3/87 СМСКСZ 16 (3), 107-153 (1987)

XHMKA XPONKA NEA EEIPA CHMKA CHRONKA NEW SERIES

AN INTERNATIONAL EDITION OF THE ASSOCIATION OF GREEK CHEMISTS

CHIMIKA CHRONIKA, NEW SERIES

Volume 16, No 3, p.p. 107-153 September (1987)

CHIMIKA CHRONIKA'/ NEW SERIES

Published by the Association of Greek Chemists 27, Kaningos Street, Athens 106 82, Greece Βιβλιοθήκη Αναστασίου Σ. Κώνστα (1897-1992)

MANAGING COMMITEE Dimitrios KESSISOGLOU, Georgia MARGOMENOU-LEONIDOPOULOU, Angeliki PAPATHANASOPOULOU, Theodora VAKIRJI, Roula SCOULICA Ex. officio Members: X. PAPAIOANNOU (Repr. Gen. Secretary of G.C.A.) J. KARABASSIS (Treasurer of G.C.A.)

N. ALEXANDROU Org. Chem., Univ. Salonica A. ANAGNOSTOPOULOS Inorg. Chem., Tech. Univ. Salonica D. BOSKOU Food Chem., Univ. Salonica P. CATSOULACOS Pharm. Chem., Univ. Patras C.A. DEMOPOULOS Biochemistry, Univ. Athens C.E. EFSTATHIOU Anal. Chem., Univ. Athens A.E. EVANGELOPOULOS Biochemistry, N.H.R.F. Athens S. FILIANOS Pharmacognosy, Univ. Athens D.S. GALANOS Food Chem Univ Athens P. GEORGAKOPOULOS Pharm. Techn., Univ. Salonica I. GEORGATSOS Biochemistry, Univ. Salonica M.P. GEORGIADIS Org./Med. Chem., Agr. Univ. Athens N. HADJICHRISTIDIS Polymer Chem., Univ. Athens T.P. HADJIIOANNOU Anal. Chem., Univ. Athens N. HADJILIADIS Gen. Inorg. Chem., Univ. Ioannina E. HADJOUDIS Photochem., N.R.C. =D=, Athens. **P.V. IOANNOU** Depart. Chem. Univ. Patras D. JANNAKOÜDAKIS Phys. Chem., Univ. Salonica V. KAPOULAS Biochemistry, Univ. Ioannina

M.I. KARAYANNIS Anal. Chem., Univ. Ioannina N. KATSANOS Phys. Chem., Univ. Patras A KEHAYOGLOU Org. Chem. Tech., Univ. Salonica A. KOSMATOS Urg. Chem., Univ. Ioannina S.B. LITSAS Bioorg. Chem., Arch. Museum, Athens G. MANOUSSAKIS Inorg. Chem., Univ. Salonica S. MYLONAS Org. Chem., Univ. Athens I. NIKOKAVOURAS Photochem., N.R.C. «D», Athens D.N. NICOLAIDES Org. Chem., Univ. Salonica C.M. PALEOS N.R.C. "Democritos". Athens V. PAPADOPOULOS N.R.C. "Democritos" Athens G. PAPAGEORGIOU Biophysics, N.R.C. "D", Athens V.P. PAPAGEORGIOU Nat, Products, Tech. Univ. Salonica S. PARASKEVAS Org. Chem., Univ. Athens G. PHOKAS Pharmacognosy, Univ. Salonica S. PHILIPAKIS N.R.C. "Democritos". Athens G. PNEUMATIKAKIS Inorg. Chem., Univ. Athens K. SANDRIS Organic Chem. Tech. Univ. Athens M.J. SCOULLOS Env./Mar. Chem., Univ. Athens

C.E. SEKERIS Mol. Biology, N.H.R.F., Athens G. SKALOS Microanalysis Tech. Univ. Athens G.A. STALIDIS Phys. Chem., Univ. Salonica Ch. STASSINOPOULOU N.R.C. "Democritos", Athens A. STASSINOPOULOS Argo AEBE Athens A. STAVROPOULOS Ind. Technol., G.S.I.S., Piraeus C. THOMOPOULOS Food Techn., Tech. Univ. Athens I.M. TSANGARIS Inurg. Chem., Univ. Ioannina G.A. TSATSAS Pharm. Chem., Univ. Athens A.K. TSOLIS Chem. Technol., Univ. Patras A. VALAVANIDIS Org. Chem., Univ. Athens G. VALCANAS Org. Chem., Tech. Univ. Athens A.G. VARVOGLIS Org. Chem., Univ. Salonica G.S. VASSILIKIOTIS Anal. Chem., Univ. Salonica S. VOLIOTIS Instrum. Analysis, Univ. Patras E.K. VOUDOURIS Food Chem., Univ. Ioannina D. VRANTI Tech. Univ. Athens

Correspondence, submission of papers, subscriptions, renewals and changes of address should be sent to Chimika Chronika, New Series, 27 Kaningos street, Athens, Greece. The Guide to Authors is published in the first issue of each volume, or sent by request. Subscriptions are taken by volume at 1000 drachmas for members and 2000 drachmas for Corporations in Greece and 28 U.S. dollars to all other countries except Cyprus, where subscriptions are made on request.

Phototypesetted and Printed in Greece by EPTALOFOS S.A. ARDITTOU STR. 12-16, 116 36 ATHENS Υπεύθυνος σύμφωνα με το νόμο: Βασίλειος Μπούλιας, Κάνιγγος 27, Αθήνα 106 82.

CONTENTS

Potential Energy Surface: A fundamental concept for the study of chemical dynamics (a review in Greek) by S.C. Farantos	107
New dithiocarbamate complexes of molybdenum-(II), -(III), -(IV) and -(V) (in English) by St. Papastefanou, P. Karagiannidis, G.E. Manoussakis	123
Alkyl mercaptoalkyl amides of phenoxyacetic acid 5 (in French) by M. Kazanis, I. Ioannidou, D. Lambrou	135
Catalytic properties of γ -Al ₂ O ₃ electrolytically prepared (in English) by George S. Patermarakis	. 141

۰.

September 1987

Volume 16 No 3

REVIEW

Chimika Chronika, New Series, 16, 107-122 (1987)

ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑΚΗ ΕΠΙΦΑΝΕΙΑ: ΜΙΑ ΘΕΜΕΛΙΩΔΗΣ ΕΝΝΟΙΑ ΓΙΑ ΤΗ ΜΕΛΕΤΗ ΤΗΣ ΧΗΜΙΚΗΣ ΔΥΝΑΜΙΚΗΣ

ΣΤΑΥΡΟΣ Κ. ΦΑΡΑΝΤΟΣ

Κέντρο Θεωρητικής και Φυσικής Χημείας, Εθνικό Ίδρυμα Ερευνών, Βασ. Κωνσταντίνου 48, Αθήνα 116 35. Μόνιμη διεύθυνση Χημικό τμήμα, Πανεπιστήμιο Κρήτης και ΙΗΔΛ, Ερευνητικό Κέντρο Κρήτης, Ηράκλειο, Κρήτη

(Ελήφθη 23 Σεπτεμβρίου 1983, Αναθεωρήθηκε 11 Σεπτεμβρίου 1984)

Περίληψη

Στο άρθρο αυτό αναπτύσσουμε την έννοια της Δυναμικής Ενεργειακής Επιφάνειας καθώς και μεθόδους για την αναπαράσταση των δυναμικών επιφανειών με αναλυτικές συναρτήσεις. Ειδικότερα εξετάζουμε την μέθοδο ανάπτυξης των δυναμικών σε μία σειρά των «πολλών σωμάτων» που έχει αναπτυχθεί στο πανεπιστήμιο του Sussex τα τελευταία χρόνια. Οι παραγόμενες δυναμικές συναρτήσεις ισχύουν για όλες τις πυρηνικές διατάξεις και χρησιμεύουν στη μελέτη της ενδομοριακής δυναμικής και των μοριακών κρούσεων. Συγκεκριμένα παραδείγματα δίνονται για το O_3 , ClO₂, ClO₃, και την αντίδραση Cl + $O_3 \rightarrow$ ClO + O_2 .

Λέξεις - **Κλειδιά:** Δυναμική Ενεργειακή Επιφάνεια, Μέθοδος πολλών σωμάτων, ημικλασσική μηχανική.

1. Εισαγωγή

Η Δυναμική Ενεργειακή Επιφάνεια (ΔΕΕ) (Potential Energy Surface) είναι μία από τις σπουδαιότερες έννοιες της μοριακής φυσικής και χρησιμοποιείται για την ποιοτική και ποσοτική ερμηνεία των μοριακών ιδιοτήτων.

Τα τελευταία χρόνια η ανάπτυξη πειραματικών μεθόδων, όπως η μέθοδος των μοριακών δεσμών¹ (molecular beams) και η φασματοσκοπία με Laser,² έχει επιτρέψει τη μελέτη των μοριακών συστημάτων σε μικροσκοπική κλίμακα. Συγκεκριμένα αναφέρουμε ότι σε πειράματα με μοριακές δέσμες μία χημική αντίδραση μπορεί να μελετηθεί σε καταστάσεις μακριά από τη θερμοδυναμική ισορροπία και να βρεθεί σε ποιά μορφή –ηλεκτρονιακή, δονητική, περιστροφική ή μεταφορική– η εκλυόμενη ενέργεια αποθηκεύεται στα προϊόντα της αντίδρασης.

Τα πειράματα αυτά πέρα από το τεχνολογικό ενδιαφέρον που παρουσιάζουν σε σχέση με την ανάπτυξη των Laser και τη μεταφορά, αποθήκευση και άντληση της ενέργειας σε μόρια, αποκαλύπτουν τη φύση των δυνάμεων που αναπτύσσονται μεταξύ των ατόμων σ' ένα μοριακό σύστημα.

Η αντίστοιχη θεωρητική περιγραφή της κρούσης ατόμων και μορίων ή μορίων με μόρια απαιτεί τη λύση της εξίσωσης του Schrödinger για το σύστημα των Ν πυρήνων και η ηλεκτρονίων. Παρόλη την αισιοδοξία των φυσικών κατά τα πρώτα χρόνια της εμφάνισης της κβαντομηχανικής σήμερα αναγνωρίζεται ότι μία ακριβής λύση της μοριακής εξίσωσης του Schrödinger είναι πρακτικά αδύνατη. Μια πρώτη προσέγγιση στη λύση αυτού του προβλήματος των πολλών σωμάτων είναι ο διαχωρισμός της ηλεκτρονιακής από την πυρηνική κίνηση λόγω της διαφοράς μάζας μεταξύ πυρήνων και ηλεκτρονίων. Αυτή είναι η προσέγγιση Born-Oppenheimer³ (B–O) και σημαίνει ότι τα ηλεκτρόνια προσαρμόζουν τις θέσεις τους ακαριαία σε κάθε μετατόπιση των πυρήνων. Με άλλα λόγια μπορούμε να υποθέσουμε ότι η κίνηση των πυρήνων ορίζεται από το δυναμικό πεδίο που δημιουργούν τα ηλεκτρόνια. Η κίνηση αυτή καλείται αδιαβατική. Το ηλεκτρονιακό πεδίο είναι συνάρτηση των «σχετικών αποστάσεων» των πυρήνων και καλείται αδιαβατική Δυναμική Ενεργειακή Επιφάνεια. Ο Fritz London⁴ ήταν ο πρώτος που τόνισε τη σημασία των αδιαβατικών ΔΕΕ στη μελέτη των χημικών αντιδράσεων.

Ο υπολογισμός των Δυναμικών Ενεργειακών Επιφανειών με ab initio μεθόδους γίνεται με την αριθμητική λύση της ηλεκτρονιακής εξίσωσης του Schrödinger που προϋποθέτει την ύπαρξη μεγάλων ηλεκτρονικών υπολογιστών (H/Y). Για ένα τριατομικό σύστημα η δυναμική ενεργειακή επιφάνεια είναι συνάρτηση τριών μεταβλητών (για παράδειγμα των τριών αποστάσεων μεταξύ των πυρήνων). Εάν η ηλεκτρονιακή ενέργεια υπολογίζεται για 10 σημεία σε κάθε μεταβλητή τότε απαιτούνται 10³ υπολογισμοί για να έχουμε μία αριθμητική περιγραφή τής ΔΕΕ. Με την παρούσα τεχνολογία των H/Y υπολογισμοί αυτού του μεγέθους παραμένουν ένα φιλόδοξο πρόγραμμα τουλάχιστον για μόρια με χημικό ενδιαφέρον. Από την άλλη μεριά η μελέτη της δυναμικής (η μελέτη της κίνησης των πυρήνων) απαιτεί τον υπολογισμό του δυναμικού για έχα μεγάλο αριθμό πυρηνικών θέσεων. Είναι φανερή λοιπόν η ανάγκη έκφρασης των ΔΕΕ με αναλυτικές συναρτήσεις.

Τα τελευταία είκοσι χρόνια μία σημαντική ερευνητική προσπάθεια έχει κατευθυνθεί στην εύρεση κατάλληλων συναρτησιακών μορφών οι οποίες αναπαράγουν ab initio υπολογισμούς καθώς και πειραματικά δεδομένα για συγκεκριμένες ηλεκτρονιακές καταστάσεις.⁵

Στο άρθρο αυτό επιχειρούμε την παρουσίαση μερικών βασικών εννοιών του τομέα της χημικής δυναμικής καθώς και την περιγραφή μιας συστηματικής μεθόδου για την κατασκευή αναλυτικών πολυατομικών δυναμικών επιφανειών που έχει αναπτυχθεί στο Πανεπιστήμιο του Sussex τα τελευταία χρόνια από τον J. Murrell και τους συνεργάτες του. Η μέθοδος βασίζεται στην ανάπτυξη της ΔΕΕ σε μία σειρά πολλών σωμάτων. Τα δυναμικά αναπαράγουν τόσο θεωρητικά όσο και πειραματικά δεδομένα μιας μοριακής κατάστασης. Σκοπός της προσπάθειας αυτής δεν είναι μόνο η κατασκευή των δυναμικών συναρτήσεων, που στην πράξη πολλές φορές αποδεικνύεται να είναι ένα αρκετά δύσκολο πρόβλημα, αλλά η μελέτη της δυναμικής ορισμένών χημικών συστημάτων. Με αυτόν τον τρόπο μπορούμε να κατασκευάσουμε μοντέλα που να περιγράφουν χημικές αντιδράσεις ή να μελετήσουμε τη χρονική εξέλιξη ενός μορίου όταν αυτό διεγείρεται σε υψηλές ενεργειακές καταστάσεις για παράδειγμα με ακτινοβολία που εκπέμπεται από ένα Laser.

Στη βιβλιογραφία ήδη υπάρχει ένας σημαντικός αριθμός εφαρμογών της μεθόδου, κυρίως δυναμικά για την θεμελιώδη κατάσταση τριατομικών μορίων, που έχουν κατασκευασθεί από την ομάδα του Sussex⁶ αλλά και από άλλες ερευνητικές ομάδες.⁷ Επομένως είναι δύσκολο στο σύντομο αυτό άρθρο να καλύψουμε όλες τις εφαρμογές της. Αναφέρουμε μερικά παραδείγματα τα οποία αν και όχι πρόσφατα εντούτοις κατάλληλα για να δείζουν τη χρησιμότητα της μεθόδου.

ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑΚΗ ΕΠΙΦΑΝΕΙΑ

Η οργάνωση του κειμένου έχει ως εξής. Έχοντας υπ' όψη αναγνώστες που δεν είναι εξοικειωμένοι με το πεδίο στην παράγραφο 2 περιγράφουμε συνοπτικά την έννοια της αδιαβατικής ΔΕΕ. Στην παράγραφο 3 αναπτύσσουμε τη μέθοδο των πολλών-σωμάτων για την κατασκευή αναλυτικών δυναμικών επιφανειών ενώ εφαρμογές της μεθόδου δίνονται στην παράγραφο 4.

2. Μαθηματική θεμελίωση της ΔΕΕ

Για μία λεπτομερή παρουσίαση της προσέγγισης B-O ο αναγνώστης μπορεί να ανατρέξει στα αρχικά άρθρα.³ Επειδή όμως πιστεύουμε ότι ο μαθηματικός φορμαλισμός είναι ο καλύτερος τρόπος για τον ορισμό της Δυναμικής Ενεργειακής Επιφάνειας στην παράγραφο αυτή δίνουμε τις απαραίτητες μόνο εξισώσεις. Με αυτόν τον τρόπο η προσεγγιστική φύση και οι περιορισμοί της έννοιας της ΔΕΕ αποσαφηνίζονται.

