney *et al.*³ for a Cu(II) complex possessing a C_{2v} point group. The three calculated g-values, $g_{xx} = 2.045$, $g_{yy} = 2.038$, and $g_{zz} = 2.250$ are also in very good agreement with the single-crystal ones ($g_1 = 2.059$, $g_2 = 2.069$, $g_3 = 2.244$).

The A_{ii} tensors for $[Cu(en)_2]^{2+}$ were also calculated by using both the expressions given in ref. 3 and the ones given in ref. 28. Both calculated A_{\perp} values are in very good agreement with the experimental (19·10⁻⁴ cm⁻¹). The $A_{||}$ value, calculated by using the expressions given in ref. 3, is in good agreement with the experimental (200·10⁻⁴ cm⁻¹); still the one derived by using the expressions given in ref. 28 deviates slightly. It can be concluded that both the opposite signs observed in the two calculated A_{\perp} values and the better proximity of the first $A_{||}$ value to the experimental one are due to the fermi contact k term involved in both expressions. This term remains unchanged in the expressions given in ref. 3, but it is reduced in the expressions given in ref. 28.

Acknowledgments - This research was supported by the Greek Ministry for Research and Technology. Thanks are also due to Prof. C.A. Tsipis for enlightening and stimulating discussions.

Κβαντοχημική Μελέτη της Τετραεδρικής Παραμόρφωσης σε Σύμπλοκα του Χαλκού(ΙΙ) με Πολυαμίνες, Αριθμού Συναρμογής Τέσσερα. - Στην εργασία αυτή μελετήθηκαν με την κβαντοχήμική μέθοδο extended Hückel LCAO-MO, η ηλεκτρονική δομή και οι δεσμικές ιδιότητες δύο μονοπυρηνικών συμπλόκων του Cu(II) με πολυαμίνες, των τύπων [Cu(en)₂]²⁺ και [Cu(bipy-am)₂]²⁺. Τα σύμπλοκα αυτά έχουν αριθμό συναρμογής τέσσερα και οι δο-μές τους είναι, αντίστοιχα, η επίπεδη τετραγωνική (D_{2h}) και η τετραεδρικά παραμορφωμένη επίπεδη τετραγωνική (C_{2v}). Επιπλέον, μελετήθηκε η τετραεδρική παραμόρφωση των συμπλόκων του χαλκού(II), με χρωμοφόρο CuN₄, σε μια σειρά σύμπλοκα μοντέλα του γενικού τύπου [Cu(en)₂]²⁺, που καλύπτουν όλες τις πιθανές δομές από την καθαρά επίπεδη (D_{2h}) έως και την επιμηκυσμένη τετραεδρική (D_{2d}). Το τελευταίο επιτεύχθηκε με τη μεταβολή της τιμής της δίεδρης γωνίας μεταξύ των δύο δακτυλίων της αιθυλενοδιαμίνης από Ο έως 90°.

Με βάση τους θεωρητικούς υπολογισμούς, προέκυψε η ηλεκτρονική δομή των συμπλόκων, διαπιστώθηκε η σχετική ισχύς των δεσμών συναρμογής και εντοπίστηκαν τα κέντρα πυρηνόφιλης προσβολής. Ακόμη, οι κβαντοχημικοί υπολογισμοί έδωσαν μια πλήρη εικόνα των αναμενόμενων ηλεκτρονικών μεταπτώσεων στα ηλεκτρονικά φάσματα των μελετούμενων

COPPER(II) POLYAMINE COMPLEXES

ενώσεων κι επέτρεψαν να ερμηνευθεί η αυξημένη ένταση των μεταπτώσεων του τύπου d-d με βάση το μηχανισμό "δανεισμού-έντασης". Τέλος, έγινε προσπάθεια για το θεωρητικό υπολογισμό των τανυστών g_{ii} και A_{ii}, η οποία οδήγησε σε μια πολύ ικανοποιητική συμφωνία μεταξύ των πειραματικών και θεωρητικών τιμών των μαγνητικών παραμέτρων των φασμάτων ΕΡR των συμπλόκων.

REFERENCES

- 1. Nieke, C. and Reinhold, J.: Theoret. Chim. Acta, 65, 99 (1984).
- Luthi, H.P., Ammeter, J.H., Almlof, J. and Faegri, K.: J. Chem. Phys., 77, 2002 (1982).
- 3. Maroney, M.J., Norman Jr., J.G. and Osborne, J.H.: Inorg. Chem., 23, 2261 (1984).
- 4. Hay, J.P., Thiebault, J.C. and Hoffmann, R.J.: J. Am. Chem. Soc., 97, 4884 (1975).
- 5. Burdett, J.K. and Williams, P.D.: Inorg. Chem., 19, 2779 (1980).
- 6. Hathaway, B.J. and Billing, D.E.: Coord. Chem. Rev., 5, 143 (1970).
- 7. Barbucci, R. and Campbell, M.J.M.: Inorg. Chim. Acta, 16, 113 (1976).
- 8. Kennedy, B.P. and Lever, A.B.P.: J. Am. Chem. Soc., 95, 6907 (1973).
- 9. Gazo, J., Boca, R., Jona, E., Kabesova, M., Macaskova, L., Sima, J., Pelikan, P. and Valach, F.: Coord. Chem. Rev., 43, 87 (1982).
- 10. Maki, A.H. and McGarvey, B.R.: J. Chem. Phys., 29, 31 (1958).
- 11. Bakalbassis, E.G.: Ph.D. Thesis, University of Thessaloniki (1985).
- 12. Bakalbassis, E.G., Mrozinski, J. and Tsipis, C.A.: Inorg. Chem., 24, 3548 (1985).
- 13. Foley, J., Tyagi, S. and Hathaway, B.J.: J. Chem. Soc. Dalton, 1 (1984).
- 14. Dudley, R.J., Hathaway, B.J. and Hodgson, P.G.: J. Chem. Soc. Dalton, 882 (1972).
- 15. Johnson, J.E., Beineke, T.A. and Jacobson, R.A.: J. Chem. Soc. A, 1371 (1971).
- 16. Hoffmann, R.: J. Chem. Phys., 39, 1397 (1963).
- 17. Hoffmann, R. and Lipscomb, W.N.: J. Chem. Phys., 36, 3179 (1962).
- 18. Hoffmann, R. and Lipscomb, W.N.: J. Chem. Phys., 37, 2872 (1962).
- 19. Wolfsberg, M. and Helmholz, L.: J. Chem. Phys., 20, 837 (1952).
- 20. Howell, J., Rossi, A., Wallace, D., Haraki, K. and Hoffmann, R.: *Forticon-8*, Q.C.P.E. No. 344, Indiana University.
- 21. Freckamann, B. and Tebbe, K.F.: Z. Naturforsch., 35B, 1319 (1980).
- 22. Stewart, J.M., Machin, P.A., Dickinson, C.W., Ammon, H.L., Heck, H. and Flack, H.: *The XRAY-76 System*, Tech. Rep. TR-446, University of Maryland.
- 23. Lever, A.B.P.: Inorganic Electronic Spectroscopy, Elsevier, New York (1968).
- 24. Maes, A., Schoonheydt, R.A., Cremers, A. and Uytterhoeven, J.B.: *J. Phys. Chem.*, **84**, 2795 (1980).
- 25. Velghe, F., Schoonheydt, R.A., Uytterhoeven, J.B., Peigneur, P. and Lunsford, J.H.: J. Phys. Chem., 81, 1187 (1977).
- 26. McWhinnie, W.R.: J. Chem. Soc., 5165 (1964).
- 27. Sacconi, L. and Ciampolini, M.: J. Chem. Soc., 276 (1964).
- 28. McGeachin, S.G.: Can. J. Chem., 46, 1903 (1968).
- 29. Murakami, Y., Matsuda, Y. and Sakata, K.: Inorg. Chem., 10, 1728 (1971).

100 E.G. BAKALBASSIS, G.A. KATSOULOS

- 30. Gonge, A.M. and Geldard, J.F.: Inorg. Chem., 17, 270 (1978).
- 31. Tatsumi, K., Fueno, T., Nakamura, A. and Otsuka, S.: Bull. Chem. Soc. Jpn., 49, 2164 (1976).
- 32. Hilal, R.: Int. J. Quantum Chem., 28, 714 (1985).
- 33. McGarvey, B.R.: Trans. Metal Chem., 3, 89 (1966).
- 34. Gersmann, H.R. and Swalen, J.D.: J. Chem. Phys., 36, 3221 (1962).
- 35. Waite, T.D. and Hitchman, M.A.: Inorg. Chem., 15, 2155 (1976).