Οι καταστάσεις ενός συστήματος n-ηλεκτρονίων με συντεταγμένες r_i, i=l,..., n και N-πυρήνων με συντεταγμένες R_{α} , α =1,..., N υπολογίζονται από τη χρονικά ανεξάρτητη εξίσωση του Schrödinger:

$$\hat{H}\Psi(\mathbf{r}, \mathbf{R}) = E\Psi(\mathbf{r}, \mathbf{R})$$
(1)

Α είναι ο μη-σχετικιστικός Hamiltonian τελεστής και είναι το άθροισμα των τελεστών της πυρηνικής κινητικής ενέργειας, της ηλεκτρονιακής κινητικής ενέργειας και του δυναμικού Coulomb:

$$\hat{\mathbf{H}} = \hat{\mathbf{T}}_{\text{nuc}} + \hat{\mathbf{T}}_{e} + \hat{\mathbf{C}}$$
(2)

Αφαιρώντας τον τελεστή της πυρηνικής κινητικής ενέργειας από τον πλήρη Hamiltonian τελεστή επιτυγχάνουμε τον ηλεκτρονιακό τελεστή \hat{H}_e , του οποίου οι ιδιοσυναρτήσεις Φ_v και ιδιοτιμές U_v εξαρτώνται παραμετρικά από τις συντεταγμένες των πυρήνων και δίνονται από την εξίσωση

$$\hat{H}_{e}\Phi_{v}(\mathbf{r}; \mathbf{R}) = U_{v}(\mathbf{R})\Phi_{v}(\mathbf{r}; \mathbf{R})$$
(3)

Με τον όρο παραμετρικά εννοούμε ότι η εξίσωση (3) επιλύεται εφ' όσον η θέση των πυρήνων, **R**, έχει δοθεί. Οι συναρτήσεις $Φ_v$ σχηματίζουν ένα ορθοκανονικό σύνολο (complete and othonormal) και επομένως αποτελούν μία βάση στην οποία η κυματική συνάρτηση Ψ αναπτύσσεται.

$$\Psi(\mathbf{r}, \mathbf{R}) = \sum \Phi_{\nu}(\mathbf{r}; \mathbf{R}) \chi_{\nu}(\mathbf{R})$$
(4)

Αντικαθιστώντας την (4) στην εξίσωση (1) και πολλαπλασιάζοντας τα δύο μέλη της σχέσης που προκύπτει με τις συναρτήσεις Φ_{v} και ολοκληρώνοντας ως προς τις ηλεκτρονιακές συντεταγμένες καταλήγουμε σ' ένα σύνολο ολοκληροδιαφορικών εξισώσεων

$$\{\hat{T}_{nuc} + U_{\nu}(\mathbf{R}) - E\} \chi_{\nu}(\mathbf{R}) =$$

$$F(\langle \Phi_{\nu'} | \hat{T}_{nuc} | \Phi_{\nu} \rangle, \langle \Phi_{\nu'}, | \hat{T}_{nuc}^{1/2} | \Phi_{\nu} \rangle) \qquad (5)$$

$$\nu, \nu' = 1, ..., \infty$$

Το δεξιό μέλος της εξίσωσης συμβολίζει μία συνάρτηση των ολοκληρωμάτων

$$\langle \Phi_{v'} | \hat{T}_{nuc} | \Phi_{v} \rangle, \langle \Phi_{v'} | \hat{T}_{nuc} | \Phi_{v} \rangle$$

ως προς τις ηλεκτρονιακές συντεταγμένες. Η προσέγγιση B-O επιτυγχάνεται με το να υποθέσουμε ότι τα ολοκληρώματα αυτά είναι μηδέν. Με άλλα λόγια η μεταβολή της ηλεκτρονιακής κυματοσυνάρτησης Φ_ν είναι ασήμαντη με τις μετατοπίσεις των πυρήνων (αδιαβατική μεταβολή). Καταλήγουμε λοιπόν σ' ένα σύστημα μη συζευγμένων διαφορικών εξισώσεων

$$\{\hat{\mathbf{T}}_{\mathsf{nuc}} + \mathbf{U}_{\mathsf{v}}(\mathbf{R})\}\boldsymbol{\chi}_{\mathsf{v}} = \mathbf{E}\boldsymbol{\chi}_{\mathsf{v}} \quad \boldsymbol{v}=1,...,\infty$$
(6)

Από τα παραπάνω γίνεται σαφές ότι στην προσέγγιση B-O οι ηλεκτρονιακές ιδιοενέργειες $U_v(\mathbf{R})$ παίζουν το ρόλο της δυναμικής ενέργειας στην κίνηση των πυρήνων. Οι U_v είναι συναρτήσεις (3N-6) μεταβλητών (3N-5 για γραμμικά μόρια) και ορίζουν μία υπερεπιφάνεια σ' ένα 3N-5 (3N-4 για γραμμικά μόρια) διαστάσεων χώρο. U_v είναι η αδιαβατική Δυναμική Ενεργειακή Επιφάνεια για την ηλεκτρονιακή κατάσταση ν.

Για διατομικά μόρια το δυναμικό U_{ν} είναι συνάρτηση μιας μεταβλητής, της απόστασης μεταξύ των πυρήνων. Στα τριατομικά μόρια η ΔΕΕ είναι συνάρτηση τριών μεταβλητών ενώ για τετραατομικά συστήματα ο χώρος των πυρηνικών θέσεων είναι εξαδιάστατος.

Στη μελέτη των μοριακών κρούσεων η εξίσωση (6) μόνο για πολύ απλά συστήματα μπορεί να επιλυθεί. Γι' αυτό στις περισσότερες περιπτώσεις εφαρμόζουμε την ημικλασσική (quasiclassical)⁸ μηχανική για τη μελέτη της δυναμικής. Στη μέθοδο αυτή η ΔΕΕ χρησιμοποιείται για τον υπολογισμό των δυνάμεων που απαιτούνται στην επίλυση των εξισώσεων Hamilton.

Υπάρχουν περιπτώσεις όπου τα ολοκληρώματα της μορφής $\langle \Phi_v | \hat{T}_{nuc} | \Phi_v \rangle$ δεν είναι αμελητέα και η προσέγγιση B-O παύει να ισχύει. Αυτό συμβαίνει στην περίπτωση που δονητικές καταστάσεις κείνται πλησίον η μία της άλλης αλλά ανήκουν σε διαφορετικές ηλεκτρονιακές καταστάσεις. Τέτοια είναι τα φαινόμενα Renner-Teller⁹ για γραμμικά μόρια και Jahn-Teller¹⁰ για μη-γραμμικά μόρια. Τα φαινόμενα αυτά καλούνται μη-αδιαβατικά και έχει βρεθεί ότι εντοπίζονται σε μια περιορισμένη περιοχή της δυναμικής επιφάνειας. Τότε η προσέγγιση B-O παρέχει το πρώτο βήμα στη λύση τέτοιων προβλημάτων. Γενικά μπορούμε να ισχυρισθούμε ότι ένα μεγάλο μέρος της χημείας κατανοείται στα πλαίσια της αδιαβατικής ΔΕΕ.

3. Αναλυτικές Δυναμικές Ενεργειακές Επιφάγειες

Ο υπολογισμός μιας ΔΕΕ με ab initio μεθόδους γίνεται με την επίλυση της ηλεκτρονιακής εξίσωσης του Schrödinger, εξίσωση (3). Αυτό είναι το έργο της κβαντικής χημείας. Ab initio επιφάνειες έχουν επιτευχθεί μόνο για μερικά απλά μόρια όπως οι θεμελιώδεις ηλεκτρονιακές καταστάσεις των H₃, H₂F, και HF₂.¹¹ Στις περισσότερες περιπτώσεις ab initio υπολογισμοί γίνονται μόνο για ένα περιορισμένο αριθμό πυρηνικών διατάξεων ενώ η συνολική μορφολογία της υπερεπιφάνειας συμπεραίνεται από πειραματικά αποτελέσματα.

ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑΚΗ ΕΠΙΦΑΝΕΙΑ

Είναι πράγματι χρήσιμο μιλώντας για δυναμικές επιφάνειες να έχουμε στο νου τη γεωμετρική εικόνα. Μία επιφάνεια στην οποία εμφανίζονται εξογκώματα, κοιλότητες, πεδιάδες καθώς και άλλα τοπογραφικά χαρακτηριστικά. Γνώση λοιπόν μιας ΔΕΕ σημαίνει τον εντοπισμό και περιγραφή όλων των ακρότατων σημείων της συνάρτησης.

Φασματοσκοπικές μετρήσεις παρέχουν πληροφορίες για τις σταθερές μορφές των μορίων οι οποίες αντιστοιχούν στα ελάχιστα της ενεργειακής επιφάνειας. Πειράματα χημικής κινητικής αποκαλύπτουν την ύπαρξη ή μη ενεργειακών φραγμάτων (energy barriers) που αντιστοιχούν σε σαγματικά σημεία (saddle points).

Μία αναλυτική συνάρτηση που χρησιμοποιείται για την κατασκευή μιας ΔΕΕ πρέπει να εκπληρεί τις παρακάτω συνθήκες.

- Πρέπει να προβλέπει τα σωστά ασυμπτωτικά όρια. Σαν ασυμπτωτικό όριο του δυναμικού ορίζεται η μορφή που παίρνει όταν απομακρύνουμε στο άπειρο ένα ή περισσότερα άτομα του μορίου.
- 2) Πρέπει να αναπαράγει όλα τα θεωρητικά και πειραματικά δεδομένα.
- 3) Δεν πρέπει να δείχνει ύποπτη μορφολογία στις πυρηνικές διατάξεις που δεν υπάρχουν δεδομένα. Για παράδειγμα η ύπαρξη ενός ελαχίστου που δεν έχει προβλεφθεί θεωρητικά ή πειραματικά θα έκανε τη ΔΕΕ μάλλον αναξιόπιστη.
- 4) Εάν στο μόριο υπάρχουν δύο ή περισσότερα όμοια άτομα η συνάρτηση πρέπει να εχει την ανάλογη αντιμεταθετική συμμετρία. Στην ορολογία της θεωρίας των ομάδων σημαίνει ότι η συνάρτηση παρέχει μία ολικά συμμετρική (totally symmetric) αναπαράσταση της ομάδας συμμετρίας.

Μία τοπική αναλυτική αναπαράσταση της δυναμικής ενέργειας στα σημεία ισορροπίας (σημεία ελαχίστου) μπορεί να γίνει με μία ανάπτυξη σε σειρά κατά Taylor.

$$U = \frac{1}{2!} \sum_{i \ge j} \left(\frac{\partial^2 U}{\partial R_j \partial R_j} \right)_0 \Delta R_j \Delta R_j + \frac{1}{3!} \sum_{k \ge j \ge i} \left(\frac{\partial^3 U}{\partial R_i \partial R_j \partial R_k} \right)_0 \Delta R_j \Delta R_k$$

+ ... (7)

όπου $\Delta R_i = R_i - R_i^0$ και R_i^0 είναι τα μήκη δεσμών στο σημείο ισορροπίας. Στη φασματοσκοπία η εξίσωση (7) χρησιμοποιείται για την εύρεση του πεδίου δυνάμεων (force field) που ορίζεται από τις παραγώγους της U στο σημείο ισορροπίας.

Η πρώτη αναλυτική μορφή που περιγράφει όλο το χώρο των πυρηνικών διατάξεων προτάθηκε από τον London⁴ για τη θεμελιώδη ηλεκτρονιακή κατάσταση του συστήματος H₃. Οι Eyring και Polanyi¹² εχρησιμοποίησαν τον φορμαλισμό του London κατά ένα ημιεμπειρικό τρόπο για τη μελέτη του συστήματος H + H₂ και έδειξαν την ύπαρξη ενός σαγματικού σημείου. Πολύ αργότερα ο Sato¹³ παραμετρικοποίησε τη συνάρτηση LEP (London - Eyring - Polanyi) εισάγοντας μία παράμετρο η οποία αναπαρήγαγε την ενέργεια ενεργοποίησης (activation energy) της αντίδρασης. Η μέθοδος αργότερα τροποποιήθηκε με την εισαγωγή περισσοτέρων παραμέτρων και έχει χρησιμοποιηθεί για την κατασκευή δυναμικών επιφανειών με ενεργειακά φράγματα, H₂F¹⁴, HCl₂¹⁵. Το κύριο μειονέκτημα των συναρτήσεων LEPS είναι ο μικρός αριθμός των παραμέτρων που εισάγει, πράγμα που κάνει τη συνάρτηση μη ικανή να αναπαράγει την πολύπλοκη μορφολογία της ΔΕΕ όπως αυτή εμφανίζεται στις χημικά ενδιαφέρουσες περιπτώσεις. Η δυνατότητα της επέκτασης της συνάρτησης Morse, που κατά κόρον έχει χρησιμοποιηθεί στην κατασκευή δυναμικών καμπυλών για διατομικά μόρια, σε τριατομικά συστήματα έχει κατά πρώτον διερευνηθεί από τους Wall και Porter.¹⁶ Οι ερευνητές αυτοί εισήγαγαν την περιστρεφόμενη καμπύλη Morse. Η προτεινόμενη συνάρτηση έχει χρησιμοποιηθεί επίσης σε συνδυασμό με τη μέθοδο spline για την προσαρμογή ab initio υπολογισμών. Η τεχνική παρουσιάζει αρκετά μειονεκτήματα όπως η δυσκολία της να επεκταθεί σε τρεις διαστάσεις καθώς και σε πολυατομικά μόρια· τα παραγόμενα δυναμικά έχουν ασυνέχειες.

Άλλες συναρτησιακές μορφές οι οποίες όμως δεν ικανοποιούν μία ή περισσότερες από τις συνθήκες που προαναφέραμε έχουν προταθεί στη βιβλιογραφία.

Μία συστηματική μέθοδος για την κατασκευή πολυατομικών δυναμικών επιφανειών που να εκπληρούν τις συνθήκες 1-4 είναι η μέθοδος της ανάπτυξης της ΔΕΕ σε μία σειρά των πολλών σωμάτων (many-body expansion).⁶

$$V_{ABC...N} = \sum_{A} V_{A}^{(1)} + \sum_{AB} V_{AB}^{(2)} (R_{AB}) + \sum_{ABC} V_{ABC}^{(3)} (R_{AB}, R_{BC}, R_{CA}) + ... + V_{ABC...(N)}^{(N)}(R)$$
(8)

 $V_{A}^{(1)}$ είναι η ενέργεια του ατόμου Α στην ηλεκτρονιακή κατάσταση που παράγεται απομακρύνοντας το άτομο αδιαβατικά από το μόριο. Συνήθως ορίζουμε τη μηδενική ενέργεια όταν όλα τα άτομα είναι διαχωρισμένα και στη θεμελιώδη τους κατάσταση οπότε το άθροισμα των όρων του 1-σώματος είναι μηδέν. $V_{AB}^{(2)}$ είναι η δυναμική ενέργεια των 2-σωμάτων η οποία είναι συνάρτηση της απόστασης των δύο ατόμων. Η άθροιση εκτείνεται πάνω σ' όλους τους δυνατούς διατομικούς συνδυασμούς. $V_{ABC}^{(3)}$ είναι η ενέργεια των 3-σωμάτων. Κάθε τέτοιος όρος πρέπει να μηδενίζεται όταν ένα από τα τρία άτομα απομακρυνθεί στο άπειρο. Το άθροισμα εκτείνεται πάνω σ' όλους τους δυνατούς τριατομικούς συνδυασμούς. Για ένα μόριο με Ν άτομα ο τελευταίος όρος $V_{ABC}^{(N)}$ μηδενίζεται με την απομάκρυνση ενός ή περισσοτέρων ατόμων.

Η εξίσωση (8) αποκαλύπτει αμέσως ένα σημαντικό πλεονέκτημα της μεθόδου. Άπαξ και έχουμε ορίσει τα διατομικά δυναμικά αυτά μπορούν να χρησιμοποιηθούν στην κατασκευή τριατομικών δυναμικών. Το ίδιο ισχύει για τα δυναμικά των 3σωμάτων που μπορούν να χρησιμοποιηθούν στην κατασκευή διαφόρων τετραατομικών ΔΕΕ.

Η συναρτησιακή μορφή που επιλέχθηκε για την περιγραφή των όρων της εξίσωσης (8) είναι η εξής:

$$\mathbf{V}^{(\kappa)} = \mathbf{P}(\mathbf{R}) \mathbf{T}(\mathbf{R})$$
(9)

Ρ είναι συνήθως ένα πολυώνημο με όρους μέχρι τετάρτου βαθμού του οποίου οι συντελεστές χρησιμοποιούνται σαν παράμετροι για την αναπαραγωγή των δεδομένων.

$$P(s_1, s_2, s_3) = c_{0,s} + \sum_{i=1}^{3} c_i s_i +$$

$$\sum_{j\geq 1}^{3} c_{ij}s_{i}s_{j} + \sum_{i\geq j\geq k}^{3} c_{ijk}s_{i}s_{j}k_{k} + \sum_{l\geq k\geq j\geq i}^{3} c_{ijkl}s_{i}s_{j}s_{k}s_{l}$$
(10)

όπου

$$s_i = R_i - R_i^0$$

 R_i^0 ορίζουν την γεωμετρία αναφοράς ως προς την οποία μετρούνται οι μετατοπίσεις των πυρήνων. Σαν τέτοια γεωμετρία αναφοράς μπορούμε να ορίσουμε το σημείο ισορροπίας του μορίου. Τ είναι μία συνάρτηση που δίνει στο δυναμικό τη σωστή ασυμπτωτική συμπεριφορά δηλαδή Τ—Ο εάν μία από τις μεταβλητές τείνει στο άπειρο.