NOTE

Chimika Chronika, New Series, 17, 101-115 (1988)

ANIONTA AAKAAIMETAAAQN

Ι. ΠΑΠΑΙΩΑΝΝΟΥ^{*}, Ι. ΠΡΟΒΙΔΑΚΗ- ΜΟΛΙΝΟΥ ,Α. ΜΑΥΡΙΔΗΣ

Εργαστήριο Φυσικοχημείας, Χημικό τμήμα, Πανεπιστήμιο Αθηνών, Ναυρίνου 13Α, Αθήνα 106 80

(Ελήφθη 10 Δεκεμβρίου 1986)

ΠΕΡΙΛΗΨΗ

Το παρόν άρθρο ανασκοπήσεως αφορά ανιόντα αλκαλιμετάλλων (π.χ. Νa) στην υγρά και στερεά (κρυσταλλική) κατάσταση.Κβαντικοί υπολογισμοί επί των ανιόντων αλκαλιμετάλλων αποδεικνύουν αναμφισβήτητα τη "φυσική τους" σταθερότητα (π.χ.το ανιόν είναι ενεργειακώς σταθερότερο του ουδετέρου ατόμου),όμως Na η απομόνωσή τους στην υγρά και στερεά κατάσταση έγινε εφικτή το 1970 και 1973 αντιστοίχως. Η ερευνητική δραστηριότητα δε-καετιών επί των εν λόγω συστημάτων, ουσιαστικώς απέδειξε την ύπαρξη πολύ μικρών συγκεντρώσεων ανιόντων αλκαλιμετάλλων εντός διαλυμάτων αμινών και αιθέρων. Η δυσδιαλυτότητα των αλκαλιμετάλλων,θεμελιώδες πρόβλημα στο πεδίο αυτό, λύθηκε με τη σύνθεση δύο νέου τύπου οργανικών ενώσεων: τους"κρυπτοειδείς" και " στεμματοειδείς" αιθέρες. Η χρησιμοποίηση των ενώσεων αυτών αύξησε την ϋιαλυτότητα των αλκαλιμετάλλων κατά περίπου πέντε τάξεις (10) μεγέθους. Η γεωμετρική/ηλεκτρονιακή δομή των κρυπτοειδών και στεμματοειδών αιθέρων είναι τέτοια ώστε να προκαλούν τον " εγκλωβισμό" κατιόντων αλκαλιμετάλλων με σύγχρονη " ελευθέρωση" των αντιστοίχων ανιόντων ούτως ώστε το διάλυμα να παρουσιάζεται ηλεκτροουδέτερο. Οι κρύσταλλοι των διαλυμάτων αυτών περιέχουν ως ανιόν αλκαλιμέταλλο("αλκαλίδια") ή "παγιδευμένο" ηλεκτρόνιο ("ηλεκτρίδια"). Η πειραματική ανίχνευση των ανιόντων αλκαλιμετάλλων καθώς και των παγιδευμένων ηλεκτρονίων επετεύχθη με κρυσταλλογραφική ανάλυση και την μελέτη των μαγνητικών τους ιδιοτήτων (NMR ή / και ESR).

ΣΥΝΤΜΗΣΕΙΣ ΚΑΙ ΟΡΟΛΟΓΙΑ

e _{solv}		:	επιδιαλυτωμένο ηλεκτρόνιο.
C(Crown	Ethers)	:	στεμματοειὃείς αιθέρες. 1505, 1806, 2107,
			είναι στεμματοειδείς αιθέρες, οι οποίοι
			περιέχουν συνολικό αριθμό ατόμων' 15,18,

	21 αντιστοίχως και αριθμό ατόμων οξυ-
	γόνου 5,6,7.
C(Cryptands)	: κρυπτοειδή C111,C222 είναι κρυπτοει-
	δή τα οποία περιέχουν 1,2 άτομα οξυ-
	γόνου αντιστοίχως, σε κάθε μια από
	τις 3 οργανικές αλύσσους.
м ⁺ с•N ⁻	: αλκαλίδιο
м ⁺ С•е ⁻	: ηλεκτρίδιο όπου Μ, Ν αλκαλιμέταλλα
	(όμοια ή διαφορετικά) και C κρυπτοει-
	δές ή στεμματοειδής αιθέρας.

Ι. ΕΙΣΑΓΩΓΗ

Σύμφωνα με τις μελέτες του Edwards¹,οι πρώτες παρατηρήσεις ανιχνεύσεως ανιόντων αλκαλιμετάλλων έγιναν το 1808 από τον Sir Humphrey Davy σε ϋιαλύματα καλίου-αμμωνίας. Το 1864 ο Weyl² συνέχισε την έρευνα επί των διαλυμάτων αλκαλιμετάλλων- αμμωνίας (M-NH₃) την οποία ακολούθησε η πλέον των 30 ετών έρευνα του Kraus³⁻⁸. Η φύση των διαλυμάτων M-NH₃ αποτελεί αντικείμενο έντονης ερευνητικής δραστηριότητας, διότι εκτός των κατιόντων, όπως π.χ. Na⁺, τα διαλύματα αυτά περιέχουν και ένα ασυνήθιστο είδος αρνητικώς φορτισμένων σωματιδίων⁻ για τα τελευταία έχουν προταθεί διάφορα πρότυπα, μεταξύ των οποίων εξέχουσα θέση κατέχει το ανιόν αλκαλιμετάλλου⁹ (π.χ. Na⁻) καθώς και το επιδιαλυτωμένο ηλεκτρόνιο (e_{solv})¹⁰⁻²⁴. Τα e_{solv} σύμφωνα με τα πρότυπα των Ogg²⁵ και Jortner²⁶⁻²⁸ θεωρούνται "παγιδευμένα" εντός φρεάτων ενεργειακών δυναμικών τα οποία αναπτύσσονται από τον προσανατολισμό των πολικών μορίων του διαλύτου.

Το 1969 η έρευνα ανιχνεύσεως ανιόντων αλκαλιμετάλλων επεκτάθηκε και στα διαλύματα αλκαλιμετάλλων-αμινών και αιθέρων²⁹. Ο αριθμός διαλυτών των αλκαλιμετάλλων είναι περιορισμένος , διότι, αφ`ενός μεν οι αδρανείς διαλύτες δεν είναι αρκετά πολικοί ώστε να διαλύουν ικανοποιητικώς τα μέταλλα, αφ`ετέρου ο μεγάλος αριθμός πολικών διαλυτών, π.χ. H₂O, αντιδρούν βιαίως με τα αλκαλιμέταλλα. Η μεθυλαμίνη (CH₃NH₂), η αιθυλενοδιαμίνη (NH₂CH₂CH₂NH₂), ο διαιθέρας (CH₃OCH₂CH₂OCH₃) και το τετραϋδροφουράνιο (0 , THF) είναι οι πλέον πρόσφοροι διαλύτες των αλκαλιμετάλλων. Ο κυριώτερος παράγων ο οποίος έκανε τη μελέτη ανιόντων αλκαλιμετάλλων σε διαλύματα αμινών και αιθέρων πολύ δύσκολη, ήταν η δυσδιαλυτότητα των αλκαλιμετάλλων. Η δυσκολία αυτή ήρθη το 1970 όταν οι Dye και Nicely³⁰ εχρη-

ΑΝΙΟΝΤΑ ΑΛΚΛΛΙΜΕΤΑΛΛΩΝ

σιμοποίησαν μια νέα ομάδα ουσιών τους <u>στεμματοειδείς αιθέρες</u>, (crown ethers) και αργότερα τα <u>κρυπτοειδή</u> (cryptands). Η παρουσία των στεμματοειδών αιθέρων ή κρυπτοειδών αυξάνει τη διαλυτότητα των αλκαλιμετάλλων σε αμίνες και αιθέρες, περίπου κατά πέντε τάξεις μεγέθους(X10⁵). Το νάτριο π.χ. είναι πρακτικώς αδιάλυτο σε καθαρή αιθυλαμίνη, παρουσία όμως στεμματοειδών αιθέρων (ή κρυπτοειδών) διαλύονται αρκετά γραμμάρια νατρίου ανά λίτρο διαλύτου.

Οι στεμματοειδέίς αιθέρες είναι κυκλικοί πολυαιθέρες οι οποίοι περιλαμβάνουν 9-60 άτομα, συμπεριλαμβανομένων 3-20 άτομα οξυγόνου, Pedersen 1967³¹. Στο Σχ. 1 απεικονίζονται οι στεμματοειδείς αιθέρες 15C5, 18C6, και 21C7 (οι αριθμοί 15,18,21 συμβολίζουν τον ολικό αριθμό ατόμων και οι αριθμοί 5, 6, 7 τον αντίστοιχο αριθμό ατόμων οξυγόνου. Το C είναι το αρχικό της λέξεως "Crown"). Πολλοί στεμματοειδείς αιθέρες σχηματίζουν σταθερά σύμπλοκα με αλκαλιόντα και ιόντα μετάλλων αλκαλικών γαιών. Πλέον ενεργοί για τον σχηματισμό συμπλόκων αλκαλίων εμφανίζονται εκείνοι οι οποίοι περιέχουν 5-10 άτομα οξυγόνου που το κάθε ένα χωρίζεται από το επόμενο με δύο άτομα άνθρακος. Αποφασιστικό ρόλο στον σχηματισμό σταθερών συμπλόκων έχει η συσχέτιση του μεγέθους του κατιόντος και της διαμέτρου της κοιλότητας του στεμματοειδούς αιθέρος. Ειδικότερα, εκείνα τα ιόντα τα οποία έχουν συγκρίσιμο " όγκο" με τον κενό χώρο της κοιλότητας σχηματίζουν και τα σταθερότερα σύμπλοκα.

Τα <u>κρυπτοειδή</u>, είναι επίσης πολυαιθέρες, οι οποίοι όμως σχηματίζουν μοριακές κοιλότητες " τριών διαστάσεων", Lehn 1969³²⁻³⁵, φέρουν δύο άτομα αζώτου συνδεδεμένα με τρεις οργανικές αλύσσους δίκην κλωβού, Σχ. 2. Κάθε άλυσσος είναι αιθερικού τύπου με 1, 2 και 3 άτομα οξυγόνου, όπου m, n είναι συνήθως συνδυασμοί των αριθμών 0, 1 και 2. Το πρώτο μέλος της σειράς είναι το 1,1,1-crypt ($C_{12}H_{34}O_{3}N_{2}$) ή [C111] Σχ.3. Το [C111] είναι το μοναδικό μέλος της σειράς των κρυπτοειδών το οποίο μπορεί να εγκλωβίσει πρωτόνια κατά μη " αντιστρεπτό" τρόπο. Ο υπολογιζόμενος ελάχιστος χρόνος παραμονής του πρωτονίου εντός του C111 σε διάλυμα ΚΟΗ 5 M και σε θερμοκρασία 300K είναι έξη (6) έτη. Αυτό σημαίνει ότι η κοιλότητα του κρυπτοειδούς αποτελεί ένα ασυνήθιστο σταθερό περιβάλλον για το ιόν πρωτονίου.