Οι όροι των 2-σωμάτων έχουν τη μορφή:

$$V_{AB} (R_1) = -D_e (1 + c_1 r + c_2 r^2 + c_3 r^3) \exp(-c_1 r)$$

r = R_1 - R_e (11)

D_e είναι η ενέργεια διασπάσεως και R_e το μήκος δεσμού στην κατάσταση ισορροπίας του μορίου. Είναι φανερό ότι εάν τα άτομα A και B απομακρυνθούν σε μεγάλες αποστάσεις (R→∞) ο εκθετικός όρος τείνει στο μηδέν και επομένως $V_{AB}^{(2)} \rightarrow 0$. Οι συντελεστές του πολυωνήμου c₁, c₂ και c₃ αναπαράγουν το **πεδίο δυνάμεων** του μορίου όπως αυτό υπολογίζεται από φασματοσκοπικές μετρήσεις.*

Για τους όρους V⁽³⁾ καθώς και ανώτερους όρους έχει βρεθεί ότι η συναρτησιακή μορφή

$$\Gamma = \prod_{i=1}^{N} \left(1 - \tanh \frac{\gamma_i s_i}{2} \right)$$
(12)

επιβάλλει την επιθυμητή ασυμπτωτική συμπεριφορά. γ_i είναι οι παράμετροι που επιτρέπουν την εμφάνιση ή μη ενός ενεργειακού φράγματος στη ΔΕΕ. Η κινητική μιας χημικής αντίδρασης εξαρτάται σημαντικά από την ύπαρξη ενός τέτοιου χαρακτηριστικού της δυναμικής επιφάνειας.

Κατά την ανάπτυξη της μεθόδου οι ιδιαιτερότητες κάθε συστήματος βοήθησαν στην επίλυση διαφόρων προβλημάτων όπως την κατάλληλη επιλογή των συντεταγ-

^{*} Από τον J. Murrell έχει δημιουργηθεί τράπεζα πληροφοριών που παρέχει φασματοσκοπικά δεδομένα και αναλυτικές συναρτήσεις για τα δυναμικά της θεμελιώδους και διεγερμένων καταστάσεων πολλών διατομικών μορίων. Αντίγραφο αυτής της τράπεζας πληροφοριών υπάρχει και στον Η/Υ ταυ, Πανεπιστημίου Κρήτης.

μένων για μόρια του τύπου A₃, A₂B και ABC. Οι λεπτομέρειες έχουν δοθεί στα σχετικά άρθρα και δεν συζητούνται εδώ.

4. Εφαρμογές

Σαν μία πρώτη εφαρμογή της μεθόδου των πολλών σωμάτων περιγράφουμε μία αναλυτική συνάρτηση για τη θεμελιώδη κατάσταση του όζοντος.¹⁷

Το Ο3 διασπάται σύμφωνα με την εξίσωση:

$$O_3({}^1A') \rightarrow O_2({}^3\Sigma_g) + O({}^3P)$$
 (13)

η οποία ορίζει την ασυμπτωματική συμπεριφορά της ΔΕΕ. Η δυναμική συνάρτηση δίνεται στον πίνακα Ι.

 ΠΙΝΑΚΑΣ Ι: Η δυναμική ενεργειακή συνάρτηση για τη θεμελιώδη ηλεκτρονιακή κατάσταση του όζοντος. Οι μονάδες ενέργειας είναι σε eV και οι μονάδες μήκους είναι σε Å.
 Σαν γεωμετρία αναφοράς ορίζεται ένα ισόπλευρο τρίγωνο με R⁰ = 1.5698 Å.

$$V_{O_1} = V_{O_2}(R_1) + V_{O_2}(R_2) + V_{O_2}(R_3) + V_I(Q_1, Q_2, Q_3)$$

$$V_{O_i}(R_i) = -5.21296 [1 + 3.75374r] \exp(-3.75374r)$$

 $r = R_i - 1.2074$

 $V_1 = (P + G) (1 - \tanh 4.6 Q_1/2)$

 $P = 8.7066 + 6.5822 Q_1 + 13.9106 Q_1^2 - 17.1931^x$

 $(Q_2^2 + Q_3^2) - 3.1421 \ Q_1 (Q_2^2 + Q_3^2) + 2.6323^x$ $Q_3 (Q_3^2 - 3Q_2^2) + 13.9659 \ (Q_2^2 + Q_3^2)^2$

 $G = -3.0 \exp \left[-7.5 \left(Q_2^2 + Q_3^2\right)\right]$

$Q_1(A_1)$	1	$\sqrt{1/3}$	$\sqrt{1/3}$	$\sqrt{1/3}$	$\begin{bmatrix} R_1 - R_1^0 \end{bmatrix}$
Q ₂ (E)		[.] 0	$\sqrt{1/2}$	$-\sqrt{1/2}$	$R_2 - R_2^0$
Q ₃ (E)		$\sqrt{2/3}$	$-\sqrt{1/6}$	$-\sqrt{1/6}$	$R_3 - R_3^0$

Ο όρος των 2-σωμάτων, $V_{O_2}^{(2)}$, αναπαράγει το φασματοσκοπικό πεδίο δυνάμεων στο σημείο ισορροπίας του μοριακού οξυγόνου ενώ ο όρος των 3-σωμάτων, $V_{O_3}^{(3)}$, αναπαράγει:

1) Την πειραματικά εκτιμημένη ενέργεια και γεωμετρία του μορίου στο σημείο ισορροπίας,

2) το φασματοσκοπικό πεδίο δυνάμεων,

3) τους θεωρητικούς υπολογισμούς της μετασταθούς κατάστασης του όζοντος με D_{3b} , συμμετρία, και

4) από πειράματα χημικής κινητικής αλλά και από ab initio υπολογισμούς δεν έχει διαπιστωθεί σημαντικό ενεργειακό φράγμα κατά τη διάσπαση του μορίου, πληροφορία που αναπαράγεται από τη συνάρτηση για C_s συμμετρίες.

Το πολυώνημο εκφράζεται σε συμμετρικές συντεταγμένες, που είναι γραμμικοί συνδυασμοί των σχετικών αποστάσεων R_i. Με αυτόν τον τρόπο εξασφαλίζεται η ύπαρξη των τριών ελαχίστων στην υπερεπιφάνεια που παράγονται από τις μεταθέσεις των ατόμων οξυγόνου. Η καλύτερη μέθοδος για να ελέγξουμε τη συνάρτηση είναι η γεωμετρική. Το σχήμα 1 δείχνει τις ισοδυναμικές καμπύλες της υπερεπιφάνειας οι οποίες κατασκευάζονται από την κίνηση ενός ατόμου οξυγόνου γύρω από ένα μόριο O₂. Λόγω συμμετρίας του δυναμικού ως προς τον άξονα των Y η συνάρτηση υπολογίζεται μόνο στο ένα τεταρτημόριο του επιπέδου. Διακρίνουμε το ελάχιστο της επιφάνειας που αγιστοιχεί στο σημείο ισορροπίας του O₃. Το δεύτερο ελάχιστο της επιφάνειας που αντιστοιχεί στο σημείο ισορροπίας του O₃. Το δεύτερο ελάχιστο του βρίσκεται πάνω στον άξονα των Y απεικονίζει το μετασταθές D_{3h} όζον. Σημαντικό χαρακτηριστικό της δυναμικής επιφάνειας είναι η εμφάνιση ενεργειακού φράγματος κατά των Κ (C_{2ν} συμμετρία). Το φράγμα μηδενίζεται καθώς η διεύθυνση κρούσης απομακρύνεται από τον άξονα των Y.

ΣΧΗΜΑ 1: Ισοδυναμικές καμπύλες της ΔΕΕ του Ο3.

Το δυναμικό έχει χρησιμοποιηθεί στον υπολογισμό του δονητικού φάσματος του O_3 με τη μέθοδο των Whitehead και Handy. Οι κυματοσυναρτήσεις αναπτύσσονται σε μία βάση 80 συναρτήσεων του αρμονικού ταλαντωτή. Τα αποτελέσματα δίνονται στο πίνακα της αναφοράς [17] όπου συγκρίνονται με τις πειραματικές τιμές.

Τα ρεαλιστικά αυτά μοριακά δυναμικά επιτρέπουν μία βαθύτερη μελέτη της ενδομοριακής (intramolecular) δυναμικής. Μία τέτοια μελέτη έχει γίνει για το O₃ και SO₂.¹⁸ Εδώ δεν είναι δυνατόν να αναπτύξουμε την αναγκαία θεωρία την οποία ο αναγνώστης μπορεί να βρει στη βιβλιογραφία που παρέχεται.^{19, 20} Παρακάτω επιχειρούμε μόνο την παρουσίαση ορισμένων εννοιών καθώς και την έκθεση μερικών αποτελεσμάτων τα οποία αποδεικνύουν την καταλληλότητα των μοριακών δυναμικών στη μελέτη αυτού του θέματος.

Στην κλασσική μηχανική οι κινήσεις των πυρήνων σ' ένα μόριο βρίσκονται υπολογίζοντας την τροχιά του συστήματος στο χώρο των συντεταγμένων και των ορμών (φασικός χώρος). Το σχήμα 2 παρουσιάζει την προβολή μιας τέτοιας τροχιάς για το SO₂.¹⁸ Η κανονικότητα της κίνησης αποδυκνείεται επίσης υπολογίζοντας τον μετασχηματισμό Fourier των ορμών όπου εμφανίζονται οι χαρακτηριστικές

ΣΧΗΜΑ 2: Μία τυπική ημιπεριοδική τροχιά του SO₂. Το σχήμα παριστά την προβολή της τροχιάς στο επίπεδο $(Q_1, Q_3) \cdot Q_1, Q_3$ είναι οι κανονικές δονητικές συντεταγμένες του μορίου και αντιστοιχούν στις δονήσεις τάσεως.

ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑΚΗ ΕΠΙΦΑΝΕΙΑ

συχνότητες ταλάντωσης του μορίου (σχ. 3). Οι ημιπεριοδικές τροχιές (quasiperiodic) αποκαλύπτουν την ύπαρξη των σταθερών κίνησης του συστήματος που μπορούν να κβαντοθούν με τους κανόνες των Einstein, Brillouin και Keller.^{20, 21} Με αυ-

ΣΧΗΜΑ 3: Ένα τυπικό φάσμα ημιπεριοδικής τροχιάς.

τό τον τρόπο η κλασσική μηχανική επιτρέπει να υπολογίσουμε το δονητικό φάσμα του μορίου. Αποτελέσματα για το SO_2 δίνονται στο πίνακα ΙΙ.

v ₁ v ₂ v ₃	ω _{sc}	ω _Q	
100	0.1420	0.1414	
010	0.0647	0.0638	
001	0.1690	0.1686	
200	0.1404	0.1397	
020	0.0639	0.0629	
002	0.1678	0.1672	

ΠΙΝΑΚΑΣ ΙΙ: ω_{sc} είναι οι ημικλασσικές ενεργειακές διαφορές γειτονικών δονητικών επιπέδων του μορίου SO₂. ω_O είναι οι αντίστοιχες κβαντομηχανικές τιμές.

Δραματική αλλαγή παρατηρείται στην κίνηση του μορίου καθώς η ενέργεια του συστήματος αυξάνει (σχ. 4). Η τροχιά παρουσιάζει **χαοτική** συμπεριφορά και είναι αποτέλεσμα της μη αρμονικότητας του δυναμικού. Η **στοχαστική**, όπως αλλιώς καλείται, κίνηση έχει σαν αποτέλεσμα την ταχεία ανακατανομή της ενέργειας μεταξύ των διαφόρων βαθμών ελευθερίας του μορίου και επομένως δικαιολογεί τη στατιστική συμπεριφορά ορισμένων δυναμικών συστημάτων. Η μετάβαση από την ημιπεριοδική στη χαοτική κίνηση προβλέπεται από το θεώρημα των Kolmogorov, Arnold και Moser.¹⁹ Τέτοιες μελέτες επιτρέπουν την έρευνα των βασικών υποθέσεων των μοριακών στατιστικών θεωριών²² (όπως η RRKM) οι οποίες παίζουν ένα σημαντικό ρόλο στη μελέτη της χημικής κινητικής.

Λιγότερο κατανοητή είναι η δυναμική συμπεριφορά των κβαντικών συστημάτων. Το θέμα αυτό απασχολεί τη τρέχουσα έρευνα.^{23, 27-28}

ΣΧΗΜΑ 4: Χαοτική ή στοχαστική τροχιά.

Ένα άλλο παράδειγμα κατασκευής ΔΕΕ με τη μέθοδο των πολλών σωμάτων είναι η θεμελιώδης κατάσταση του ClO_2 .²⁴ Η αρχικά μελετημένη χημική ένωση έχει C_{2v} συμμετρία. Όμως οι Benson και Buss²⁵ έχουν δείξει ότι η ασυμμετρική μορφή

ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑΚΗ ΕΠΙΦΑΝΕΙΑ

ClOO είναι θερμοδυναμικά σταθερότερη από την OClO αλλά κινητικά ασταθής. Το σχήμα 5 δείχνει τα κύρια χαρακτηριστικά του δυναμικού. Το μόριο ClO κείται πάνω στον άξονα των Χ. Τα ελάχιστα που διακρίνονται αντιστοιχούν στις δύο σταθερές δομές του ClO₂. Δεν προβλέπεται δυναμικό φράγμα για τη διάσπαση του μορίου σε ClO και O.

ΣΧΗΜΑ 5: Ισοδυναμικές καμπύλες για τη θεμελιώδη κατάσταση του ClO,.

Ένα από τα πλεονεκτήματα της μεθόδου των πολλών σωμάτων είναι ότι μπορούμε να χρησιμοποιήσουμε τα δυναμικά τριατομικών συστημάτων στην κατασκευή δυναμικών τετραατομικών μορίων. Ένα τέτοιο παράδειγμα είναι το ClO₃. Η θεμελιώδης ηλεκτρονιακή κατάσταση του τριοξειδίου του χλωρίου, ²A₁, αδιαβατικά σχετίζεται με τα ακόλουθα προϊόντα διάσπασης:

$$ClO_{3} \rightarrow Cl(^{2}P) + O_{3}(^{1}A') \rightarrow O(^{3}P) + ClO_{2}(^{2}A')$$
$$\rightarrow ClO(^{2}\Pi) + O_{2}(^{3}\Sigma_{g}^{-})$$
(14)

Οι αντιδράσεις ορίζουν και τα ασυμπτωτικά όρια της συνάρτησης

$$V_{ClO_3} = \sum_{i=1}^{3} V_{ClO}^{(2)}(R_i) + \sum_{i=4}^{6} V_{O_2}^{(2)}(R_i) + + \sum_{i,j,k=1,2,4} V_{ClO_2}^{(3)}(R_i, R_j, R_k) + + V_{O_3}^{(3)}(R_4, R_5, R_6) + V_{ClO_3}^{(4)}(R_i, i = 1, ..., 6)$$
(15)

Οι όροι των 2- και 3- σωμάτων είναι διαθέσιμοι από τα δυναμικά του O_3 και ClO_2 . Ο όρος $V^{(4)}_{ClO_3}$ αναπαράγει την ενέργεια και γεωμετρία του ClO_3 και δίνεται στην αναφορά [26].

Έχοντας μία αναλυτική συνάρτηση για το δυναμικό του ClO₃ μπορούμε να μελετήσουμε τη δυναμική χημικών αντιδράσεων που λαμβάνουν χώρα πάνω στην επιφάνεια. Μία ενδιαφέρουσα αντίδραση είναι η

$$Cl + O_3 \rightarrow ClO + O_2 \tag{16}$$

Πιστεύεται ότι τα αλογόνα που εκλύονται στην άνω ατμόσφαιρα από τα αλογονούχα βιομηχανικά παρασκευάσματα καταστρέφουν το όζον γι' αυτό και η αντίδραση (16) έχει πολυσυζητηθεί τα τελευταία χρόνια.

Η μελέτη της αντίδρασης (16) με την κβαντική θεωρία είναι αδιανόητη με την παρούσα κατάσταση των Η/Υ. Ακόμη και για κρούσεις σε θερμικές ενέργειες ο αριθμός των καταστάσεων που πρέπει να ληφθούν υπ' όψη στην ανάπτυξη της κυματοσυνάρτησης είναι τόσο μεγάλος που κάνει τέτοιους υπολογισμούς δύσκολους.

Αντίθετα η ημικλασσική θεωρία των τροχιών⁸ έχει εφαρμοσθεί με αρκετή επιτυχία. Σύμφωνα με αυτή τη μέθοδο οι πυρήνες κινούνται με τους νόμους της κλασσικής μηχανικής στο δυναμικό πεδίο που περιγράφεται από την αδιαβατική ηλεκτρονιακή ενέργεια. Οι αρχικές συνθήκες για κάθε τροχιά ορίζονται κατά τέτοιο τρόπο ώστε να αντιστοιχούν στις κβαντικές καταστάσεις των μορίων, εξ ου και ο όρος ημικλασσική. Μία ανάλογη ημικλασσική κβάντοση γίνεται στο τέλος της τροχιάς για την ανάλυση της κατάστασης των προϊόντων της αντίδρασης.

Ο υπολογισμός μεγεθών που άμεσα συγκρίνονται με πειραματικά αποτελέσματα απαιτεί την ολοκλήρωση εγός μεγάλου αριθμού τροχιών. Παρόλα αυτά η μέθοδος εύκολα μπορεί να επεκταθεί σε πολυατομικά συστήματα και σε κρούσεις στον τρισδιάστατο χώρο.

Με την ημικλασσική μέθοδο των τροχιών έχουμε υπολογίσει την **ενεργό διατο**μή (cross section) της αντίδρασης (16). Οι σταθερές ταχύτητας συγκρίνονται με τις αντίστοιχες πειραματικές στο πίνακα ΙΙΙ. Η συμφωνία μεταξύ πειράματος και θεωρίας δείχνει ότι η ΔΕΕ παρέχει ένα ικανοποιητικό μοντέλο για την περιγραφή της

T/K	$k \times 10^{11}$ cm ³ molecule ⁻¹ x s-1	Πειραματικές Τιμές
200	1.00	1.00
220	1.07	1.10
300	1.34	1.36
600	2.11	2.58

PINAKAS III: Oi staberés taxúthtas th
s antídrashs $\rm Cl+O_3 \rightarrow ClO+O_2.$

(16). Άλλες λεπτομέρειες όπως η κατανομή της ενέργειας στους διάφορους βαθμούς ελευθερίας των προϊόντων δίνονται στο πίνακα IV.

Θερμοκρασία	Ολική Ενέργεια	Δονητική Ενέργεια	Περιστροφική Ενέργεια	Μεταφορική Ενέργεια	Μόρια
200 12	1 002	0.372	0.277	0.393	C10
200 K	1.903	0.061	0.168	0.632	02
220 K	1.009	0.418	0.263	0.382	CIO
	1.908	0.062	0.169	0.614	02
200 12	1 027	0.391	0.355	0.359	ClŌ
300 K	1.927	0.082	0.163	0.577	0,
(00 W	1.009	0.389	0.459	0.352	ClO
600 K	1.998 -	0.078	0.154	0.566	0,

PINAKAS IV: H katanomų the energy sta poionta the antidrashe (Cl + O1 \rightarrow ClO + O2).

5. Συμπεράσματα

Η μελέτη της χημικής δυναμικής στην προσέγγιση Born-Oppenheimer περιλαμβάνει τα εξής δύο στάδια:

- Υπολογισμό των ΔΕΕ και την έκφραση των αποτελεσμάτων με τη μορφή αναλυτικών συναρτήσεων,
- 2) επίλυση των εξισώσεων κίνησης.

Με την παρούσα πρόοδο των Η/Υ φαίνεται απίθανο αν στο άμεσο μέλλον θα μπορέσουμε να υπολογίζουμε ab initio δυναμικές επιφάνειες για σχετικά μεγάλα τριατομικά και τετραατομικά συστήματα. Ημιεμπειρικές μέθοδοι, όπως αυτή των πολλών σωμάτων, θα είναι απαραίτητες για την κατανόηση της δυναμικής των μορίων. Η μέθοδος που έχουμε αναπτύξει έχει εφαρμοσθεί σε αρκετά τριατομικά και σε μερικά τετραατομικά μόρια ούτως ώστε να έχει αποδειχθεί η γενικότητά της.⁶

Όσον αφορά το δεύτερο στάδιο πρέπει να τονίσουμε ότι μία ακριβής κβαντομηχανική μελέτη της δυναμικής των μορίων παραμένει ένα δύσκολο πρόβλημα. Η έρευνα όμως που έχει γίνει με την ημικλασσική μέθοδο των τροχιών έχει αποδείξει ότι η κλασσική μηχανική παρέχει μία καλή προσέγγιση στη περιγραφή των κρούσεων βαρέων σωματιδίων.*

Η ημικλασσική θεωρία των τροχιών έχει καταστεί μία ισχυρή υπολογιστική τεχνική για την έρευνα των μοριακών κρούσεων.

Summary

Potential Energy Surface: A fundamental concept for the study of chemical dynamics S.C. Farantos

In this article we develop the concept of Potential Energy Surface as well as we refer to methods for representing the potential surface with analytic functions. In particular we review the "many body" method which has been developed by J.N. Murrell and coworkers. The idea of expanding the potential as a sum of 1-, 2-, 3-, ..., k-body terms offers a systematic way to build up potential functions which are valid over all nuclear configurations. Each term is constructed by theoretical ab initio cal-

* Πρόσφατη ερευνητική δουλειά ενισχύει ακόμη περισσότερο το συμπέρασμα αυτό.²⁷⁻³⁰

culations and from data obtained by molecular spectroscopy and chemical kinetics. 2-body and 3-body terms constructed for triatomic molecules can be used in the potential energy surface of tetraatomic molecules and so on. The produced potentials are useful to study intra-molecular dynamics and molecular collisions. Specific examples such as O_3 , ClO_2 , ClO_3 and the reaction $Cl + O_3 \rightarrow ClO + O_2$ are given.

Βιβλιογραφία

- 1. Fluendy M.A.D., Lawley K.P.: "Chemical Applications of Molecular Beam Scattering", Chapman and Hall, London (1974).
- 2. Chemical and Biochemical Applications of Laser, edit. by C.B. Moore, Academic Press, N.Y. (1974).
- 3. Born M., Oppenheimer J.R.: Ann. Phys., 84, 457 (1927), Born M., Huang K.: "Dynamical theory of crystal lattices", Oxford Press, Oxford (1951).
- 4. London F.: Z. Electrochem., 35, 553 (1929).
- 5. Balint-Kurti G.G.: "Potential Energy Surfaces for chemical Reactions", edit. by Lawley K.P., Adv. Chem. Phys., 42, 137 (1975).
- 6. Murrell J.N., Carter S., Farantos S.C., Huxley P., Varandas A.J.C.: "Molecular Potential Energy Functions", Wiley, Chichester (1984).
- 7. Alvarino J.M., Gervasi O., Lagana A.: Chem. Phys. Letters, 87, 254 (1982).
- a) Porter R.N., Raff L.M.: "Dynamics of Molecular Collisions", edit. by W.H. Miller, Modern Theor. Chem., vol. 2, pp 1-52, N.Y. (1976). b) Truhlar D.G., Muckerman J.T., "Atom-Molecule Colission Theory" edit. by Bernstein R.B., Plenum Press N.Y. (1979).
- 9. Renner R.: Phys., 92, 172 (1934).
- 10. Jahn H.A., Teller E.: Proc. Roy. Soc., 161A, 220 (1937).
- 11. "Electron Structure Theory", edit. by Schaefer III H.F., Modern Theor. Chemistry, vol. 4, (1977).
- 12. Eyring H., Polanyi M.: Naturwiss, 18, 914 (1930).
- 13. Sato S.: J. Chem. Phys., 23, 592 (1955); ibid 23, 2465 (1955).
- 14. Polanyi J.C., Schreiber J.L.: Faraday Discussion, 62, 267 (1977).
- 15. Kuntz P.J., Nemeth E.M., Polanyi J.P., Rosner S.D., Young C.E.: J. Chem. Phys., 44, 1168 (1966).
- 16. Wall F.T., Porter R.N.: J. Chem. Phys., 36, 3256 (1962).
- 17. Murrell J.N., Farantos S.: Mol. Phys., 34, 1185 (1977).
- 18. Farantos S.C., Murrell J.N.: Chem. Phys., 55, 205 (1981).
- 19. Arnold V.I., Avez A.: "Ergodic problems in classical mechanics" Benjamin, N.Y. (1968).
- 20. Percival I.C.: Adv. Chem. Phys., 36, 1 (1977).
- 21. Farantos S.C., Murrell J.N.: Int. J. Quantum Chem., 19, 95, (1981).
- Robinson P.J., Holdbrook K.A.: "Unimolecular reactions", Wiley, N.Y. (1972). Frost W.: "Theory of unimolecular reactions" Academic Press, N.Y. (1973). Farantos S.C., Murell J.N., Hijduc J.C.: Chem. Phys., 68, 109, (1982). Farantos S.C.: Chem. Phys., 71, 157 (1982). Chem. Phys. Lettes, 92, 379 (1982). J. Phys. Chem. 87, 5061 (1983).
- 23. Weissman Y., Jortner J.: J. Chem. Phys., 77, 1469 (1982). Tennyson J., Farantos S.C.: Chem. Phys. Letters, 109, 160 (1984).
- 24. Farantos S.C., Leisegang E.C., Murrell J.N., Sorbie K., Texeira-Dias J.J., Varandas A.J.C.: Mol. Phys., 34, 947 (1977).
- 25. Benson S.W., Buss J.H.: J. Chem. Soc., 27, 1382, (1957).
- 26. Farantos S.C., Murrell J.N.: Int. J., Quantum Chem., 14, 659, (1978).
- 27. Farantos S.C. and Tennyson J.: J. Chem. Phys. 82, 800 (1985).
- 28. Tennyson J. and Farantos S.C.: Chem. Phys. 93, 237 (1985).
- 29. Tennyson, J., Brocks G. and Farantos S.C.: Chem. Phys. 104, 399 (1986).
- 30. Farantos S.C. and Tennyson J.: J. Chem. Phys., 85, 641 (1986).

NEW DITHIOCARBAMATE COMPLEXES OF MOLYBDENUM-(II), -(III), -(IV) and -(V)

ST. PAPASTEFANOU, P. KARAGIANNIDIS and G.E. MANOUSSAKIS

Department of General and Inorganic Chemistry, Thessaloniki, GREECE (Received December 15, 1984)

Summary

The synthesis of a number of coordination compounds involving the ligands 2-methyl-, 4methyl-, 2,6-dimethyl-piperidinedithiocarbamates with molybdenum chlorides in various oxidation states of molybdenum |Mo(II), Mo(III), Mo(IV) and Mo(V)| is described. The stoichiometry of the new complexes corresponds to the formulae $Mo_2(Rdtc)_4$, $Mo(Rdtc)_3$, $Mo(Rdtc)_2Cl_2$, $Mo(Rdtc)_3Cl$, $Mo(Rdtc)_2Cl_3$, $Mo(Rdtc)_3Cl_2$, where Rdtc are the title ligands. The new compounds have been characterized by physical and chemical methods. The stereochemistries of the new complexes have also been discussed.

Key words: Dithiocarbamate complexes, Molybdenum (II), (III), (IV), (V), Spectroscopy IR, UV, visible of dithiocarbamate magnetic susceptibility, thermogravimetric analysis.

Introduction

The coordination chemistry of molybdenum has attracted a lot of attention because of its ability to exist in various oxidation states to form metal-metal bonds and to offer a wide variety of stereochemistries.

In the literature only a few examples of simple molybdenum dithiocarbamate complexes are known.¹⁻¹³ Most of the reported compounds contain oxomolybdenum groups.

The main purpose of the present work was to establish the geometry of the dithiocarbamate complexes with the molybdenum in different oxidation states. We report in this paper on the preparation and study of a range of molybdenum complexes in different formal oxidation states (II-V) with 2-methyl, 4-methyl and 2,6-dimethyl piperidinedithiocarbamates. These complexes have the general formulae:

 $Mo_2 (Rdtc)_4$, Mo (Rdtc)₃, Mo (Rdtc)₂Cl₂, Mo (Rdtc)₃Cl, Mo (Rdtc)₂Cl₃,

Mo $(Rdtc)_3Cl_2$, where Rdtc are:

2-methylpiperidinedithiocarbamato, 2mePmedtc

4-methylpiperidinedithiocarbamato, 4mePmdtc

2,6-dimethylpiperidinedithiocarbamato, 2,6dmePmdtc

Experimental

Physical measurements were made as described previously.¹⁴ All reactions were conducted under a dry dinitrogen atmosphere using Schlenk's tube technique, in predried solvents.

Synthesis of the complexes: The complexes were obtained by reacting the corresponding molybdenum chloride and the dithiocarbamates in the appropriate molar ratios in $CHCl_3$ or CH_2Cl_2 solution. After stirring the mixture for 1h at room temperature, the reaction mixture was filtered to remove the insoluble sodium chloride. The filtrate was concentrated in vacuo to a small volume and the complex was precipitated with petroleum ether. The compounds which precipitated were washed exhaustively with petroleum ether and dried *in vacuo*.

Results and Discussion

The formulae of the new complexes, the results of the elemental analyses and their colour are listed in Table I. It becomes apparent that the oxidation state influences the coordination number of molybdenum and possibly affects the mode of coordination of the dithiocarbamate ligands.

It is well known that in most dithiocarbamate complexes the ligand is coordinated to the metal through the one or both the two sulfur atoms.

A reliable criterion¹⁵⁻²² for establishing whether dithiocarbamates are bonded in a mono- or bi-dentate fashion is the splitting of the characteristic bands due to the $v(C \cdots N)$ and $v(C \cdots S)$ stretching vibrations.

The most relevant bands in the ir spectra are given in Table II. The frequency of the stretching vibration of the v(C - N) band is situated between the frequency of the simple (1300 cm⁻¹) and the double (1650 cm⁻¹) C-N bond. Upon ligation of the dithiocarbamate this band is shifted to higher frequencies. In addition a splitting of this band normally imply monodentate character of the dithiocarbamate ligands. Further evidence on the mode of coordination becomes from bands assigned to (C-S) stretching vibrations. Whenever the C-S bonds are equivalent a single band appears at about 1000 cm⁻¹. Changes in the strength of either bond results in splitting of this band and appearance of doublet at about 1010 ± 10 cm⁻¹ and 980 ± 10 cm⁻¹ reflecting the non-equivalence.

The values of frequencies for the $\nu(C \\ \dots \\ N)$ follow the trend of decreasing frequency which has been reported for some molybdenum-oxygen complexes with the same ligands.¹⁵

4mePmdtc > 2mePmdtc > 2,6dmePmdtc

From the data of Table II it becomes apparent that in the complexes under investigation the mode of coordination is not unique. Thus in complexes corresponding to the formula Mo_2 (Rdtc)₄, Mo (Rdtc)₃, Mo (Rdtc)₂Cl₂, and Mo (Rdtc)₂Cl₃ the dithiocarbamates coordinate as bidentates whereas in Mo (Rdtc)₃Cl and Mo (Rdtc)₃Cl₂ complexes both modes of coordination exist simultaneously.

TABLE I: Analytical data.