Κατάλληλο για τον σχηματισμό συμπλόκων αλκαλιμετάλλων είναι το κρυπτοειδές 2,2,2 ή [C222], εμπειρικού τύπου C₁₈,H₃₆O₆N₂,(οι αριθμοί 111 ή 222 εκφράζουν τον αριθμό των οξυγόνων στις 3 οργανικές αλύσσους, το γράμμα C προέρχεται από το αρχικό του Crypt). Η γεωμετρία του C222 φαίνε-

 $\Sigma X.1$ $\Sigma TEMMATOENSENS and ÉDES, 15C5, 18C6, 21C7.$

Σχ.2 Σχηματική παράσταση κρυπτοειδούς.

Σχ.3 Κρυπτοειδή C111, C222.

104

ται στο Σχ. 3. Έχει δύο άτομα οξυγόνου σε κάθε άλυσσο και σχετικά μεγάλη κοιλότητα η οποία μπορεί να εγκλωβίσει το κατιόν Να⁺.

Τα κρυπτοειδή σχηματίζουν σταθερότερα σύμπλοκα με τα αλκαλιμέταλλα απ°ότι οι στεμματοειδείς αιθέρες. Το M^+ - C222 π.χ. είναι σταθερότερο από το M^+ - 18C6, διότι το κρυπτοειδές C222 έχει μορφή ελλειψοειδούς εκ περιστροφής εν αντιθέσει με το 18C6 που έχει επίπεδη διάταξη ατόμων (δίσκος). Η μεγάλη σταθερότητα του συμπλόκου M^+ - C222 έχει ως επακόλουθο την αύξηση της συγκεντρώσεως των μεταλλικών ανιόντων στο διάλυμα, διότι το εγκλωβισμένο κατιόν M^+ δεν μπορεί να αλληλεπιδράσει με τα εκτός κοιλότητας σωματίδια, τα e_{solv}^- . Ρυθμίζοντας τώρα τις συγκεντρώσεις μετάλλου και C222 είναι δυνατόν να ελέγχεται η συγκέντρωση των ανιόντων αλκαλιμετάλλων στο διάλυμα.

ΙΙ. ΔΙΑΛΥΜΑΤΑ ΑΝΙΟΝΤΩΝ ΑΛΚΑΛΙΜΕΤΑΛΛΩΝ

Με την χρησιμοποίηση των στεμματοειδών αιθέρων και κρυπτοειδών έγινε εφικτή για πρώτη φορά το 1970 από τους Dye, De Baker και Nicely η παρασκευή σχετικά πυκνών διαλυμάτων (συγκεντρώσεως >0,1 M) αλκαλιμετάλλων στους προαναφερθέντες διαλύτες³⁰. Η συμπεριφορά των διαλυμάτων αλκαλιμετάλλων σε αμίνες και αιθέρες δίχως την παρουσία συμπλέκτου C, μπορεί να περιγραφεί σχηματικά από τις ακόλουθες χημικές ισορροπίες^{37,38}.

$$2M(s) \rightleftharpoons M_{solv}^{+} + M_{solv}^{-}$$
(1)

$$M_{solv}^{-} = M_{solv}^{+} + 2e_{solv}^{-}$$
(2)

$$M_{solv}^{+} + e_{solv}^{-} \stackrel{\sim}{\longrightarrow} M_{solv}$$
(3)

Η συμπλοκοποίηση του κατιόντος M^+ με τον συμπλέκτη C σύμφωνα με την χημική ισορροπία

$$M^{+} + C \rightleftharpoons M^{+}C \tag{4}$$

έχει ως αποτέλεσμα την μετατόπιση των (1) και (2) προς τα δεξιά και της (3) προς τα αριστερά. Στις περιπτώσεις ισομοριακών ποσοτήτων μετάλλου και συμπλέκτου η χημική ισορροπία (2) μετατοπίζεται τελείως προς τα δεξιά.

$$M(s) + C \rightleftharpoons M^{+}C + e_{solv}^{-}$$
(5)

Αν χρησιμοποιηθούν 2 moles μετάλλου και 1 mole συμπλέκτου λαμβάνει χώρα η χημική ισορροπία

 $2 M(s) + C \Longrightarrow M^{+}C + M^{-}$ (6)

[°]Αρα όταν το μέταλλο Μ βρίσκεται σε περίσσεια ως προς τον συμπλέκτη (στεμματοειδή αιθέρα ή κρυπτοειδές) οι επικρατέστερες χημικές οντότητες στο διάλυμα είναι M⁺C και M⁻, ενώ η συγκέντρωση των e_{solv} είναι μικρή λόγω της ισορροπίας (3).

Όταν το μέταλλο M βρίσκεται σε ισομμοριακή συγκέντρωση ως προς τον συμπλέκτη C, στο διάλυμα επικρατούν τα M^+C και e_{solv}^- , ενώ η συγκέντρω-ση των M⁻Θα είναι μικρή λόγω της ισορροπίας (2).

Συνεπώς ο ρόλος των στεμματοειδών αιθέρων και κρυπτοειδών δεν περιορίζεται μόνο στην αύξηση της διαλυτότητας των αλκαλιμετάλλων αλλά δρα και ως ρυθμιστής του μοριακού συστήματος στο εκάστοτε διάλυμα.

ΙΙΙ. ΣΤΈΡΕΑ ΚΑΤΑΣΤΑΣΗ ΑΝΙΟΝΤΩΝ ΑΛΚΑΛΙΜΕΤΑΛΛΩΝ

Η δυνατότητα παρασκευής διαλυμάτων με συστατικά (M⁺C, M⁻) ή (M⁺C, e_{solv}) αποτελεί το πρώτο στάδιο συνθέσεως κρυσταλλικών αλάτων των τύπων M⁺C. e_{solv} . Το 1973 επιτεύχθηκε η σύνθεση του κρυσταλλικού άλατος Na⁺C222. Na⁻ δια ψύξεως του αντιστοίχου διαλύματος αιθυλαμίνης. Η δομή του Na⁺C222.Na⁻ επιβεβαιώθηκε κρυσταλλογραφικώς^{39,40}. Η πιστοποίηση υπάρξεως Na⁻ έγινε αρχικώς δια συγκρίσεως της γεωμετρίας, Na⁺C222.Na⁻ και Na⁺C222. I⁻ Ακολούθησαν και άλλες μέθοδοι χαρακτηρισμού, με πλέον αξιόπιστη τη τεχνική NMR ²³Na στερεού σώματος (magic- angle sample spinning)⁴¹.Στο NMR φάσμα διακρίνονται σαφώς δύο κορυφές οι οποίες αντιστοιχούν στα ιόντα Na⁺C222 και Na⁻, με χημικές μετατοπίσεις -23,7 ppm και -61,3 ppm αντιστοίχως ως προς ελεύθερο Na⁺.

Αφ'ότου επιτεύχθηκε η σύνθεση και ο χαρακτηρισμός του άλατος Νa⁺C222. Na⁻, έχουν παρασκευασθεί ποικίλοι τύποι παρομοίων αλάτων του γενικού τύπου M⁺C. N⁻ όπου M,N αλκαλιμέταλλα (όμοια ή διαφορετικά) και C το κρυπτοειδές C222 ή ο στεματοειδής αιθέρας 18C6. Η ομάδα των αλάτων η οποία περιέχει ως ανιόντα αλκαλιμέταλλα ονομάζεται <u>αλκαλίδια</u> (alkalides). Μια δεύτερη ομάδα αλάτων περιέχοντα ως ανιόντα ηλεκτρόνια έχουν τον γενικό τύπο M⁺C.e⁻ και καλούνται ηλεκτρίδια (electrides).

Η μεγαλύτερη δυσκολία στη σύνθεση των αλκαλιδίων, ηλεκτριδίων είναι

106

η τρομακτική ευαισθησία των διαλυμάτων από τα οποία προέρχονται. Τα σιαλύματα των αλκαλιμετάλλων σε αμίνες και αιθέρες είναι θερμοδυναμικώς ασταθή. Για τον λόγο αυτό απαιτείται η χρησιμοποίηση διαλυτών, μετάλλων και αντιδραστηρίων συμπλέξεως, υψηλής καθαρότητας καθώς και τεχνικές υψηλού κενού. Η μεθοδολογία καθαρισμού υαλίνων συσκευών, μετάλλων και συμπλεκτών καθώς και η συνθετική τεχνική περιγράφονται στα άρθρα του J.Dye^{42,43}

Τα διάφορα μέλη της ομάδας αλκαλιδίων- ηλεκτριδίων παρασκευάζονται επίσης σε πολυκρυσταλλική μορφή και υπό μορφή λεπτών υμενίων του τύπου M⁺C.N⁻ ή M⁺C.e⁻_{solv} δια ταχυρύθμου εξατμίσεως διαλυμάτων τα οποία περιέχουν M⁺C,N⁻ ή M⁺C.e⁻_{solv} όπου M, N= Na, K, Rb, Cs⁴⁴. Υμένια των ανωτέρω τύπων παρασκευάζονται και με τη διάλυση αντιστοίχων πολυκρυσταλλικών δειγμάτων σε διαλύτες, όπως αιθυλαμίνη, ακολουθεί δε ταχεία εξάτμιση του, διαλύτου.