ABLE I: Analytical data.								
	% C	% Н	% N	~~ S	% Cl	% Mo	colour	
$Mo(2mePmdtc)_2Cl_3$	30.60(30.51)	4.68(4.36)	4.95(5.08)	22.87(23.52)	19.53(19.34)	17.75(17.34)	brown	
Mo(2mePmdtc) ₃ Cl ₂	36.14(36.57)	5.28(5.23)	5.97(6.23)	27.48)27.86)	10.47(10.30)	14.40(13.93)	brown	
Mo(4mePmdtc) ₂ Cl ₃	31.31(30.51)	4.48(4.36)	5.32(5.08)	23.12(23.52)	19,12(19,34)	17.50(17.44)	brown	
Mo(4mePmdtc) ₃ Cl ₂	36.41(36.57)	5.17(5.23)	6.52(6.23)	27.39(27.86)	10.21(10.30)	13.52(13.93)	violet	
Mo(2,6dmePmdtc) ₂ Cl ₃	32.57(33.18)	4.79(4.84)	4.61(4.84)	21.68(22.12)	17.94(18.40)	16.80(16.59)	brown	
Mo(2,6dmePmdtc) ₃ Cl ₂	39.20(39.39)	5.78(5.74)	5.69(5.74)	25.87(26.26)	9.51 (9.71)	13.31(13.13)	brown	
Mo(2mePmdtc) ₂ Cl ₂	31.96(32.62)	4.50(4.66)	5.28(5.44)	24.39(24.85)	12.84(13.79)	18.64(18.64)	brown	
Mo(4mePmdtc) ₂ Cl ₂	31.95(32.62)	4.38(4.66)	5.24(5.44)	23.95(24.85)	13.46(13.79)	18.66(18.64)	brown	
Mo(4mePmdtc) ₃ Cl	.37.62(38.56)	5.30(5.51)	6.46(6.42)	28.75(29.38)	5.49 (5.43)	15.30(14.69)	violet	
Mo(2,6dmePmdtc) ₂ Cl ₂	35.15(35.40)	4.99(5.15)	4.74(5.15)	23.12(23.57)	12.89(13.07)	17.72(17.68)	dark brown	
Mo(2,6dmePmdtc) ₃ Cl	40.81(41.41)	6.34(6.04)	5.89(6.04)	27.32(27.61)	4.96 (5.10)	13.58(13.80)	violet	
Mo(2mePmdtc) ₃	39.81(40.77)	6.13(5.82)	6.86(6.79)	20.49(31.06)	<u> </u>	15.20(15.53)	brown	
Mo(4mePmdtc) ₃	41.46(40.77)	6.08(5.82)	6.84(6.79)	29.96(31.06)	-	15.64(15.53)	brown	
$Mo_2(2mePmdtc)_4$	36.92(37.83)	5.17(5.40)	5.97(6.30)	28.39(28.82)	· _	21.20(21.62)	brown	
$Mo_2(4mePmdtc)_4$	38.77(37.83)	5.63(5.40)	6.24(6.30)	28.87(28.82)	_	21.20(21.62)	brown	
$Mo_2(2,6dmePmdtc)_4$	39.89(40.67)	5.71(5.93)	6.04(5.93)	27.16(27.11)	—	20.20(20.33)	brown	

Compound	v(CN)	ν(C <u>···</u> S)	v(Mo-S)	v(Mo-Cl)
2mePmdtcNa	1615s 1490s	1010m 960m		
4mePmdtcNa	1647s 1490w	980s 962m		
2.6dmePmdtcNa	· 1635s	978s 945s •		
Mo(2mePmdtc) ₂ Cl ₃	1510vs.	1000m	400m	340m
Mo(2mePmdtc),Cl,	1510vs 1490vs	1000w 975w	390m	310m
Mo(4mePmdtc),Cl,	1520vs	955s	390m	325s
Mo(4mePmdtc),Cl,	1540vs 1510vs	975s 965w	400m (350m
Mo(2.6dmePmdtc),Cl,	1465vs	980m	380w	· 325m
Mo(2.6dmePmdtc),Cl,	1480vs 1460vs	1005w 975m	380m	325w
Mo(2mePmdtc),Cl,	1530vs	975s	375w	350w
Mo(4mePmdtc),Cl,	1540vs	960vs	385m	325s
Mo(4mePmdtc),Cl	1510vs 1490vs	1020w 965s	400m	355m
Mo(2.6dmePmdtc),Cl,	1495vs	990m	405m	360m
Mo(2.6dmePmdtc),Cl	1480vs 1467vs	1013w 988sh	390w	340s
Mo(2mePmdtc) ₃	1490s 1450w	1000s 965s	390w	_
Mo(4mePmdtc),	1485vs 1455vs	1005s 975s	370w	_
$Mo_2(2mePmdtc)_4$	1455s	980sh	400w	
$Mo_2(4mePmdtc)_4$	1490vs	975vs	405m	<u> </u>
Mo ₁ (2.6dmePmdtc) ₄	1465s	980m	405 <i>m</i>	_

TABLE II: Selected Infrared Spectral Data (cm^{-1}) .

The most far ir spectral bands of the ligands are practically unchanged in the complexes but there are also new bands in the region 380-400 cm⁻¹ and 310-340 cm⁻¹ which may tentatively be assigned to ν (Mo–S) and ν (Mo–Cl) modes respectively.

The electronic spectra in the region 10000-45000 cm⁻¹ are given in Table III. All the complexes are coloured exhibiting either one or two broad absorptions²¹⁻²⁴ bands in the visible region. These bands are very weak and therefore are assigned to partly forbidden d-d type transitions. There are also maxima in the region 38.5-18 kK. Some of these maxima are quite intense and are very likely due to the chargetransfer transitions ($M \rightarrow L$ or $L \rightarrow M$) or to transitions localized on the ligands ($L \rightarrow L^*$).

The absorption bands at 22.0 and 26.0 kK in the complexes occur as shoulders and are not easy to resolve due to the overlay of the intense charge transfer bands around 30.0 kK. The electronic spectra for the sodium salt of the ligands exhibit bands at ca. 28 kK, ca. 35 kK and ca. 38 kK (Table III). The bands which appeared in the region between 22 and 30 kK are absent from the spectra of the free ligands and tentatively are classified as charge transfer.

Thermal decomposition data are listed in Table IV. The thermogravimetric curves have not shown any initial mass losses until 125°C i.e. no trace of solvent retention. Overall weight losses show good agreement between the theoretical and the observed values thus confirming the compound stoichiometries. Thermal decomposition of the complexes involve two or three stages. The presence of chlorine atom in the complexes was indicated in the first stage (of weight losses on thermogravimetric curves). Losses of the organic fragment was followed in the next stages, a residue mass remained around 500°C.

Compound	Band I	Band II	Band III & IV	Band V	Band VI	Band VIII	Band VIII	Band IX
2mcPmdtcNa	38.02	35.34	28.57				e e e e e e e e e e e e e e e e e e e	
4mePmdtcNa	38.31	35.71	28.57					
2,6dmePmdtcNa	38.46	38.34	27.78					
Mo(2mePmdtc) ₂ Cl ₃	36.76	_ ′	28.57 25.00	22.57	. 21.51	18.94		14.29
Mo(2mePmdtc) ₃ Cl ₂	36.76	32.57	25.13	22.22	21.74	18.97	16.67	13.92
$Mo(4mePmdtc)_2Cl_3$	37.74	_	28.57	22.99	21.41	19.23	17.09	14.08
$Mo(4mePmdtc)_3Cl_2$	38.76	32.47	25.00	22.99	21.46	19.05	16.67	14.18
$Mo(2.6dmePmdtc)_2Cl_3$	36.63	_	28.57 25.00	22.22	21.51	19.23	15.75	14.29
Mo(2,6dmePmdtc) ₃ Cl ₂	37.04	32.47	28.57 25.00	25.52	21.46	19.05	16.00	13.33
$Mo(2mePmdtc)_2Cl_2$	37.45	_	28.17	21.50	_	. <u> </u>	15.32	13.25
Mo(4mePmdtc) ₂ Cl ₂	37.88	-	28.17	22,99	21.60	19.05	· <u> </u>	13.79
Mo(2,6dmePmdtc) ₂ Cl	37.45	-	_	22.62	21.41	18.98		14.39
Mo(4mePmedtc) ₃ Cl	38.91	32.79	26.32	-	_	18.87	15.15	. —
Mo(2,6dmePmdtc) ₃ Cl	36.63	32.49	25.00		_	18.98	16.81	_
Mo(2mePmdtc) ₃	37.45		25.00	-	_	18.12		_
Mo(4mePmdtc) ₃	38.02		-		_	18.02	_	
$Mo_2(2mePmdtc)_4$	38.02		1 -	_		18.02	_	
$Mo_2(4mePmdtc)_4$	39.68	<u> </u>	—		21.65	18.18		-
$Mo_2(2.6dmePmdtc)_4$	36.50		—	-	· _	18.69		-

TABLE III: Electronic spectra of the molybdenum complexes.

127

Compound	Temperature range (°C)	Weight Loss (%) obs (calcd)	Probable Fragmet
- <u>.</u>	125-185 185-207	5(12.9) 6	CI CI
	207-270	21(19.38)	CH ₃ N-C
Mo(2mePmdtc) ₂ Cl ₃	318-335	6(6.49)	CI
	335-450	15(19.38)	N-C
	residue 450°C	46(40.69)	MoS₄
· · · · · · · · · · · · · · · · · · ·	125-187	10(10.3)	2Cl
	187-270	15(15.94)	2H3C-
Mo (4mePmdtc) ₃ Cl ₂	330-450	15(15.94)	н ₃ с-∕N-с
	residue 450°C	34(32.51)	MoS₄
	115-150	5(5.43)	Cl
	150-270	27(33.6)	2H3C-
Mo(4mePmdtc) ₃ Cl	330-420	22(16.8)	H ₃ C-
	residue 450°C	45(44.07)	MoS ₆
	125-170	5(5.1)	. Cl
	170-253	38(35.7)	2 CH ₃ 2 N-C CH ₃
Mo(2,6dmePmdtc) ₃ Cl	320-390	26(27.03)	CH ₃ N-CS ₂ CH ₃
	residue 450°C	31(32.2)	MoS₄

TABLE IV: Thermogravimetric Analysis,

128

Probable Weight Loss (%) Temperature Compound Fragmet range (°C) obs (calcd) 10(9.71) 2C1 125-217 CH₃ 217-280 34(33.92) 2 CH3 Mo(2,6dmePmdtc)₃Cl₂ 340-450 26(25.72) CS₂ residue 450°C MoS₄ 30(30.64) 2C1 125-220 13(13.07) CH3 220-275 30(28.73) Ň-CS CH2 CH3 Mo(2,6dmePmdtc)₂Cl₂ 315400 N-CS 27(28.73) CH3 residue 500°C MoS₂ 30(29.44) CH3 120-285 22(24.78) Ň−C 2 CH₃ Mo₂(2mePmdtc)₄ 300-650 25(24.78) -C 2 Ň residue 650°C 52.5(50.45) Mo₂S₈ 120-285 23(24.78) 2 H₃C Ň-C 25(24.78) Mo₂(4mePmdtc)₄ 300-560 2 H₃C - **C** residue 650°C 51(50,45) Mo₂S₈ CH₃ 12.5(13.14) 125-250 ·C CH3 $Mo_2(2,6dmePmdtc)_4$ 300-650 41.5(39.42) 3 CH3 residue 650°C 46(47.46) Mo_2S_8

Table IV continued

Complexes of Mo(II): The reaction of molybdenum dichloride with the aforementioned dithiocarbamates give only one type of complexes formylated as Mo_2 (Rdtc)₄. Even in the presence of excess dithiocarbamate the ligation is limited to two groups under these experimental conditions. Molybdenum (II) complexes are usually stabilized by metal-metal bonds or by unsaturated ligands.^{25, 26} No monomeric compounds of molybdenum (II) with saturated ligands are known. Each molybdenum atom is coordinated to four ligands, so the metal atoms become four-ligated. Consequently ligands have a marked preference for bridging Mo-Mo bond producing a five membered ring.

The existence of Mo-Mo bond is supported by a number of X-ray structure determinations^{27, 28} and Raman spectral investigations²⁹⁻³¹ which have shown that such strong interactions occur in Mo (II) compounds. The metal-metal distances are shorter than expected for single bonds. This agrees with predictions of Cotton's^{32, 33} qualitative molecular orbital treatment that the metal-metal bond order should maximize when four types of orbital overlap exist simultaneously (σ -, π - and δ -type overlaps) for the d⁴ electronic configuration. One consequence of a metal-metal bond in these complexes is the pairing of odd electrons and the quenching of the paramagnetic suspectibility. Magnetic measurements have shown that the compounds are diamagnetic.

The complexes decompose in a two-stage process with the second stage invariably greater than the first. The first stage corresponds in the separation of one organic fragment, following from the removal of the remaining three.

On the basis of the results presented the most likely structure of the $Mo_2 (Rdtc)_4$ complexes is given schematically below.

The Mo_2S_8 residue resulting from the thermal decomposition enhances the arguments for the proposed structure which is analogous to dimolybdenum tetraxanthate complexes.²⁸

Complexes of Mo (III): The compound $MoCl_3$ has been used as starting material to prepare Mo (Rdtc)₃ as described in the experimental.

The frequency for $v(C \cdots N)$ in the series of Mo (III) complexes is quite low being located at 1500 cm⁻¹, indicating that the ligands in the complexes are bridging. The latter statement is supported by the fact that the complexes are diamagnetic. These observations rule out a structure similar to other six coordinated metal complexes. Structural studies which have been carried out on an extended series of M (Dtcb) complexes (where M = Co, Fe, Mn) all show distortion octahedral geometry. This is in common with other compounds having structure analogous as mentioned by Mitchel and Scarle³⁴ for Mo (Rdtc)₃ complexes.

Attempts at preparing Mo (Rdtc)₂ Cl and Mo (Rdtc) Cl_2 complexes starting with MoCl₃ and the sodium salts of the ligands using similar procedures have proved unsuccessful. The instability of products may have prevented their isolation.

Complexes of Mo(IV): Two series of complexes formulated as $Mo(Rdtc)_2 Cl_2$ and $Mo(Rdtc)_3 Cl$ were obtained from the reaction of solution of $MoCl_4$ in chloroform with the sodium salts of 2-methyl, 4-methyl and 2,6-dimethyl- piperidinedithiocarbamate, according to the general reaction:

 $MoCl_4 + nRdtcNa \rightarrow Mo (Rdtc)_n Cl_{4-n} + nNaCl n = 2,3$

Attempts to prepare Mo $(Rdtc)_4$ by the reaction of $MoCl_4$ with the sodium salts of the dithiocarbamates resulted in all cases in the isolation of the tris derivatives Mo $(dtcb)_3$ Cl. However Nieuwport⁹ et al. have obtained the tetra-derivatives Mo $(Rdtc)_4$ complexes by the oxidative decarbonylation of Mo $(CO)_6$ and Brown⁷ isolated the complex Mo $(S_2CN (CH_2)_4)_4$ from the reaction of ammonium tetramethylenedithiocarbamate and molybdenum tetrachloride.

In Table II are listed selected peaks attributed to absorptions of stretching vibration of certain groups, following previous lines of assignment.³⁵ The Mo (Rdrc)₂ Cl₂ complexes exhibit one absorption band, single, medium or strong at ca. 1000 cm⁻¹ and a second very strong band at ca. 1510 cm⁻¹. The position of these bands indicates that the dithiocarbamate ligands are bidentate. This behaviour contrast has observed for the compounds Mo (Rdtc)₃ Cl which exhibit a splitting of the peaks in these regions indicating that the ligands in the complexes are unidentate. All the complexes are diamagnetic.

The electronic spectra of Mo (IV) complexes exhibit the characteristic bands of dithiocarbamates and they are interpreted on the basis of pevious assignments³⁶ (Table III). A group of sharp high intensity bands was assigned to intraligand transitions. Broad low-intensity bands between 14-20 kK were assigned to d-d transitions, and some additional bands were considered to arise from charge transfer between ligand and metal.

All the complexes of Mo (IV) decompose in a three stage process with first stage the loss of chlorine. The next two stages involve the loss of the organic fragment. The decomposition is complex in character as the stepped weight losses from the thermogravimmetric curves involve thermal breakdown of the ligands and different residues of molybd num-sulfur products. Complexes of Molybdenum (V): In a previous study³⁷ we reported the reaction of molybdenum pentachloride with the sodium salt of some dithiocarbamates. It was shown that this reaction leads to complexes formulated as Mo (Rdtc)₂ Cl₃ and Mo (Rdtc)₃ Cl₂. With a similar reaction we isolated the analogous molybdenum complexes of the title ligands. The stoichiometric formulae of the new compounds are presented in Table I. Relevant Mo (V) complexes $|Mo (S_2CNM_2)_4| X (X = Br, I)$ have been prepared by oxidation of $|Mo (S_2CNMe_2)_4|$ with the appropriate halogen and were characterized by magnetic e.s.r. and i.r. spectral measurements.³⁸

It may be noted that in the IR spectrum of the complexes formulated as $Mo(Rdtc)_2Cl_3$ appears a single band at ca. 1520 cm⁻¹ and ca. 1000 cm⁻¹ attributed to $v(C \rightarrow N)$ and $v(C \rightarrow S)$ respectively, both indicating the presence of bidentate dithiocarbamate ligands. As it is seen from Table II splittings of these bands are observed for the complexes of the general formula Mo (Rdtc)_3 Cl_2 indicating the presence of unidentate dithiocarbamate group. The metal-sulfur stretching mode is found as a medium band at ca. 390 cm⁻¹ and the metal-chlorine band at ca. 325 cm⁻¹.

The electronic spectra show bands of low intensity at ca. 14 kK which can be assigned to a d-d transition. The shoulders at ca. 19 kK and 22.5 kK may be of d-d origin intensified by borrowing from charge transfer bands. It is not clear whether the charge transfer bands below 28 kK in the dithiocarbamate complexes are $M \rightarrow L$ or $L \rightarrow M$; however the d-d transitions are obscured and this suggests efficient mixing of the metal and ligand orbitals.

The magnetic moment of the complexes of Mo(V) at room temperature is reduced substantially showing a binuclear formation. Rather similar dimers with other dithio-acids have been described, and for the dimeric compounds a sulfurbridged structure was proposed.

Based on the results obtained in this study, the structure proposed for the complexes Mo $(Rdtc)_2 Cl_3$ is essentially a pentagonal bipyramide. This is a commonly found ligand arrangement for 7-coordinated metals. The ligand arrangement entails four sulfur atoms and one chlorine atom in the same plane as the central atom whereas the remaining two chlorine atoms occupy equatorial position on the apices of the pentagonal bipyramide.

For the complexes Mo $(Rdtc)_3 Cl_2$ five S-atoms are in the equatorial plane, the remaining sulfur atom favoring the dimeric form of the complex. The two chlorine atoms are arranged at the apices resulting in 7-coordination.

The proposed structures of all these complexes are supported from their thermal decoponsition process (route). All the complexes of Mo (V) decompose in a three-stage process except of the complex Mo (2me Pmdtc)₂ Cl₃ which decomposes in five stages. The residual product for all the complexes is MoS_4 .

Περίληψη

Νέα διθειοκαρβαμιδικά σύμπλοκα του μολυβδαινίου -(II), -(III), -(IV) και -(V)

Η παρασκευή των διθειοκαρβαμιδικών συμπλόκων του μολυβδαινίου στις οξειδωτικές καταστάσεις Mo(II), Mo(III), Mo(IV) και Mo(V) έγινε με την επίδραση

των χλωριούχων αλάτων MoCl₂, MoCl₃, MoCl₄ και MoCl, στα αντίστοιχα διθειοκαρβαμιδικά άλατα του 2-μεθυλοπιπερίδινο-, 4-μεθυλοπιπερίδινο- και 2,6διμεθυλοπιπεριδινο, διθειοκαρβαμιδικού νατρίου.

Οι γενικοί τύποι των απομονωθέντων συμπλόκων είναι:

 $Mo_2 (Rdtc)_4$, Mo (Rdtc)₃, Mo (Rdtc)₂Cl₂, Mo (Rdtc)₃Cl, Mo (Rdtc)₂Cl₃ και Mo (Rdtc)₃Cl₂. Η μελέτη τους έγινε με διάφορες φασματοσκοπικές μεθόδους (IR, UV-Vis) σε συνδυασμό με τη μαγνητική επιδεκτικότητα και τη θερμοσταθμική ανάλυση. Τα αποτελέσματα της μελέτης αυτής έδειξαν ότι τα σύμπλοκα έχουν διπυρηνική δομή με γέφυρες θείου.

References

- 1. E.I. Steifel, Progr. Inorg. Chem., 22, 1 (1977).
- 2. J.T. Spence, J. Coord. Chem. Rev., 4, 475 (1969).
- 3. W. Newton, J. Corbin, D. Bravard, J. Scarles, J. Mac Donald, Inorg. Chem., 13, 1100 (1974).
- 4. G. Watt, J. Mac Donald, W. Newton, J. Less-Common Met., 54, 415 (1977).
- 5. A.G. Sykes, J. Less-Common Mt., 54, 401 (1977).
- 6. L.S. Meriwether, W.F. Marzinff and W.G. Hodgson, Nature (London), 212, 465 (1966).
- 7. T.M. Brown, J.N. Smith, J. Chem. Soc. Dalton Trans, 1614 (1972).
- 8. D.C. Bradley and M.H. Chisholm, J. Chem. Soc. A, 2741 (1971).
- 9. A. Nieuwpoort, H.M. Claessen, and J.G.M. van der Linden, Inorg. Nucl. Chem. Lett. 11, 869 (1975).
- 10. A. Nieuwpoort and J.J. Steggerda, Recl. Trv. Chim., Pay-Bas 95, 250 (1976).
- 11. A. Nieuwpoort and Z.B. Varadi, Inorg. Nucl. Chem. Lett., 10, 801 (1974).
- 12. O. Piovesana, L. Sestili, Inorg. Chem., 13, 2745 (1974).
- 13. F.A. Cotton, P.E. Fanwick and J.W. Fitch, Inorg. Chem., 17, 3254 (1978).
- 14. St. Papastefanou, P. Karagiannidis and G.E. Manoussakis, Chim. Chron., New Series, 16, 23 (1987).
- A.B. Crosby, R.J. Magee, M.J. O'Connor, K.N. Tanty and C.N.R. Rao, Proc. Indian Acad. Sc. Sect. A. 88, 393 (1979).
- 16. C.G. Pierront, R.C. Dichinson and B.J. McCormick, Inorg. Chem., 13, 1674 (1974).
- 17. E. Bonati and R. Ugo, J. Organom. Chem., 10, 257 (1967).
- 18. J.R. Dilkorth, B.D. Neayes, C.J. Pickett, J.Chatt and J.A. Zubieta, Inorg. Chem. 22 3254 (1983).
- 19. J.N. Smith and T.M. Brown, Inorg. Nucl. Chem. Lett., 6, 441 (1970).
- 20. A.N. Bhat, R.C. Fay, D.F. Lewis, A.F. Lindmark and S.H. Strauss, Inorg. Chem., 13, 886 (1974).
- 21. M.J. Jansen, Rec. Trav. Chim., Pay-Bas 79151 454, 1066 (1960).
- 22. M.L. Shankaranayana and C.C. Patel, Acta Chem. Scand., 19 113 (1965).
- 23. R.N. Jowitt and R.C.H. Mitchell, J. Chem. Soc. A, 1702 (1970).
- 24. D.C. Bradley and M.H. Gitlitz, J. Chem. Soc. A, 1152 (1969).
- 25. M.H. Chisholm, K. Folting, J.C. Huffman and A.L. Raternmann, Inorg, Chem., 23 613 (1984).
- 26. M.H. Chisholm, F.A. Cotton, M.W. Extine, R.L. Kelly, Inorg. Chem., 18 116 (1979), JACS 101 7645 (1979).
- 27. F.A. Cotton, J.M. Troup, T.R. Webb, D.H. Williamson and G. Wilkinson, J. Am. Chem. Soc. 96 3824 (1974).
- 28. L. Richard, P. Karagiannidis and R. Weiss, Inorg. Chem., 12 2179 (1973).
- 29. R.H. Clark and M. Franks, J. Chem. Soc., Chem. Commun. 316 (1974).
- 30. A.P. Ketteringham and C. Oldham, J. Chem. Soc., Dalton, Trans., 1067 (1973).
- 31. J. San Filippo, Ir. and H.J. Sniadoh, Inorg. Chem., 12, 2326 (1973).
- 32. F.A. Cotton, Accounts Chem. Res., 2, 240 (1969).
- 33. F.A. Cotton, L.R. Falvello, S. Han and W. Wang, Inorg. Chem., 22, 4106 (1983).
- 34. P. C.H. Mitchell and R.D. Scarle, J. Chem. Soc., Dalton Trans., 110 (1975).
- 35. P.A. Brown, W.K. Glass and M.A. Burke, Spectrochimica Acta, A32 137 (1976).
- 36. R.N. Jowitt and R.C.H. Mitchell, J. Chem. Soc., A, 2631 (1969).
- 37. P. Karagiannidis, St. Papastefanou and G.E. Manoussakis, Chim. Chron., New Series, 6, 385 (1977).
- 38. A. Nieuwport, J.H.E. Moonen and J.A. Gras, Recl. Trav. Chim. des Pays Bas, 92, 1086 (1973).

ALCOYL MERCAPTO ALCOYL AMIDES DE L'ACIDE PHENOXYA-CETIQUE

M. KAZANIS, I. IOANNIDOU, D. LAMBROU+

Laboratoire de Pharmacie Chimique, Université d'Athénes, 104, rue Solonos – 106 80 Athènes, Grèce.

(Received April 24, 1985)

Résumé

On décrit la synthèse des nouveaux amides de l'acide phénoxyacétique. Les produits **5** ont été obtenus par l'action des S-alcoylcystéamines et homocystéamines sur les dérivés chlorés de phénoxyacétyle correspondants dans du chloroforme en milieu alkalin (Na_2CO_3). L'étude comporte la définition de la structure des produits.

Les produits nouveaux sont analogues au Meclofenoxamide et au Clofenoxamide et sont déjà soumis au test preliminaire pharmacologique.

Key Words: Phenoxyacetamides, S-alkyl cysteamines and homocysteamines

Introduction

La synthèse des esters et des amides de l'acide phénoxyacétique et de quelquesuns de ses dérivés substitués¹⁻⁶ a donné naissance à une nouvelle classe de composés qui agissent sur la base du cerveau et qui s' appellent «regulateurs métaboliques». C' est ainsi que le Lucidril 1 (meclofénoxate, X=O) préparé par Thuillier et Rumpf^{4,5} s' est révélé très actif comme stimulant du SNC et a été utilisé avec des résultats spectalulaires dans des cas de dépression, de confusion mentale, de coma et de délirium trémens⁷.

X = NH

Tandis que cet ester possède une intéressante activité stimulante sur le SNC, les amides isostères 1 (cloféxamide, X = NH), présentent, selon les mêmes chercheurs, une variété d' autres propriétés biologiques⁵.

+ Deceased.

Le remplacement de l'oxygène par du soufre conduit à des composés isostères, dont des esters et des amides⁸ que nous avons eu l'ocassion de synthétiser et d'étudier dans notre Laboratoire. Ces produits possèdent une action dépressive intéressante sur le SNC. Par ailleurs certains esters basiques et certains amides de l'acide thymoloxyacétique^{9,10} agissent plutôt comme des hypotensieurs que comme des anesthésiques locaux, analgésiques, ou stimulants du SNC.

Sur les considérations, nous avons entrepris la synthèse de quelques dérivés de l' acide phénoxyacétique et de cystéamines et homocystéamines de formule générale 5.

Chimie

Les amides 5 (Tableau I), ont été préparés à partir des dérivés substitués de l'acide phénoxy acétique 3.

Ceux-ci ont été obtenus à partir des phénols substitués correspondants 2 par action de l'acide chloracétique, en milieu alcalin^{11,12}.

Les alcoyl-cystéamines et homocystéamines utilisées ont été déjà préparées comme nous l'avons précédement décrit¹⁴. En les faisant réagir avec les chlorures **4** nous avons obtenus les produits définitifs **5**. Cette réaction a été effectuée selon la méthode de Schotten-Baumann en utilisant une solution chloroformique de chlorure de l'acide phénoxyacétique substitué, en milieu alcalin (Na₂CO₃).

|--|

No	- R ¹	R²	R	n	Rdt %	F°C	FORMULE MOLECULAIRE
1	Cl	Н	СН,	2	60	89-91	C ₁₁ H ₁₄ ClNO ₂ S
2	Cl	` H	C_2H_5	2	60	84-85	C ₁₂ H ₁₆ ClNO ₂ S
3	Cl	Н	i-Pr	2	65	87-88	C ₁₃ H ₁₈ CINO ₂ S
4	Cl	н	n-Bu	2	75	71-72	C ₁₄ H ₂₀ ClNO ₂ S
5	Cl	н	CH3	3	75	150-152	C ₁₂ H ₁₆ ClNO ₂ S
6	Cl	H	C ₂ H ₅	3	85	52-54	C ₁₃ H ₁₈ ClNO ₂ S
7	Cl	Н	i-Pr	3	65	59-60	C ₁₄ H ₂₀ CINO ₂ S
8	Cl	`Н	n-Bu	3	85	62-63	C ₁₅ H ₂₂ ClNO ₂ S
9	C1	3-CH ₃	CH3	2	90	76-78	C ₁₂ H ₁₆ ClNO ₂ S
10	Cl	3-CH ₃	C2H5.	2.	90	58-59	C ₁₃ H ₁₈ ClNO ₂ S
11	Cl	3-CH ₃	i-Pr	2	83	52-53	C ₁₄ H ₂₀ ClNO ₂ S
12	Cl	3-CH ₃	n-Bu	2	80	48-49	C ₁₅ H ₂₂ ClNO ₂ S
13	Cl	3-CH,	CH,	3	73	50-51	C ₁₂ H ₁₈ ClNO ₂ S
14	Cl	3-CH ₃	C ₂ H ₅	3	93	39-40	C ₁₄ H ₂₀ ClNO ₂ S
15	Cl	3-CH ₃	i-Pr	3	63	49-51	C ₁₅ H ₂₃ ClNO ₂ S
16	Cl	3-CH₃	n-Bu	3	87	30-31	C ₁₆ H ₂₄ ClNO ₂ S
17	Cl	2-C1	CH,	2 .	86	86-88	$C_{11}H_{13}Cl_2NO_2S$
18	Cl	2-C1	C ₂ H ₅	2	60	66-67	$C_{12}H_{15}Cl_2NO_2S$
19	C!	2-C1	i-Pr	2	66	57-58	$C_{13}H_{17}Cl_2NO_2S$
20	Cl	2-C1	n-Bu	2	60	64-65	$C_{14}H_{19}Cl_2NO_2S$
21	Cl	2-Cl	CHj	3	75	58-59	$C_{12}H_{15}Cl_2NO_2S$
22	Cl	2-Cl	C ₂ H ₅	3	73	50-51	$C_{13}H_{17}Cl_2NO_2S$
23	Cl	2-Cl	i-Pr	3	70	67-68	$C_{14}H_{19}Cl_2NO_2S$
24	Cl	2-Cl	n-Bu	3	65	34-36	$C_{15}H_{21}Cl_2NO_2S$
25	CH ₃	H	CH_3	2	90	69-72	$C_{12}H_{17}NO_2S$
26	CH3	н	C ₂ H ₅	2	95	60-61	$C_{13}H_{19}NO_2S$
27	CH,	н	i-Pr	2	60	61-62	$C_{14}H_{21}NO_2S$
28	CH_3	н	n-Bu	2	60	50-51	C ₁₅ H ₂₃ NO ₂ S
29	CH_3	H ·	CH3	3	80	65-66	C ₁₃ H ₁₉ NO ₂ S
30	CH3	н	C ₂ H,	3	90	27-29	$C_{14}H_{21}NO_2S$
31	CH3	Н	i-Pr	3	90	51-52	C ₁₅ H ₂₃ NO ₂ S
32	CH_3	н	n-Bu	3	90	35-36	C ₁₆ H ₂₅ NO ₂ S
33	t-Bu	H	CH3	2	95	81-83	C ₁₅ H ₂₃ NO ₂ S
34	t-Bu	н	C_2H_5	2	85	56-58	$C_{16}^{-}H_{25}NO_{2}S$
35	t-Bu	н	i-Pr	2	95	. 69-71	C ₁₇ H ₂₇ NO ₂ S
36	t-Bu	Н	n-Bu	2	95	40-41	C ₁₈ H ₂₉ NO ₂ S
37	t-Bu	н	CH3	3	90	220/0,5mm	C ₁₆ H ₂₅ NO ₂ S
38	t-Bu	н	C ₂ H ₅	3	95	52-53	$C_{17}H_{27}NO_2S$
39	t-Bu	Н	i-Pr	3	95	51-53	C ₁₈ H ₂₉ NO ₂ S
40	t-Bu	н	n-Bu	3	90	194/0,01mm	C ₁₉ H ₃₁ NO ₂ S

Partie experimentale

Les produits de fusion ont été determinés avec un appareil de Büchi et ne sont pas corrigés. Les analyses élémentaires ont été effectuées dans les Laboratoires de Service Central de Microanalyse (France) et de CIBA (Suisse) que nous remercions. Les resultats obtenus sont conformes aux valeurs théoriques avec une approximation de \pm 0,4%. Les spectres IR ont été enregistrés sur un appareil Perkin-Elmer 177, les échantillons étant mis en suspension dans le Nujol. Les spectres RMN ont été effectués à 60 MHz sur Varian A60 dans le chloroforme deutérie avec la TMS comme référence interne, les déplacements chimiques sont évalués en p.p.m.

I. Chlorure des acides phénoxy acétiques substitués.

a) Acides phénoxy acétiques substitués 3^{11,12}.

Nous les avons obtenu à partir des phénols substituées 2 en les faisant réagir avec les chloracétates de sodium en milieu aqueux à chaud. Après acidification avec de l'acide chlorhydrique 2N et refroidissement nous avons obtenu les acides solides. b) Chlorures des acides phénoxy acétiques substitués $4^{1,13}$.

Nous les obtenons en faisans réagir les acides 3 avec le chlorure de thionyle.

II. Alcoyl-cystéamines et homocystéamines¹⁴

a) Alcoylmercaptoéthylamines (n=2).

Elles ont été préparées par action d'un mercaptan sur l'éthyléneimine dans le méthanol à -15° C et répos pendant une nuit à la température ambiante.

b) Alcoylmercaptopropylamines (n=3).