ΙΥ. ΙΔΙΟΤΗΤΕΣ ΑΝΙΟΝΤΩΝ ΑΛΚΑΛΙΜΕΤΑΛΛΩΝ

Α. <u>Οπτικές ιδιότητες</u>

Η παρασκευή των λακαλιδίων-ηλεκτριδίων υπό μορφή λεπτών υμενίων επέτρεψε την μελέτη οπτικών φασμάτων απορροφήσεως⁴⁵. Οι θέσεις των κορυφών μεγίστης απορροφήσεως των διαφόρων υμενίων τα οποία περιέχουν M⁻, Σχ.4, είναι περίπου οι αυτές με τις αντίστοιχες θέσεις των M⁻ σε διαλύματ^{46,47} Σχ.5. Πειραματικώς διαπιστώνεται ότι η θέση των μεγίστων απορροφήσεως εξαρτάται από τη θερμοκρασία και τον εκάστοτε χρησιμοποιούμενο διαλύτη⁴⁸. Παρατηρείται επίσης ότι υμένια του αυτού ανιόντος π.χ. Να⁻ αλλά διαφορετικού κατιόντος, όπως K⁺, Rb⁺, Cs⁺εμφανίζουν μικρή μετατόπιση της θέσεως του μεγίστου απορροφήσεως . Τα υμένια Να⁺C222.Na⁻, εκτός της κυρίας κορυφής 15400 cm⁻¹(1,91 ev), εμφανίζουν δύο " ώμους" στις θέσεις 19000 cm⁻¹ (2,4 ev) και 24500 cm⁻¹(3,0 ev). Η κυρίως κορυφή συμπίπτει σχεδόν με εκείνη του Νa⁻ σε διαλύματα. Οι δύο ώμοι δεν εμφανίζονται στα άλλα υμένια τα οποία περιέχουν Νa⁻ όπως Rb⁺18C6.Na⁻, K⁺18C6.Na⁻, K⁺C222. Na⁻.Η μετατόπιση του μεγίστου απορροφήσεως των υμενίων που περιέχουν Na⁻ και διαφορετικό M⁺C, κατόπιν μελετών NMR²³Na δεν αποκλείει τον σχηματισμό υμενίων διαφορετικού ανιόντος π.χ. Na⁺18C6.K⁻, Na⁺18C6.Rb⁻.

Πειράματα φωτοαγωγιμότητας λεπτών υμενίων⁴⁹, έδειξαν ότι οι φορείς φωτοαγωγιμότητας είναι διαφορετικοί από τους φορείς θερμικής διεγέρσεως. Πιστεύεται ότι η φωτοαγωγιμότητα είναι αποτέλεσμα διηγηρμένων καταστάσεων παγιδευμένων ηλεκτρονίων διότι είναι χημικώς δραστικότερα των ανιόντων αλκαλιμετάλλων . Η ταχεία ελάττωση της φωτοαγωγιμότητας συναρτήσει

Σχ.4 Φάσματα απορροφήσεως υμενίων αλκαλιδίων - ηλεκτριδίων.

Φάσματα απορροφήσεως διαλυμάτων αλκαλιμετάλλων αιθυλενοδια μίνης.

108

του χρόνου, οι ενδογενείς ανομοιογένειες των αποτιθεμένων υμενίων καθώς και οι χαμηλές κβαντικές αποδόσεις δυσκολεύουν σημαντικά τις πειραματικές μελέτες αυτού του τύπου. Τελευταίως, αναπτύχθηκαν βελτιωμένες τεχνικές σχηματισμού ομογενών υμενίων ρυθμιζομένου πάχους.

Εξετάσθηκαν επίσης οι κβαντικές αποδόσεις φωτοεκπομπής τεσσάρων αλκαλιδίων (Na⁺C222.Na⁻, K⁺18C6.Na⁻, Rb⁺(15C5)₂.Na⁻, K⁺(15C5)₂.Na⁻) σε μορφή υμενίων. Η συσκευή φωτοεκπομπής ηλεκτρονίων⁵⁰ αποτελείται εκ δίσκου πλατίνης (κάθοδος) επί του οποίου σχηματίζεται το υμένιο. Τα φωτοηλεκτρόνια τα οποία εξέρχονται κατόπιν προσπτώσεως της ακτινοβολίας συλλέγονται σε κυλινδρικό πλέγμα που περιβάλλει τη κάθοδο. Βρέθηκε ότι το φάσμα φωτοεκπομπής ηλεκτρονίων στο εύρος 3,5-1,5 εV παρουσιάζει δύο κορυφές στις θέσεις 3,4 εV και 2,0 εV.Η πρώτη κορυφή είναι ανεξάρτητος της θερμοκρασίας και αποδίδεται στην εκπομπή ηλεκτρονίων από τα ανιόντα π.χ. Na⁻, η δεύτερη,είναι πεπλατυσμένη και το ύψος της αυξάνει ταχέως με αύξηση της θερμοκρασίας, επί πλέον εξαρτάται από το κατιόν και τον συμπλέκτη, αποδίδεται δε στα παγιδευμένα ηλεκτρόνια πλεγματικών ατελειών.

Β. Ηλεκτρικές Ιδιότητες

Το άλας Ν⁺C222.Νa⁻ είναι το μοναδικό μέλος μεταξύ των ομάδων αλκαλιδίων-ηλεκτριδίων που αναπτύσσεται υπό μορφή μονοκρυστάλλων, μεγάλων σχε τικά διαστάσεων ~1X1X1 mm.Τα υπόλοιπα μέλη παρασκευάζονται προς το παρόν μόνο υπό μορφή κρυσταλλικής κόνεως.

Η ειδική αγωγιμότητα (σ) των πολυκρυσταλλικών δειγμάτων, αλκαλιδίωνηλεκτριδίων, συναρτήσει της θερμοκρασίας, παρουσιάζει συμπεριφορά ενδογενών ημιαγωγών⁴⁸, δηλαδή ακολουθεί την σχέση:

 $\sigma = \sigma_{gg} \exp(-Eg/2k_{B}T)$

με ενεργειακά χάσματα E_g κυμαινόμενα μεταξύ 0.5 eV και 2.5 eV.k_B είναι η σταθερά Boltzman και σ₃₀η ειδική αγωγιμότητα σε " άπειρο" θερμοκρασία. Τα διαγράμματα ρεύματος- τάσεως (Ι-V) είναι γραμμικά διερχόμενα από την αρχή των αξόνων, δηλαδή τα πολυκρυσταλλικά δείγματα εμφανίζουν ωμική συμπεριφορά. Τα ενεργειακά χάσματα E_g υπολογίζονται από την κλίση των διαγραμμάτων lng = f(1/T). Οι φορείς ρεύματος φαίνεται να είναι ηλεκτρόνια τα οποία διεγείρονται θερμικά από τη ζώνη σθένους στη ζώνη αγωγιμότητας.

Η συμπεριφορά της ηλεκτρικής αγωγιμότητας των μονοκρυστάλλων Νa⁺C222. Na⁻ είναι τελείως διαφορετική από εκείνης των πολυκρυσταλλικών δειγμάτων⁵¹. Τα διαγράμματα I-V παρουσιάζουν γραμμική εξάρτηση μόνον σε θερμοκρασίες μικρότερες των -24° C.Σε μεγαλύτερες θερμοκρασίες εμφανίζεται μη γραμμική συμπεριφορά λόγω ισχυρής πολώσεως των ηλεκτροδίων. Επί πλέον, η ειδική αγωγιμότητα των μονοκρυστάλλων είναι κατά 5-7 τάξεις μεγέθους μεγαλύτερη από την αντίστοιχη των πολυκρυσταλλικών δειγμάτων και χρονικώς εξηρτημένη. Η χρονική εξάρτηση της ηλεκτρικής αγωγιμότητας είναι χαρακτηριστικό στοιχείο ιοντικών κυρίως αγωγών, στους οποίους οι φορείς ρεύματος είναι ιόντα (ιοντική αγωγιμότητα) τα οποία κινούνται δια μέσου των πλεγματικών ατελειών του κρυστάλλου. Τα ανωτέρω χαρακτηριστικά ερμηνεύονται με την υπόθεση ότι σε θερμοκρασίες μεγαλύτερες των -24° C η αγωγιμότητα είναι ιοντικής φύσεως (η ηλεκτρονιακή συνεισφορά είναι αμελητέα), ενώ στις χαμηλότερες θερμοκρασίες επικρατεί η ηλεκτρονιακή αγωγιμότητα.Αυτό φαίνεται και από το διάγραμμα 1 σ = f(1/T), το οποίο εμφανίζει δύο ευθύγραμμα τμήματα διαφορετικών κλίσεων⁵².

Η ιοντική αγωγιμότητα των μονοκρυστάλλων Na⁺C222.Na⁻ απεδείχθη πειραματικώς από την ηλεκτροχημική συμπεριφορά τους⁵².Πράγματι, όταν το ένα ηλεκτρόδιο καλυφθεί με λεπτό στρώμα μεταλλικού νατρίου προκύπτει ηλεκτροχημικό στοιχείο του οποίου η διαφορά δυναμικού ανοικτού κυκλώματος (EMF) είναι ~2,5 V, η οποία διατηρείται για χρονικά διαστήματα μεγαλύτερα των 6 ωρών. Αν και η φύση των ηλεκτροχημικών αντιδράσεων δεν είναι δυνατόν να περιγραφεί ακριβώς, έχει προταθεί το ακόλουθο σχήμα.

> Kάθοδος: Na⁺C222 +e⁻ \longrightarrow Na(s) +C222 'Ανοδος : e_t \rightarrow e⁻

όπου e_t είναι το παγιδευμένο ηλεκτρόνιο (trapped electron),όπως στη περίπτωση των ηλεκτριδίων. Η ήλεκτροχημική συμπεριφορά του μονοκρυστάλλου Na⁺C222.Na⁻ ανήκει στο προσφάτως αναπτυσσόμενο πεδίο ερεύνης των ιοντικώς αγωγών (super ionic conductors-solid state baterries)⁵³⁻⁵⁶,όπου γίνονται προσπάθειες να βρεθούν συσσωρευτές στερεών ηλεκτρολυτών χαμηλών Θερμοκρασιών, διότι οι υγροί ηλεκτρολύτες πήγνυνται.

Γ. <u>Μαγνητικές</u> ιδιότητες

Οι μαγνητικές ιδιότητες των αλάτων που περιέχουν ανιόν αλκαλιμετάλλου ή ηλεκτρόνιο (ηλεκτρίδιο) διερευνήθησαν μέσω φασμάτων EPR; NMR και των μετρήσεων της μαγνητικής επιδεικτικότητας, συναρτήσει της θερμοκρασίας.

Αν και τα καθαρά αλκαλίδια είναι διαμαγνητικά, μεγάλος αριθμός δειγμάτων παρουσιάζουν ασθενή EPR σήματα πλησίον της τιμής g των ελευθέρων ηλεκτρονίων λόγω παγιδευμένων ηλεκτρονίων, τα οποία έχουν καταλάβει πλεγ+ ματικά κενά ανιόντων (π.χ. F κέντρα)⁴⁸. Η συγκέντρωση των παγιδευμένων ηλεκτρονίων είναι δυνατόν να αυξηθεί, αυξάνοντας τη συγκέντρωση των επιδιαλυτωμένων ηλεκτρονίων στο διάλυμα από το οποίο αναπτύσσονται οι κρύσταλλοι και συγχρόνως ελαττώνοντας τη σχετική συγκέντρωση αγιόντων Μ . Ας σημειωθεί ότι ο αριθμός των παγιδευμένων ηλεκτρονίων συνδέεται άμεσα με τις ιδιότητες μεταφοράς του ηλεκτρικού ρεύματος⁵².

Στα ηλεκτρίδια, αντιστρόφως, εμφανίζονται ισχυρά EPR σήματα ακριβώς στην τιμή g των ελευθέρων ηλεκτρονίων⁴⁸. Το φάσμα NMR ²³Na διαλύματος Na⁺C222,Na⁻ σε THF εμφανίζει τη κορυφή του Na⁻ με εύρος ημίσεως ύψους 3Hz. Στο στερεό πολυκρυσταλλικό δείγμα Να⁺C222.Na⁻ εμφανίζεται πεπλατυσμένη γραμμή εύρους ημίσεως ύψους 3000 Hz η οποία υπερκαλύπτει τα δύο (διαφορετικά) σήματα προερχόμενα από τα Na^+C και Na^- αντιστοίχως.Η διάκριση των κορυφών μεταξύ των Νa⁺C και Νa⁻ έγινε δυνατή με τη χρησιμοποίη. ση NMR μεγάλης διαχωριστικής ικανότητας magic angle sample spinning (MASS) NMR ^{57,58}. Το Σχ. 6 παρουσιάζει τα NMR φάσματα του Na⁺C222.Na⁻(s) με τις δύο τεχνικές (nonspinning, spinning). Με τη δεύτερη τεχνική (spinning) η NMR γραμμή απορροφήσεως του Να γίνεται ~10 φορές στενότερη με αποτέλεσμα να διακρίνονται δύο κορυφές α) του Νa⁺C222 με χημική μετατόπιση δ= -23,7 ppm και β) του Να με δ= -61,3 ppm.ως προς ελεύθερο Να⁺. Οι τιμές αυτές είναι συγκρίσιμες με τις χημικές μετατοπίσεις -11 ppm και -62 ppm twv Na⁺C222 kai Na⁻ avtistolxws, se διάλυμa⁵⁹. Ouolws εξετάσθηκαν δείγματα των τύπων M⁺L. Na⁻⁵⁷ όπου L:C222 ή 18C6, M=Na,K,Cs,Rb και M⁺L. Rb⁻⁵⁸όπου L:15C5 ή 18C6, M=Cs,Rb.

23 Να Πολυκρυσταλλικού Να C222. Να με τις Φάσματα NMR Σχ.6 TEXVIRÉS spinning, nonspinning.

Μετρήσεις μαγνητικής επιδεκτικότητας έγιναν με μαγνητόμετρο ακριβείaς [Superconducting Quantum Interference Device, SQUID] στην περιοχή θερμοκρασιών 1,6-400K⁶⁰. Τα αλκαλίδια εμφανίζουν διαμαγνητική συμπεριφορά⁴⁸, όπως εξ άλλου αναμένεται λόγω της ηλεκτρονιακής δομής των ανιόντων αλκαλιμετάλλων. Επίσης τα περισσότερα των ηλεκτρίδιων είναι διαμαγνητικά, λόγω της συζεύξεως των spin των παγιδευμένων ηλεκτρονίών. Αν οι αλληλεπιδράσεις των παγιδευμένων ηλεκτρονίων ήσαν ασθενείς, τα ηλεκτρίδια θα είχαν παραμαγνητικό χαρακτήρα, δηλαδή θα ακολουθείτο περίπου ο νόμος Curie-Weiss. Παραμαγνητική συμπεριφορά εμφανίζει το ηλεκτρίδιο Li⁺C221.e⁻ στην περιοχή θερμοκρασιών 20-70K⁶¹. Εξ αυτών συμπεραίνεται ότι είναι αδύνατος ο διαχωρισμός αλκαλιδίων- ηλεκτριδίων μόνο από μετρήσεις μαγνητικής επιδεκτικότητας.

V. ΠΡΟΟΠΤΙΚΕΣ ΕΦΑΡΜΟΓΩΝ

Η σύνθεση και ο χαρακτηρισμός των στερεών αλάτων αλκαλιδίων αποτελούν το σημαντικότερο βήμα στο ερευνητικό πεδίο ανιχνεύσεως ανιόντων αλκαλιμετάλλων. Το επιστημονικό ενδιαφέρον των ουσιών αυτών είναι εύλογο. Από ορισμένες γενικές ιδιότητες που εξετάσθηκαν σε μερικά μέλη της ομάδας αλκαλιδίων- ηλεκτριδίων προκύπτει επίσης έντονο πρακτικό ενδιαφέρον.

Η ευκολία αποβολής ηλεκτρονίων καθιστά τις ουσίες αυτές άριστα αναγωγικά αντιδραστήρια. Το άλας π.χ. Να⁺C222.Να⁻διαλύεται εύκολα στον διαλύτη THF και μπορεί να χρησιμοποιηθεί στις περιπτώσεις που απαιτείται αναγωγικό αντιδραστήριο δύο ηλεκτρονίων. Επειδή τα ηλεκτρόνια στα άλατα αλκαλιδίων- ηλεκτριδίων έχουν χαμηλή ενέργεια ιοντισμού αναμένεται φωτοεκπομπή ηλεκτρονίων σε μεγάλα μήκη κύματος.

Ενδιαφέρον παρουσιάζει επίσης η χρησιμοποίηση των ουσιών αυτών στους συσσωρευτές, οι οποίοι χρησιμοποιούν αλκαλιμέταλλο όπως Νa.Li στις καθοδικές αντιδράσεις. Επί πλέον η ηλεκτροχημική συμπεριφορά μονοκρυστάλλων Na⁺C222.Na⁻ βρίσκει εφαρμογή στο πρόσφατα αναπτυσσόμενο πεδίο συσσωρευτών στερεού σώματος οι οποίοι χρησιμοποιούν αντί υγρών στερεούς ηλεκτρολύτες. Από τα πολυάριθμα μέλη της ομάδας αλκαλιδίων- ηλεκτριδίων είναι πιθανόν να βρεθεί το κατάλληλο σύστημα αναπτύξεως συσσωρευτών μεγάλης αποδώσεως χαμηλών θερμοκρασιών.

SUMMARY

ALKALIMETAL ANIONS

1. PAPATOANNOU, I. PROVIDAKI- MOLINOU, A. MAYRIDIS

Physical Chemistry Laboratory, Univ, Of Athens

The most appropriate solvents for alkali metals (Na,K,Rb,Cs) are amines and ethers; yet in these solvents alkali metals are sparingly soluble. Recently, it has been discovered that their solubility increases dramatically by adding to the solvent the clathrate-forming compounds "cryptands" and/or "crown ethers". The cavity of these molecules enslaves metal cations, while at the same time alkali metal anions or "free'electrons are released into the solution. Centainly, the whole solution remains electrically neutral. By varing the concentration of the complexing agents vs the concentration of alkali emtals, either alkalides or electrides are formed. Alkalides are salts whose anion is a negatively charged alkali atom (i.e. Na⁻); in electrides the anion is a "trapped"electron.

Salt-like crystale of both species have been prepared and their various chemical, electrical, magnetic and optical properties have been investigated. The present article is a condensed overview of this newly developed and rich field of chemistry and material science.