Elles ont été préparées en faisant réagir le mercaptan avec l'acrylonitrile, à 0°C en présence de méthylate de sodium comme catalyseur et en milieu benzènique. La fonction nitrile est réduite par la suite à l'aide de LiAIH₄ dans l'éther.

III. S-Alcoyl acylamides de l'acide phénoxy acétique 5 (n: 2,3).

Méthode générale. Dans une solution de 0,02 mole de S-alcoyl cystéamine ou homocystéamine dans 100 ml de chloroforme on ajoute 0,024 moles de carbonate de sodium anhydre en solution dans 20 ml d' eau. Le mélange est agité fortement et on y ajoute lentement une solution de 0,02 mole de chlorure de l' acide phénoxyacetique substitué correspondant 4. Après addition de la solution, on continue l' ajitation pendant 2h. On sépare la couche organique, lave à l' eau et séche (Na₂SO₄). Après avoir éliminé le sonlvant on obtient un résidu solide qui est recristallisé dans un mélange éther-éther du petrole ou éther-n-pentane.

Par le même procédé ont été préparés tous les produits de cette série, dont les constantes et les analyses figurent au Tableau 1.

Etude spectroscopique

A.- Alcoyl mercaptoéthyl amides des acides phenoxyacétiques (5: n=2, $R=CH_3$, C_2H_5 , C_3H_7 -i, C_4H_9 -n).

I.R.: 1650-1680 cm⁻¹ (C=O), 3320-3400 cm⁻¹ (-NH-).

RMN: Les spectres RMN des produits synthétisés sont en accord avec leur structure suposée. Un example représentatif est donné pour le produit de formule générale 5 (n=2, R=CH₃, C₂H₅, C₃H₇·i, C₄H₉-n):

- SCH₃ δ :2,1 (singulet 3H); - CH₂-S- δ :2,55 (triplet 2H);

- N-CH₂- δ :3,55 (quadruplet 4H); - NH- δ :6,90 (mal séparé des bandes aromatiques); -O-CH₂- δ :4,5 (singulet 2H); aromatiques δ :7,1 (quadruplet 4H).

Par ailleurs, en ce qui concerne le groupement R nous avons observé les absorptions suivantes:

 $\begin{array}{l} R = CH_2CH_3: -CH_3 \ \delta:1,28 \ (triplet \ 3H); \ --CH_2-S-CH_2- \ \delta:2,55 \ (multiplet \ 4H). \\ R = CH(CH_3)_2: \ -C-CH-C- \ \delta:2,85 \ (multiplet \ 1H); \ 2(CH_3) \ \delta:1,25 \ (doublet \ 6H). \\ R = C_4H_9-n: \ -CH_3 \ \delta: \ 0,9 \ (triplet \ 3H); \ -CH_2-CH_2- \ \delta:1,5 \ (multiplet \ 4H); \ --CH_2-S-CH_2- \ \delta:2,55 \ (multiplet \ 2H). \end{array}$

Nous avons observé une difference d'absorption en ce qui concerne les dérivés des amides methyl-3 chloro-4 phénoxyacétique: -NH- et phényl (3H) δ : 6,6 à 7,3 (multiplet 4H) et tert-butyl-4 phénoxyacetique, (CH₃)₃C- δ : 1,3 (singulet 9H); aromatiques δ : 7,1 (quandruplet 4H).

B.- Alcoyl mercaptopropyle amides des acides phénoxyacétiques substitués (5: n=3, $R=CH_1$, C_2H_5 , C_3H_7 -i- C_4H_9 -n).

I.R. 1650-1650 cm⁻¹ (C=O), 3260-3380 cm⁻¹ (-NH-).

NMR: Les spectres RMN des produits synthétisés sont en accord avec leur structure suposée . Un exemple représentatif est donné pour le produit de formule général **5** (n=3, R=CH₃, C₂H₅, C₃H₇-i, C₄H₉-n):-SCH₃ δ :2,1 (singulet 3H); -CH₂-S- δ :2,65 (triplet 2H); -C-CH₂-C- δ :1,85 (5-plet 2H); -N-CH₂- δ :3,45 (quadruplet 4H); -NH- δ :6,9 (mal séparé des bandes aromatiques); -O-CH₂- δ :4,5 (singulet 2H); aromatiques δ :7,1 (quadruplet 4H).

Par ailleurs en ce qui concerne le groupement R nous avons observé les absorptions suivantes:

 $\begin{array}{l} R = CH_2CH_3:-CH_3 \ \delta:1,25 \ (triplet \ 3H); \ -CH_2-S-CH_2- \ \delta:2,55 \ (multiplet \ 4H). \\ R = -CH(CH_3)_2: \ 2 \ (CH_3) \ \delta:1,25 \ (doublet \ 6H); -C-CH-C-\delta:2,85 \ (multiplet \ 1H); \ -CH_2-S- \ \delta:2,55 \ (triplet \ 2H). \end{array}$

 $R = C_4H_9$ -n: $-CH_3 \delta:0.9$ (triplet 3H); $-CH_2-CH_2 - \delta:1.5$ (multiplet 4H); $-CH_2-S-CH_2-\delta:2.55$ (multiplet 4H).

Nous avons observé une différence d'absorption en ce qui concerne les dérivés des amides methyl-3 chloro-4 phénoxyacetique: -NH- et phényl (3H) δ :6,6 à 7,3 et tert-butyl-4 phénoxyacétique: (CH₃)₃ C- δ :1,3 (singulet 9H); aromatiques δ :7,1 (quadruplet 4H).

Summary

Alkyl mercaptoalkyl amides of phenoxyacetic acid 5.

The synthesis of new amides 5 of phenoxyacetic acid 3 with S-alkyl cysteamines and homocysteamines (n=2,3) is described. The products are obtained by reaction of S-alcoylcysteamines, and -homocysteamines with substituted phenoxy-acetic chlorides 4 in chloroforme in alcalin medium (Na₂CO₃).

The new compounds are analogues of Meclofenoxate and are testing for preliminary pharmacological evaluation.

Περίληψη

«Φαινοξυακεταμίδια των θειο-αλκυλοκυστεαμινών και ομοκυστεαμινών».

Περιγράφεται η σύνθεση νέων αμιδίων του φαινοξυοξικού οξέος 5 μετά των Sαλκυλο κυστεαμινών και ομοκυστεαμινών (n=2,3). 140

Η σύνθεση των νέων αμιδίων **5** πραγματοποιείται με την επίδραση S-αλκυλο κυστεαμινών και ομοκυστεμινών (n-2,3) επί των αντιστοίχων υποκατεστημένων χλωριδίων του φαινοξυοξικού οξέος **4**, εντός χλωροφορμίου παρουσία αλκαλικού μέσου (Na₂CO₃).

Τα νέα προϊόντα που παρουσιάζουν αναλογίες με τα γνωστά Meclofenoxate (Lucidril^R) και Clofexamide, υποβάλλονται ήδη σε φαρμακολογικό έλεγχο για ανάλογες δράσεις.

Bibliographie

- 1. Thuillier G., Rumpf P.: Bull. Soc. Chim. Fr., 1786 (1960)
- 2. Thuillier G., Marlier S., Saviel B., Rumpf P.: Bull. Soc. Chim. Fr., 1084 (1963).
- 3. Thuillier G., Dupont J.M., Vilar A., Rumpf P.: Bull. Soc. Chim. Fr., 1087 (1963).
- 4. Rumpf P.: Eur. J. Med. Chem. (Chim. Ther.), 1, 78 (1966)
- 5. Thuillier G.: Eur. J. Med. Chem. (Chim. Ther.), 1, 82 (1966)
- 6. Staeher W., Karzel K.: Eur. J. Med. Chem. (Chim. Ther.), 1, 444 (1966)
- 7. Martindale: *Extra Pharmacopeia* 26th ed., Blacow N.W. editor, p. 116. The pharmaceutical Press, London, 1972.
- 8. Tsatsas G., Costakis E.: J. Med. Chem., 14, 1004 (1971)
- 9. Tsatsas G., Guioca-Dedopoulou V.: Ann. Pharm. Fr., 25, 347 (1967)
- Guioca-Dedopoulou V., Tsatsas G., Papaioannou G., Zaroslinski J.F., Browne R.K., Possley L.H.: Ann. Pharm. Fr., 28, 707 (1970).
- 11. Milton, Stephen.: J. Chem. Soc., 1600 (1922)
- 12. Koelsch F.C.: J. Am. Chem. Soc., 53, 304 (1931)
- 13. Royer R., Bisagni E.: Bull. Soc. Chim. Fr., 521 (1959)
- 14. Lambrou D., Tsatsas G.: Ann. Pharm. Fr., 32, 295 (1974)

CATALYTIC PROPERTIES OF γ -Al₂O₃ ELECTROLYTICALLY PREPARED.

I. EFFECT OF ANODIC OXIDATION TIME ON ITS CATALYTIC PROPERTIES

GEORGE S. PATERMARAKIS

Department of Chemical Engineering, Section of Material Science and Technology, Laboratory of Physical Chemistry and Applied Electrochemistry, National Technical University Athens Greece

(Received July 16, 1985, Revised January 22, 1987)

Summary

The object of this work was the study of the catalytic properties of γ -Al₂O₃ prepared electrolytically. The γ -Al₂O₃ catalysts were used in the form of a porous film on Al metal. The anodic oxidation of Al for preparing γ -Al₂O₃ was carried out in H₂SO₄, 15% w.p.v., at constant bath temperature and current density but at different anodic oxidation times.

The catalytic decomposition of HCOOH was used as a reference reaction. The decomposition of HCOOH on these oxides is predominantly a dehydration process, being a zero order reaction in our experimental conditions. The rate constant at a given reaction temperature, the activation energy and the frequency factor were all influenced in a uniform way by anodic oxidation time. It was observed that all these parameters displayed a maximum in their values at the same anodic oxidation time. This catalytic behaviour is not due to the variation of the mass, thickness and porosity of the γ -Al₂O₃ film but is instead due to a change in its structural properties such as crystallinity, deviation from stoichiometric ratio and acidity of the oxide surface which are also affected strongly by the anodic oxidation time.

Key words: Formic acid, Catalytic decomposition, Electrolytic aluminium oxides.

Introduction

Aluminium oxides prepared electrolytically are expected to exhibit different properties in comparison to the chemically prepared ones as a result of the specific preparation method. The properties which are expected to change are the structure, total real surface, quantity, quality and intensity of surface active centers, deviation from stoichiometric ratio (semiconductivity), surface acidity and consequently adsorption and catalytic properties. Taking into account that the use of the anodic oxidation of alloys is also possible^{1, 2} for the preparation of mixed aluminium oxide catalysts and that this process is easy and cheap, then their use as catalysts acquires a specific interest.

To this aim work was carried out for the first time¹ in which the catalytic properties between electrolytically and chemically prepared Al_2O_3 were compared. The decomposition of HCOOH as a reference reaction was used and the superiority of the catalytic activity of electrolytic Al_2O_3 in the above mentioned reaction was shown.¹

In a later work² the same reference reaction was used in which electrolytic Al_2O_3 catalysts pure and mixed were prepared at various conditions of anodic oxidation. The aim of that work² was to interpret the catalytic behaviour of Al_2O_3 in relation to structural properties which are affected by different anodic oxidation conditions and also by further treatment of the initially formed Al_2O_3 .

The present study is based partly on the conclusions drawn from the previous one, enriched with more recent data on the catalytic properties of electrolytically prepared Al_2O_3 .

For the method of preparation and also for the structural properties of electrolytically prepared Al_2O_3 a large number of data exists in the literature.^{3, 4} With the anodic oxidation of Al two kinds of oxides are formed in the form of a film on Al metal. When the anodic oxidation of Al is performed in electrolytes which do not dissolve Al_2O_3 (borate salts, boric acid, citric acid, phosphate and carbonate salts etc.) an oxide is formed which is considered as a "high ionic resistance" layer up to $l\mu m$ in thickness. This oxide is nonporous and has a cellular structure; it is γ -Al₂O₃ or γ '-Al₂O₃ (arrangement of cations in the lattice of γ ' configuration is more random than in the γ) or boehmite (γ -AlOOH) or more hydrated Al₂O₃, according to anodisation conditions.

In electrolytes which dissolve Al_2O_3 (sulphuric, phosphoric, oxalic, chromic acid etc.) the oxide formed is considered as a "low ionic resistance" layer which is also of cellular structure, porous and its thickness can extend over many decades of μ m. This oxide is of the γ -Al₂O₃ configuration with or without hydrates (boehmite etc.). The diameter of cells is a linear function of the voltage of electrolysis, their concentration in the surface is high, about 10¹⁰ cells/cm² of surface, whereas pore diameter is of the order of 100Å.³

In the present work the decomposition of HCOOH is also used as the reference reaction. The reason for choosing the above reaction is based on the fact that the measurement of the formation rate of reaction products is easy.

HCOOH is decomposed by the following processes:

- 1. Dehydration: HCOOH \rightarrow H₂O + CO
- 2. Dehydrogenation: HCOOH \rightarrow H₂ + CO₂
- 3. Reduction: HCOOH $-\frac{1}{2}O_2$ HCHO

the latter being a rare process in heterogeneous catalytic decomposition. Although the measurement of the reaction rate of the catalytic decomposition of HCOOH is easy, the proposed reaction mechanisms are complicated and despite of the great number of existing works they are still in doubt. At any rate, it is generally accepted that acidic catalysis and n-semiconductors cause mainly the dehydration of HCOOH, whereas the basic ones, p-semiconductors and metals cause dehydrogenation.⁵⁻⁷ Al₂O₃ is considered to have mainly an acidic character as well as some basic one;⁸⁻¹⁴ it is predominantly a dehydration catalyst.⁶

Experimental

Eight electrolytic γ -Al₂O₃ were prepared under various anodic oxidation times (t_{ox}) and were used as catalysts in the decomposition of HCOOH.

For the preparation of the electrolytic γ -Al₂O₃ (from now on el. γ -Al₂O₃) a commercial sheet of Al, 0.5 mm thick, was used and its composition was found by mass spectroscopy to be: Fe: 0.26, Si: 0.2, Mn: 0.0066, Mg: 0.0039, Cu: 0.0028, Zn: 0.084, Ti: 0.015% the remainder was Al. Specimens of dimensions 35×50 mm were cut from this Al sheet. Each specimen was cut symmetrically on either side into strips of dimensions of 20×2 mm parallel to the 50 mm side of the specimen. After completion of the anodic oxidation of the Al specimen, the 20 strips carrying the el. γ -Al₂O₃ film comprised the catalyst. The anodic oxidation of Al was carried out in a thermostatically controlled electrolytic cell containing H₂SO₄ 15% w.p.v.

The Al specimen was used as anode and two Pb sheets having the same dimensions as the Al specimen were used as cathode, providing for them to be placed symmetrically and parallel to the Al electrode, on either side of it.

During electrolysis the following electrochemical reactions occur.

Anode (Al): $SO_4^2 - 2e \rightarrow SO_4$, $SO_4 + H_2O \rightarrow H_2SO_4 + 1/2 O_2$,

 $4Al + 3O_2 \rightarrow 2Al_2O_3$ (Al oxidation)

Cathode (Pb): $2H_3O^+ + 2e \rightarrow H_2 + 2H_2O$ (hydrogen evolution)

Partial dissolution of Al_2O_3 by H_2SO_4 is also occuring simultaneously with Al_2O_3 production,^{3, 4} the latter obeying Faraday's law. Dissolution is dependent on bath temperature and current density.^{3, 4} In the present work the anodic oxidation conditions were: bath temperature, $(t_b) = 30^{\circ}C$ and current density (I) = 3.5 A/dm² while various anodic oxidation times were chosen. Once anodisation was completed, the oxidised specimens were subjected to the following treatment: washing with distilled water, neutralization with NaOH 0.1N, washing again with water and drying in an air stream. The oxide film thickness was measured by a metallographic microscope and the mass of the oxide film was determined by dissolution of the oxide in chromophosphoric solution, containing 35 ml H₃PO₄ (1.71 s.g.) and 20g CrO₃ per liter, which dissolves the oxide film only but does not attack the Al metal.³ Merk HCOOH (98-100%) was used. The Schwab reactor^{1, 2} shown in Fig. 1 was used for HCOOH decomposition because it was judged to be the most suitable for the case under investigation.

Resistance flowmeters,^{1, 2} operating at atmospheric pressure and temperature of 25°C were used to measure the rate of CO produced from HCOOH decomposition.