Key words : Alkalides, Electrides, Crypt, Crown ethers

References

- 1. Edwards, P.P., Advanced Inorg. Chem. Radiochem. 25, 135 (1982).
- 2. Weyl, W., Annalen der Physic and Chemie, <u>197</u>, 601 (1864).
- 3. Kraus, C.A., J. Am. Chem. Soc., <u>30</u>,1323 (1908).
- Kraus, C.A., J. Am. Chem. Soc., <u>43</u>, 749 (1921).
 Kraus, C.A., J. Am. Chem. Soc., <u>30</u>, 83 (1953).
- Kraus, C.A. and Lucasse, W.W., J. Am. Chem. Soc., <u>43</u>,2529 (1921).
 Kraus, C.A. and Lucasse, W.W., J. Am. Chem. Soc., <u>44</u>,1941 (1922).
- 8. Kraus, C.A. and Schmidt, F.C., J. Am. Chem. Soc., <u>56</u>, 2297 (1934). 9. Golden, S., Guttman, C., Tuttle, J.T., J. Am. Chem. Soc., 87, 135
- (1965); J. Chem. Phys. <u>44</u>, 3791 (1966).

- Jolly, W. L., Prog. Inorg. Chem., <u>1</u>, 235 (1959).
 Symons, M.C.R., Q. Rev., <u>13</u>, 99 (1959).
 Schninderwolf, U., Angew. Chem., <u>80</u>, 165 (1968); Angew. Chem. Int. Ed. Engl., <u>7</u>, 190 (1968).
 D. A.L. T. D.L. T. D. A.L. T. D. A.L. T. D. A.L. T. D. A.L. T. D.L. T. D.
- Das, T. P., Adv. Chem. Phys., <u>4</u>, 303 (1962).
 Dye, J. L., Sci. American, <u>216</u>, 77 (1967).
- 15. Cohen, M. H. and Thompson, J.C., Adv. Phys., 17, 857 (1968).
- lo. Catterall, R. and Mott, N.F., Adv. Phys., <u>18</u>, 665 (1969). 17. Kevan, L. and Webster, B., Electron-Solvent and Anion- Solvent Interactions, Elsevier, New York, 1976.

Τ.ΠΑΠΑΙΩΑΝΝΟΥ, Ι.ΠΡΟΒΙΔΑΚΗ-ΜΟΛΙΝΟΥ, Α. ΜΑΥΡΙΔΗΣ 114

- 18. Thompson, J.C., *Electrons in Liquid Ammonia*, Oxford university Press, Oxford, 1976.
- 19. Lepoutre, G. and Sienko, M.J., Eds., Metal- Ammonia solutions, coloque Weyl I, W. A. Benjamin, New York, 1964.
- 20. Lagowski, J.J. and Sienko, M.J., Metal- Ammonia solutions, coloque Weyl II, J PAC, Batterworths, London 1970.
- 21. Jortner, J and Kestner, N.R., Electrons in Fluids, colloque Weyl III, Springer Verlag, Berlin 1973.
- 22. Dye, J.L., Conference Organizer " Colloque Weyl IV, Electrons in Fluids- the Nature of Metal- Ammonia solutions", J. Phys. Chem., 79, 26 (1975).
- Webster, B., conference Organizer, " colloque Weyl V, Excess Elec trons and Metal- Animonia Solutions", J. Phys. Chem., 84, 10 (1980). Elec-
- 24. Schindewolf, U., Conference Organizer, Ber. Bunsenges, Phys. Chem., 75 (1971).
- 25. Ogg, J.A., J. Amer. Chem. Soc., 68, 155 (1946); J. Chem. Phys. 14, 114 (1946); Phys. Rev., 69, 243 (1946).
- 26. Jortner, J., J. Chem. Phys., 30, 839 (1959).
- 28. Copeland, D.A., Kestner, N. R., Jortner, J., J. Phys. Chem., 53, 1189 (1970).
- 29. Matalon, S.S., Golden, S., Ottolenghi, M., J. Phys. Chem., 73, 3098 (1969).
- 30. Dye, J. L., De Baker, M.G., Nicely, V.A., J. Am. Chem. Soc., 92, 5226 (1970).
- 31. Pedersen, C.J., J. Am. Chem. Soc., 89, 7017 (1967); J. Am. Chem. *Soc.*, <u>92</u>, 386 (1970).
- 32. Dietrich, B.L., Lehn, J.M., Sauvage, J.P., Tetrahedron Lett., <u>34</u>, 2885 (1969).
- 33. Lehn, J.M., Structure and Bonding, <u>16</u>, 1 (1973).
- 34. Lehn, J. M. and Sauvage, J.P., J. Am. Chem. Soc., <u>97</u>, 6700 (1975). 35. Lehn, J.M., Acounts of Chemical Research , <u>11</u>, 49 (1978).
- 36. Smith, P., Dye, J. L., Cheney, J. and Lehn, J.M., unpublished work,
- 37. Dye, J. L., J. Phys. Chem. ,84,1084(1980).
- 38. Dye, J.L., Angew, Chem. Fint. Ed. Engl. 18,587 (1979).
 39. Dye, J.L., Cersao, J. M., Lock, M. T., Barnett, B.L., Tehan, F. L., J. Am. Chem. Soc., <u>96</u>, 608 (1973).
- 40. Tehan, F. J., Barnett, B.L., Dye, J.L., J. Am. Chem. Soc., 96, 7203 (1974).
- 41. Ellaboudy, A., Smith, P. B., Tinkham, M., Van Eck, B., and Dye, J.L., J. Phys. Chem., <u>88</u>, 3852 (1984).
- 42. Dye, J.L., Garaso, J. M., Tehan, F. J., Lock, M. T., US Patent, 4, 107, 180,
- 43. Dye, J. L., J. Phys. Chem., <u>88</u>, 3842 (1984).
- 44. Dye, J. L., Yemen, N. R., DaGue, M. G., Lehn, J. M., J. Chem. Phys., <u>68</u>, 1665 (1978).
- 45. Dye, J. L., DaGue, M. G., Yemen, M. R., Landers, J. S., Lewis, H.L., J. Phys. Chem., <u>84</u>, 1097 (1980).
- 46. Dewald, R.R., Dye, J. L., J. Phys. Chem., <u>68</u>, 121 (1964).
- 47. Dye, J. L., DeBacker, M. G., Dorfman, L. M., J. Chem. Phys., 52, 6251 (1970).
- 48. Dye, J. L., Progress in Inorganic Chemistry, V. 32, Edited by Stephen Dr., Lippard, J., John Wiley and Sons, Inc., 1984, p. 398.
- 49. Yemen, M. R., Ph. D. Dissertation, Michigan State University 1982.

- 50. Jaenicke, S., Dye, J. L., *J. Solid State Chem.*, <u>54</u>, 320 (1984).
- 51. Papaioannou, J. C., Ph. D. Dissertation, University of Athens 1984.
- 52. Papaioannou, J. C., Jaenicke, S., and Dye, J. L., J. Solid State Chem., 67, 122 (1987). Papaioannou, J. C. and Dye, J. L., Rev. Sci. Instr., 59(3),496 (1988).
- 53. Schandra, S., " Superionic Solids", North Holland, 1981, p.17.
- 54. Schultz, H., in " The Physics of superionic Conductors and Electrode Matérials" Ed. Perram, J. W. Plenum Press, New York 1983, p.5.
- 55. Pandee, W. J., Mahan, G. D., *J. Solid State Chem.*, <u>15</u>,310(1975).
- 56. Kiukkola, K., Wagner, C., J. Electroch. Soc., <u>104</u>, 308 (1957); J. Electroch. Soc., <u>104</u>, 379 (1957).
 57. Dye, J. L., Chem. Br., 20, 210 (1984).
- 58. Tinkham, M.L., Ellaboudy, A., Dye, J. L., J. Phys. Chem., 90, 14 (1986).
- 59. Dye, J.L., Andrews, C.W., and Ceraso, J.M., J. Phys. Chem., 79, 3076 (1975).
- 60. S.H.E. Corporation, 4174 Sorrento Valley Blud, San Diego, C.A., 92121.
- 61. Landers, S.L., Dye, J.L., J. Phys. Chem., <u>85</u>, 1096 (1981).

SHORT PAPER

Chimika Chronika, New Series, 17, 116-123 (1988)

OPTIMUM CONDITIONS FOR SINGLE COLUMN ANION CHROMATOGRAPHIC DETERMINATION OF F⁻, C1⁻, NO⁻₂, Br⁻, NO⁻₃ AND SO²₄⁻ IN AQUEOUS ENVIRONMENTAL SAMPLES

R. TZIMOU-TSITOURIDOU

Laboratory of Analytical Chemistry, Department of Chemical Engineering, Aristotelian University of Thessaloniki, Thessaloniki, Greece

(Received July 4, 1986)

INTRODUCTION

During the last years, the interest of the scientists, working on the control of air and water pollution, has been mainly focused in finding new sensitive and rapid methods of analysis for inorganic and organic anions. In water analysis it is important to know even the lowest concentration of these compounds since they influence the water quality and cause indirectly healthy risks.

The application of a method which enables simultaneous determination of more than one components in one run is of great importance and very helpful. Such method was introduced for the first time in 1975 by Small and his coworkers, named "Ion Exchange Chromatography with Conductimetric detection" $(IEC)^1$. Since then, IEC has been the widely used method for separation and determination of several common anions in many types of environmental samples^{2,3,4}. This was possible by the application of the principles of high performance liquid chromatography (HPLC) using ionexchange columns and further direct conductometric detection of the separated ionic species.

At first, the authors suggested the use of two columns silultaneously, the separator column and the suppressor one. Four years later an improved chromatographic method without suppressor column was introduced by Gjerde, Schmuebler and Fritz⁵, known as "Single Column Ion Chromatography" (SCIC). The main advantages of this method are its simpler instrumentation comparing with the dual - column suppressed system, the short time needed for one sample analysis (about 10 min) and also the possibility for easier automatization in routine laboratory work.

R. TZIMOU-TSITOURIDOU

The main factor contributing to the success of a SCIC method is the choice of the proper eluent having low equivalent conductance⁶. Generally, as good eluents are sonsidered the aromatic organic anions having high selectivity coefficient for the anion - exchange resin and their pH is such that the salt is completely ionized (A^{2-} is the dominant ion and not the HA⁻).

Concerning the eluent concentration, it must be as low as possible to reduce the background signal. On the other hand, it shouldn't be very low, because in that case, retention time of the eluted ions goes up.

From the literature⁷ it is known that phthalic acid having low pKa values (2,8 and 5,5) provide good buffer capacity and excellent selectivity control over the pH range 2-6. This was the reason, that a salt of this acid was used as eluent in our experiments.

Therefore, in an attempt to optimize experimental conditions for SCIC determination of inorganic anions (F⁻, Cl⁻, NO₂⁻, Br⁻, NO₃⁻ and SO₄⁻), potassium hydrogen phthalate was used as eluent and the effects of eluent concentration and pH on retention time of the eluted ions were carefully studied. The method was successfully applied for the analysis of drink-ing, mineral, rain and ground water samples.

EXPERIMENTAL SECTION

a) Sampling

Rain water samples were collected using polyethylene funnels attached to polyethylene bottles which served as wet deposition collectors.

Different types of mineral waters were analyzed after dilution 1:2 or 1:5 if required in some cases. For drinking water samples, the analysis was very simple since no sample preparation was needed. Ground water samples were analyzed after their filtration through a millipore filter (0.4 μ m pore size).

b) Analysis

Apparatus: The ion chromatographic system consisted of the following components: 1) an HPLC low pulsation pump, Kontron Model 414, providing constant eluent flow, 2) a Wescan Ion Chromatography module, "ICM", equipped with a 100 μ L "Rheodyne" sample loop, Model 7125, and an active temperature controller "ATC" settled at 30 ^OC and 3) a strip chart recorder, Goerz Servogor, Model RE 541. Instrument conditions during the

118 ION CHROMATOGRAPHY

experiments are as follows: eluent: $0.5 \times 10^{-3} - 4 \times 10^{-3}$ M KHP, flow rate: 1 ml/min, column: resin based anion exchanger on macroporous polystyrene substrate, with capacity 0.17 mequiv/g (WESCAN/R 269 - 029, 250×4.6 mm), detector range: R 10/z supr 2, recorder speed: 5 mm/min and recorder range: 0.2 Volt.

Reagents: All reagents used in the experiments were of analytical grade (BDH Analar). For eluent preparation a stock potassium hydrogen phthalate solution (4 mM) was diluted and the appropriate volume of 0.1 M KOH added for pH adjustment, while a small quantity (10 % v/v) of methanol was also added for preservation.

RESULTS AND DISCUSSION

Having in mind that in SCIC, eluent concentration is highly responsible for background noise and retention time of eluted ions⁷, we tried to find experimentally the optimal eluent conditions.

Therefore, changes in eluent concentration as it is given in Tab. I showed serious effect on retention time of the late eluted ions as NO_3^{2-} and SO_4^{2-} . For these anions, the analysis is much time consuming as the eluent concentration reduces. Thus, the concentration of 4 mM was considered the most suitable one in this case of analysis. In Fig. 1 the effect of eluent concentration on retention time is given using the Capasity factor K(K = t - t_0/t_0) for the corresponding anions.

Eluent conc. (mM)	t ₀	t _F	t _{Cl}	t _{NO2}	t _{Br}	t _{NO3}	t _{S04}
0.5	1.50	8.70	13.30	13.70	16.35	20.35	
1.0	1.65	6.25	7.50	9.35	10.58	12.35	· _
2.0	1.80	4.78	5.58	6.65	7.45	8,45	19.30
4.0	1.90	3.60 (neg)	4.23	4.95	5.40	5,95	9.60

TABLE I. Effect of eluent concentration on retention time (min)

Then, having eluent concentration constant at 4 mM, the retention time dependance with respect to pH was examined. In Fig. 2 it can be seen that as the pH increased, retention time decreased and especially sulfate elution was strongly affected. Thus, the optimum pH was found to be in the range of 4.9 - 6.0.

FIG. 1: Effect of eluent concentration on capacity factor k (k = $\frac{t - t_0}{t_0}$).

Another important and very useful factor for the evaluation of an IC method, the Resolution (R) of the separated ions, was also studied. A minimum requirement for sufficient separation between two ions of interest is generally defined as:

$$R = \frac{t_2 - t_1}{(W_1/2) + (W_1/2)_2} > 2$$

where t_2 and t_1 are the adjusted retention times of the corresponding ions and $W_{1/2}$ is the peak width at the half of its height⁸. Calculated R values for the couples of peaks for various pH of the eluent showed that even for the relatively problematic couples of NO₂ - Br and Br - NO₃, the separation is nearly base - line separation at pH 4.9, (the values are 2.50 and 3.00 respectively).

Using the conditions proposed above, concerning eluent concentration and pH, standard chromatograms were undertaken with mixed standard solu-

FIG. 2: Effect of eluent pH on retention time of eluted anions.

FIG. 3: Standard chromatogram of F⁻ 1 ppm, Cl⁻ 1 ppm, NO $_{2}$ 1 ppm, Br⁻ 5 ppm NO $_{3}$ 2 ppm and SO $_{4}^{-}$ 2 ppm using eluent KHP 4 mM and pH: 4.9

R. TZIMOU-TSITOURIDOU

FIG. 4: Peak height response VS. concentration for the anions: Cl^{-} , NO_{2}^{-} , Br, NO_{3} and SO_{4}^{2-} .

tions of the anions of interest (Fig. 3). It can be seen that fluoride is early eluted with negative peak whereas the resolution between the first two peaks (fluoride-chloride) is absolutely satisfactory. Good linearity was obtained between peak height and concentration in the range of 1 - 10 ppm, as it is shown in Fig. 4. Detection limits were calculated from experimental data and taken as three times the standard deviation of a data set consisting of six analysis of a standard mixture with as low as possible ion concentration (F: 1 ppm, CI: 1 ppm, $NO_2: 2$ ppm, $NO_3: 2$ ppm, $SO_4: 2$ ppm). The values in ppm for D.L are the following: F: 0.18, CI: 0.09, $NO_2: 0.15$, Br: 0.15, $NO_3: 0.13$ and $SO_4^{2}: 0.15$.

The above method was successfully applied for the analysis of selected inorganic and organic ions in fog water and atmospheric aerosols obtained

122 ION CHROMATOGRAPHY

during a field sampling campaign in the Po valley, Italy.

SUMMARY

The objective of this work was to establish optimum conditions for the ion chromatographic separation and determination of inorganic anions, using single column technique, and apply it to routine experimental work for aqueous environmental analysis. The successful use of an eluent with low equivalent conductance such as potassium hydrogen phthalate (KHP), with a defined concentration and pH value has been applied in a series of applications for the analysis of drinking, mineral and rain water samples.

Keywords: Single Column Ion Chromatography,

eluent: Potassium hydrogen phthalate (KHP), aqueous environmental samples

ΠΕΡΊΛΗΨΗ

Βέλτιστες συνθήκες προσδιορισμού των ιόντων F, C1, NO_2 , Br, NO_3 και SO_4^{2-} σε φυσικά υδατικά δείγματα με χρωματογραφία ιόντων απλής στήλης.

Το αντικείμενο της παρούσης εργασίας ήταν η εύρεση των βέλτιστων συνθηκών προσδιορισμού ανοργάνων ανιόντων (F⁻, Cl⁻, NO₂⁻, Br⁻, NO₃⁻ και SO₄²⁻) σε φυσικά υδατικά δείγματα με τη μέθοδο της χρωματογραφίας ιόντων απλής στήλης. Ως εκλουστικό (eluent) χρησιμοποιήθηκε το όξινο φθαλικό κάλιο (potassium hydrogen phthalate, KHP) σε συγκεντρώσεις από 0.5-4 mM σε διάφορες τιμές pH από 4 έως 9. Η βέλτιστη συγκέντρωση του εκλουστικού διαλύματος βρέθηκε η συγκέντρωση των 4 mM και το βέλτιστο pH το 4.9. Μελετήθηκε η ικανότητα διαχωρισμού των ιόντων μεταξύ τους (ανά ζεύγη), και με τη βοήθεια προτύπων (standard) χρωματογραφημάτων υπολογίστηκαν τα όρια ανιχνεύσεως των υπό μελέτη ανιόντων με τις παραπάνω βέλτιστες συνθήκες. Η μέθοδος χρησιμοποιήθηκε για την ανάλυση δειγμάτων ποσίμου νερού, μεταλλικού και νερού βροχής με συνθήκες αυτόματου προσδιορισμού και προτείνεται ανεπιφύλακτα για αναλύσεις ρουτίνας σε εργαστηριακή κλίμακα.

REFERENCES

Small H., Stevens T. S. and Bauman W. C.: Anal. Chem., <u>47</u>, 1801 (1975).
 Schwade R., Darimont T., Möhlmann T. Pobel E. and Sonneborn M.: Inter.

Journal of Env. Anal. Chem., 14, (3) (1983).

R. TZIMOU-TSITOURIDOU

- 3. Buchhlz A. E., Verplough C. I. and Smith J. L.: Journal of Chromatographic Science, <u>20</u>, 499 (1982).
- Guiang S. F., Krupa S. V. and Pratt G. C.: Atmos. Environment, <u>18</u>, (8), 1677 (1984).
- 5. Gjerde B. T., Schmuckler G. and Fritz J. S.: *Journal of Chromatography*, 186, 509 (1979).
- 6. Gjerde D. T. and Fritz J. S.: Anal. Chem., 53, 2324 (1981).
- 7. Fritz J. S., Duval D. L. and Barron R. E.: Anal. Chem., 56, 1177 (1984).
- Pimminger M., Puxbaum H., Kossina I. and Weber M.: Frez. Z. Anal. Chem., 320, 445 (1985).
- 9. Tsitouridou R. and Puxbaum H.: Inter. J. Environ. Anal. Chem., <u>31</u>, 11 (1987).

SHORT PAPER

Chimika Chronika, New Series, 17, 124-127 (1988)

THE REACTION OF 2-PHENYLIODONIO-DIMEDONATE WITH KSCN

MARIA V. PAPADOPOULOU

Laboratory of Organic Chemistry, University of Thessaloniki, Thessaloniki, Greece.

(Received October 11, 1986)

INTRODUCTION

As we have previously reported, 2-phenyliodonio-dimedonate, 1, can be protonated even by weak acids, because of its basicity, to form iodonium salts which make react further, e.g. H_2S gives 2-sulfhydryldimedone¹, HCl gives 2-chlorodimedone², Ph_2ICl in MeOH gives 2-chlorodimedone³, etc, whereas p-toluenesulfonic acid gives a stable iodonium tosylate⁴. These reactions apparently involve nucleophilic attack at C_2 of 1 by the anion of the above mentioned reagents. We thought to extend these reactions with other nucleophiles in order to obtain 2-substituted dimedones. We find that by using KSCN as nucleophile in presence of H_2SO_4 as a catalyst, we obtain a mixture of 4-oxo-6,6-dimethyltetrahydro-1,3-benzoxathiol-2one, 2, bis(4,4-dimethyl-2,6-dioxocyclohexyl)sulfide, 3 and bis (4,4dimethyl-2,6-dioxocyclohexyl)trisulfide, 4, instead of 2-thiocyanodimedone.

Oxidation of sulfides 3 and 4 with diacetoxy-iodobenzene leads to the known spiro-product 5. The reaction of 1, with KSCN is described in detail below and a partial mechanism is proposed to explain the products formed.

RESULTS AND DISCUSSION

When 1 is stirred with KSCN in a methanolic-aqueous solution containing H_2SO_4 for about 12 hours, three different products are formed, besides PhI: 2, 3, and 4 with corresponding yields 4, 25 and 40%.

As the reaction occurs in presence of an acid, the first step must be the protonation of 1 on one oxygen. Afterwards nucleophilic attack at C₂ of 1 must take place by thiocyanate anion, with formation of 2-thiocyanodimedone.

If we accept the tautomeric form 6 of 2-thiocyanodimedone, we can

FIG. 1: Reaction of 1 with KSCN.

easily explain the formation of 2 in the acidic environment of the reaction, as is shown in the equations above. On the other hand the formation of 3 and 4 could according to the literature¹ be attributed to the intermediate 7, which might be obtained from 2. The low yield of 2 could be an evidence for this.

FIG. 2: Mechanistic procedure of the reaction between 1 and KSCN.

FIG. 3: Oxidation of 3 and 4 with PhI(OCOCH₃)₂

126 REACTION OF PHENYLIODONIO-DIMEDONATE

Oxidation of sulfides 3 and 4 with diacetoxy-iodobenzene gives the known 5, probably through a free radical mechanism:

EXPERIMENTAL

Melting points have been obtained on a Kofler hot stage apparatus. IR spectra were obtained with a Perkin-Elmer Model 257 spectrophotometer. 1 H-NMR spectra were recorded on a Varian A-600 spectrometer in CDCl₃, with TMS as an internal standard. The mass spectra were obtained with a Hitachi-Perkin-Elmer Model RMU-6L spectrometer with ionization energy 70 eV.

Reaction with KSCN

1.5 g (4.38 mmol) of 1 and 0.567 g (5.84 mmol) of KSCN are stirred overnight in an aqueous-methanolic solution (10ml/20ml) of H_2SO_4 (5%). The reaction mixture is extracted with $CHCl_3-H_2O$. The chloroformic extracts are combined, dried with Na_2SO_4 and concentrated. Column chromatography (silica gel, hexane-chloroform) separates:

a) Iodobenzene.

b) 2 (35 mg, 4%); m.p. 45-46 ^oC. IR(Nujol) 1765, 1670, 1625 cm⁻¹; NMR(CDCl₃, δ) 1.15(s, 6H), 2.45(s, 2H), 2.65(s, 2H); MS(m/z) 198(M⁺), 183, 70, 154, 142, 83, 70, 55; Anal. calcd. for C₉H₁₀O₃S: C 54.54; H 5.09. Found C 54.47; H 4.88.

c) 3 (170 mg, 25%); m.p. 230-231 ^oC (lit.⁵ m.p. 231 ^oC).

d) 4 (328 mg, 40%); m.p. 180 ^oC; IR(Nujol) 1630, 1540, 1530 cm⁻¹. NMR(CDCl₃, δ)1.15(s, 12H), 2.60(s, 4H), 10.24(s, 2H); MS(m/z) 374(M⁺), 342, 310, 172, 83, 55; Anal. calc'd for C₁₆H₂₂O₄S; C 51.33; H 5.92. Found C 50.63; H 5.80.

SUMMARY

The iodonium ylid 2-phenyliodonio-dimedonate, 1, reacts with the nucleophile KSCN in presence of H_2SO_A as a catalyst to give 4-oxo-6,6-dimethyltetrahydro-1,3-benzoxathiol-2-one,2,bis(4,4-dimethyl-2,6-dioxocyclohexyl)sulfide, 3 and bis(4,4-dimethyl-2,6-dioxocyclohexyl)-trisulfide, 4. Oxidation of sulfides 3 and 4, with diacetoxy-iodobenzene leads to 4-oxo-6,6-dimethyltetrahydro-1,3-benzoxathiole-2-spiro-4',4'-dimethylcyclohexane-2',6'-dione, 5.

Key words: 2-Phenyliodonio-dimedonate, potassium thiocyanate, 4-oxo-6,6dimethyltetrahydro-1,3-benzoxathiol-2-one, bis(4,4-dimethyl-2,6dioxocyclohexyl)sulfide, bis(4,4-dimethyl-2,6-dioxocyclohexyl)trisulfide, 4-oxo-6,6-dimethyltetrahydro-1,3-benzoxathiole-2-spiro-4',4'-dimethylcyclohexane-2',6'-dione, diacetoxy-iodobenzene.

M. PAPADOPOULOU

ΠΕΡΙΛΗΨΗ

Αντίδραση του φαινυλιωδονιο-διμεδονικού

Το ιωδονιο-υλιδο-2-φαινυλοΐωδονιο-διμεδονικό-1 αντιδρά με νουκλεοφιλο KSCN παρουσία Η₂SO₄ ως καταλύτου και παρέχει 4οξο-6,6-διμεθυλοτετραϋδρο-1,3-βενζοξαθειολο-2-ονη,2,bis(4,4διμεθυλο-2,6-διοξοκυκλοεξυλο)σουλφίδιο, 3 bis(4,4-διμεθυλο-2,6-διοξοκυκλοεξυλο)τρισουλφιδιο,4.0ξείδωση των σουλφιδίων 3 και 4 με διακετοξυ-ιωδοβενζόλιο οδηγεί εις 4-οξο-6,6-διμεθυλοτετραϋδρο-1,3-βενζοξαθειολη-2-σπειρο-4,4'-διμεθυλοκυκλοεξανο -2,6'-διονη.5.

REFERENCES

- 1.
- Koser, G.F., Yu. S.-M., J. Org. Chem., <u>41</u>, 125 (1976). Neiland, O., Vanag, G., Zh. Obsch. Khim., <u>30</u>, 510 (1960). 2.
- Papadopoulou, M., Varvoglis, A., Chimika Chronika, New Series, 14, 3. 45 (1985).
- Kalnina, S., Neiland, O., Zh. Org. Khim., 7, 1606 (1971). 4.
- Thompson, Q.E., Crutchfield, M.M., Dietrich, M.W., Pierron, E., J. 5. Org. Chem., 30, 2692 (1965).

ΑΝΑΝΕΩΣΗ ΣΥΝΔΡΟΜΗΣ

Το περιοδικό Χημικά Χρονικά-Νέα Σειρά άρχισε την επανέκδοσή του με το 4⁰ τεύχος του 1987.Προγραμματίζεται εντός του τρέχοντος έτους να εκδοθούν τέσσερα τεύχη για το έτος 1988, τέσσερα τεύχη για το 1989 και τέσσερα για το 1990.

Παρακαλούνται οι συνδρομητές του περιοδικού να ανανεώσουν τη συνδρομή τους για τα προηγούμενα έτη με την τιμή των 1000δρχ. και για το έτος 1990 με την τιμή των 1500δρχ.

RENEW OF SYBSCRIPTION

The edition of the Journal Chimika Chronika, New Series, after a long break restarted with the issue No 4/1987. It is planning to publish four issues for 1988, four issues for 1989 and four issues for 1990 in order to normalize its publishing.

The subscription rate is \$28 for the previous years and \$ $4\,\%$ for 1990.