Since the decomposition of HCOOH is a 100% dehydration reaction, the reaction rate (r) of HCOOH decomposition is the same to the rate of CO production described by the rate equation:

$$\mathbf{r}' = -\frac{\mathrm{dn}_{\mathrm{HCOOH}}}{\mathrm{dt}} = \frac{\mathrm{dn}_{\mathrm{CO}}}{\mathrm{dt}} = \frac{\mathrm{P}}{\mathrm{RT}_{\mathrm{a}}} \cdot \frac{\mathrm{dV}'}{\mathrm{dt}} \tag{1}$$

where n: number of moles, t: time, P: pressure of 1at, R: universal gas constant, T_a : ambient temperature ~298 K, dV'/dt: flow rate of CO in 1/s. Substituting the above values into the rate equation one obtains:

FIG. 1: Schwab reactor A: thermoelement, B: catalyst, C: furnace, DE: capillary pipes for mild boiling, F: substance being decomposed (HCOOH), G: cooler, H: inlet of produced gases in the cooler, I: outlet of produced gases, K: wash flask, M: active substance (silica gel) for water vapour adsorption.

$$\mathbf{r} = 6.816 \cdot 10^{-7} \cdot \frac{\mathrm{dV}}{\mathrm{dt}} = 6.816 \cdot 10^{-7} \cdot \mathbf{r}$$
 (2)

where dV/dt = r is the flow rate in ml/s

For convenience in the calculation of kinetic parameters r was used instead of r'. The reaction was zero order and its rate coincided with the reaction rate constant, k, at various decomposition temperatures. By employing the Arrhenius equation:

$$\mathbf{k} = \mathbf{A}\mathbf{e}^{-\mathbf{E}/\mathbf{R}\mathbf{T}} \tag{3}$$

CATALYTIC PROPERTIES OF ELECTROLYTIC 7-Al2O3

or log k = log A
$$-\frac{E}{4.57} \cdot \frac{1000}{T}$$
 (4)

(were k: reaction rate constant, A: frequency factor, E: activation energy in kcal/mol, T: temperature in K) and by using the least squares method, the Arrhenius line (log k vs 1000/T) was obtained. The gradient of the line multiplied by 4.57 and its intersection with y axis give E and log A respectively.

Results

The mass, thickness and apparent density of oxide catalysts at corresponding t_{ox} are given in table I.

TABLE I: Mass (m_{ox}) , thickness (ψ) and apparent density (d) of electrolytic γ -Al₂O₃ vs anodic oxidation time (t_{ox}) in H₂SO₄ 15% w.p.v., $t_b = 303$ K, I = 3.5 A/dm².

t _{ox} (min)	9	18	22.5	27	35	48	65	90
m _{ox} (mg)	49	89	106	119	135	139	139	139
ψ (μm)	10	19.5	23.5	27	31	33	33	33
d (g/cm ³)	2.43	2.26	2.23	2.18	2.16	2.09	2.09	2.09

In table I it is clearly shown that the m_{ox} and ψ parameters increase whereas d decreases gradually with t_{ox} up to $t_{ox} = 48$ min, after which they attain a constant value.

The rate of formation of mass and thickness of the oxide and the rate of density decrease become smaller with t_{ox} in the region $t_{ox} < 48$ min acquiring a zero value at $t_{ox} = 48$ min. The mass of oxide is always smaller than that anticipated by Faraday's law. The difference between the theoretical value and the measured one keeps increasing continuously with t_{ox} and expresses the mass which is dissolved by the H_2SO_4 15% w.p.v. solution. The variation of d with t_{ox} (table I) shows that the porosity of the oxide increases up to $t_{ox} = 48$ min becoming constant for $t_{ox} > 48$ min. This has been shown in a previous work⁴ also.

The decomposition of HCOOH on all prepared el. γ -Al₂O₃ catalysts is a ~100% dehydration process as it has been proved to be so by chemical analysis of reaction products. Only above 355°C traces of CO₂ were observed. The decomposition of HCOOH on Al metal did not yield a measurable rate of reaction by the method employed. In this case traces of CO₂ were also observed for temperatures above 355°C. Thus the underlying Al metal under the oxide film and also the thin film of γ -Al₂O₃, ~1000 Å thick, which always covers the Al metal surface owing to its position in the electrode potential series, do not have a "direct" influence on the results. Hence, for the reasons mentioned above, measurements were carried out at temperatures up to 355°C.

To check whether the H_2O produced during the dehydration reaction inhibits the reaction and whether dilution of HCOOH, occuring by the condensation of produced water in the space where the HCOOH is placed in the Schwab reactor, influences the reaction rate, this was measured in mixtures of HCOOH + H_2O at different con-

145

centrations and temperatures. The catalyst employed was el. γ -Al₂O₃ prepared under the following conditions: t_b = 303 K, I = 3.5 A/dm², t_{ox} = 48 min. The results are shown in Fig. 2.

FIG. 2: Dependence of HCOOH decomposition rate (r) on mole fraction (x) or partial pressure of HCOOH in solutions of HCOOH and H_2O .

It is observed that for x>0.6 the reaction rate is constant for each temperature chosen. The value of the mole fraction was always x>0.75 even in experiments which were performed over a long period (decades of hours). Thus in the experimental conditions chosen, the order of reaction was zero and consequently the reaction rate coincided with the reaction rate constant (r=k). It is also shown that H₂O inhibits the reaction at low mole fractions and the order of reaction is expected to change from 1 for extremely small x's to fractional for higher values of x.

The zero order reaction for x>0.6 also proves that HCOOH is adsorbed strongly on the el. γ -Al₂O₃ surface under the experimental conditions employed.

The measurements of the rate of HCOOH decomposition at different temperatures gave the Arrhenius diagram. In Fig. 3 indicative Arrhenius diagrams at five different t_{ox} are given.

From Fig. 3 it is apparent that by increasing t_{ox} the Arrhenius diagram is at first displaced to the right, producing an increase in the value of the gradient and an intersection higher up on the y axis (lines 1, 2, 3). Further increase of t_{ox} causes displacement of lines in the opposite direction, i.e. to the left and therefore the gradient and intersection with y axis simultaneously acquire lower values (lines 4, 5).

In table II the activation energy (E), the frequency factor (A) and the rate constant at 350°C ($k_{350°C}$) are given and also the A and $k_{350°C}$ parameters reduced per mass unit of catalyst (A/m_{ox}, $k_{350°C}/m_{ox}$) at different t_{ox} . The calculated values of E and log A from the Arrhenius diagrams by the least squares method are considered to be of satisfactory precision since all the correlation coefficients took values from 0.991 up to 0.999.

FIG. 3: Arrhenius diagrams concerning el. γ -Al₂O₃ catalysts at different t_{ox} 1:22.5, 2:27, 3:48, 4:65, 5:90 min, t_b = 303 K, I = 3.5 A/dm².

TABLE II: Effect of anodic oxidation time (t_{ox}) on the kinetic parameters: activation energy (E), frequency factor (A), rate constant at 350°C $(k_{350°C})$ and A/m_{ox} , $k_{350°C}/m_{ox}$ in the dehydrative decomposition of HOOOH on el. γ -Al₂O₃, $t_b = 303$ K, I = 3.5 A/dm².

t _{ox} (min)	E (kcal/mol)	log A A in (ml/min)	k _{350°C} (ml/min)	log (A/m _{ox}) A/m _{ox} in (ml/min·g)	k _{350℃} /m _{ox} (ml/min•g)
9.0			0.51		10.41
18.0			1.15		12.78
22.5	19.89	7.50	3.24	8.47	30.28
27.0	23.48	8.88	4.27	9.79	35.29
35.0	28.27	10.79	7.25	11.66	53.70
48.0	33.71	12.80	9.11	13.66	65.54
48.0	32.21	12.32	10.29	13.18	74.03
48.0	30.76	11.73	8.50	12.59	61.15
48.0	31.41	11.95	8.17	12.81	58.78
65.0	31.96	12.13	7.94	12.98	57.12
90.0	27.83	10.54	5.78	11.39	41.58
90.0	27.06	10.30	6.29	11.16	45.25

The change of E, log A and $k_{350^{\circ}C}$ with t_{ox} is shown in Fig. 4.

FIG. 4: Effect of t_{ox} on E, log A and $k_{350^{\circ}C}$ in the dehydrative catalytic decomposition of HCOOH on el. γ -Al₂O₃ catalysts, $t_b = 303$ K, I = 3.5 A/dm².

It is evident that E, log A, $k_{350^{\circ}C}$ change in a uniform way with t_{ox} . A maximum appears at $t_{ox} = 48$ min in all these parameters. The rate of increase in their values in the region on the left of the maximum is greater than the rate of decrease corresponding to the right hand side of the maximum. At other temperatures, t <350°C, the same behaviour of k with t_{ox} is observed as for $k_{350^{\circ}C}$, by employing the Arrhenius equation (3) and making use of the kinetic parameters given in table II.

In Fig. 5 the variation of $k_{350^{\circ}C}/m_{ox}$ and $log(A/m_{ox})$ with t_{ox} is shown.

It is observed that $k_{350^{\circ}C}/m_{ox}$ and $\log (A/m_{ox})$ are changed in a qualitatively similar way to that of $k_{350^{\circ}C}$, log A with t_{ox} (Fig. 4). This behaviour is of great significance as will be shown in the following.

Discussion

As it has been shown from the experimental results the el. γ -Al₂O₃ prepared at t_b = 303 K, I = 3.5 A/dm² and various t_{ox} is a 100% dehydration catalyst up to 355°C. The CO₂ which is traced above 355°C was propably due to dehydrogenative decomposition of HCOOH taking place on a very small surface of Al remaining uncovered by the oxide and coming in contact with HCOOH. These small surface increments are the positions on the specimens from which the strips were cut. This

FIG. 5: Effect of t_{ox} on $k_{350^{\circ}C}/m_{ox}$ and $log(A/m_{ox})$ in dehydrative decomposition of HCOOH on el. γ - $Al_2O_3^{\circ}$ catalysts, $t_b = 303$ K, I = 3.5 A/dm².

view is strengthened by the fact that at the same temperature traces of CO₂ were observed when Al metal was used as catalyst, the latter being in accordance with the view that metals generally are dehydrogenative catalysts in the HCOOH decomposition.⁵ On the other hand, chemically prepared aluminas are also dehydrative catalysts in HCOOH decomposition but do not possess such a high dehydrative ability. The γ -Al₂O₃ chemically prepared gave dehydration efficiency of the order of 67 - 83%, Al₂O₃ formed at 970°C had an 95-100% efficiency whereas α -Al₂O₃ a 16-30% dehydration efficiency.¹⁵ It seems obvious that the special way of electrolytic preparation of γ -Al₂O₃ adds to it this predominantly dehydrative character.

The dehydrative action of γ -Al₂O₃, which possesses strong acidic Lewis centers (Al³⁺), causes the dehydration of HCOOH, which is considered to occur on these centers by an acid-base mechanism⁶ formulated in Fig. 6.

FIG. 6: Mechanism of HCOOH dehydration on Al_2O_3 .

The proposed mechanism, as it is shown in the schematic diagram, includes the adsorption of HCOOH on Al_2O_3 . But the view that the mechanism would instead include a formic ion seems to be more correct. When alumina is exposed to HCOOH vapour, formic ion is formed as a result of adsorption accompanied by simultaneous decomposition and its I.R. spectrum is similar to that taken for aluminium formate. By I.R. spectroscopy it was also shown that during the decomposition of HCOOH

on alumina the chemisorbed species were formic ions, protons and water while CO, CO_2 or HCOOH were not present on it in the experimental conditions employed.¹⁶

In the same paper¹⁶ it has been supported that the decomposition of HCOOH on γ -Al₂O₃ takes place between surface protons and HCOOH in the gaseous phase. The adsorption with decomposition of HCOOH on γ -Al₂O₃ supplies protons to the surface of the catalyst which behave as active centers for the subsequent reaction. Thus the reaction takes place on Brönsted acidic sites. The adsorbed formic ions on Lewis acidic sites do not behave as reaction intermediates. That work¹⁶ however referred to decomposition temperatures about 190°C. In the same work the occurrence of the reaction on Lewis acidic centers via a formic ion intermediate was not excluded from taking place at higher temperatures since the decomposition of formic intermediate demands a greater activation energy than via the previous way of HCOOH decomposition.

In our work the decomposition temperatures were 290 - 355° C. At lower temperatures it was indeed observed that the decomposition of HCOOH gave a reaction rate which was very small to be measured precisely by the method employed. By increasing the temperature the reaction rate increased slightly and therefore the activation energy ought to be small. All these facts are in accordance to views mentioned in paper.¹⁶ Thus the existing results in our work are in agreement with the mechanism which includes formic ion as a reaction intermediate and the activity of el. γ -Al₂O₃ must be correlated to its Lewis acidic character.

In the Results it was mentioned that the reaction order was zero for high partial pressures of HCOOH and the produced water does not inhibit the reaction strongly. This is in agreent with the view that at high HCOOH pressures the reaction order is generally zero for metal catalysts⁵ and also for oxide catalysts, although pure kinetic studies do not exist for the second case. The zero order of reaction in experimental conditions denotes that the dissociative adsorption of HCOOH on el. γ -Al₂O₃ is strong; equally the adsorption enthalpy (Δ H_{ad}) is of significant magnitude and the calculated activation energy is the true one.

Since the activation energy (E) changes, depending on t_{ox} , the heat of adsorption $(-\Delta H_{ad})$ must also change in a similar way with t_{ox} . This is deduced from the theory of activated complexes. Therefore the variation of kinetic parameters E and also A, A/m_{ox} , $k_{350^{\circ}C}$, $k_{350^{\circ}C}/m_{ox}$ must be connected to the variation of ΔH_{ad} and the surface properties of el. γ -Al₂O₃, all of which are affected by t_{ox} . From Fig. 5 it is evident that the mass of the oxide film does not affect significantly the kinetic parameters A and $k_{350^{\circ}C}$, these being affected by t_{ox} only.

The structural properties of el. γ -Al₂O₃ as defined by total real surface, deviation from stoichiometric ratio (semiconductivity), crystallinity and surface acidity are all being affected by the variation of t_{ox} through the mechanism of anodic oxidation described below:

As soon as anodisation of Al in the H_2SO_4 bath starts, an oxide layer of thickness <1.4 nm/v (imposed voltage) begins to form which is compact, having a density of 2.9 - 3.0 g/cm³ and called the "barrier layer".^{3, 4}

 H_2SO_4 attacks the oxide at specific active centers before the latter has acquired its limiting thickness, thus starting to dissolve the oxide. Hence the formation of pores begins exactly on these points. While anodisation continuous, taking place at

constant current, the movement of the barrier layer also continuous, taking place towards the metal side (reaction front).

The development of pores follows in pace the oxide development, i.e. the continuous movement of the Al_2O_3/Al interface towards the Al direction, due to the dissolution of the oxide in H_2SO_4 bath. The oxide development towards the Al side creates behind it the porous oxide film. By increasing t_{ox} the dissolution of oxide from the inner surface of pores and also of the outer oxide layer continuous to take place. As a result of this process, the pores become enlarged towards the outer surface thus acquiring a conical configuration. The dissolution of the outer layer of oxide film increases with increasing t_{ox} and at a certain time ($t_{ox} = 48$ min) the rates of mass and thickness formation become equal to the dissolution rate. For $t_{ox} > 48$ min a steady state is observed characterised by constant mass, thickness and oxide porosity. Thus the porosity of oxide and the real surface increase with t_{ox} up to $t_{ox} = 48$ min acquiring constant values for $t_{ox} > 48$ min. The increase of porosity up to $t_{ox} = 48$ min explains partially the rise in the values of A, A/m_{ox} , $k_{350^{\circ}C}/m_{ox}$ up to $t_{ox} = 48$ min by increasing t_{ox} .

The produced oxide in the barrier layer is amorphous $\gamma' - Al_2O_3$ which is converted quickly to microcrystalline $\gamma - Al_2O_3$, while by a certain mechanism the $\gamma - Al_2O_3$ gradually becomes more crystalline with increasing t_{ox} .

The oxide is also expected to deviate from stoichiometric ratio acquiring an excess of oxygen (p-semiconductivity) due to the conditions of oxide preparation and the mechanism of oxidation. In this case electroneutrality is achieved by decreasing the valency of the anions or/and by increasing the valency of cations. The variation of semiconductivity is mainly related to the mass and thickness of oxide through an unknown for the time mechanism. As the thickness and mass of oxide become smaller, i.e. at low t_{ox} , the more the oxide deviates from its stoichiometric ratio or, expressed in another way, the oxygen excess becomes greater.

Thus at low t_{ox} the oxide is more amorphous and ought to yield greater values of $-\Delta H_{ad}$ and E. However, the existing excess of oxygen causes a partial or entire saturation of the free valencies of atoms, responsible for Lewis acidic centers behaviour. Hence, these two competitive phenomena are observed, which determine the catalytic behaviour of el. γ -Al₂O₃.

At low t_{ox} the deviation from stoichiometric ratio is predominant over the distortion of crystalline structure, so the oxide exposes a small number of active centers, which are of low intensity, giving low values of $-\Delta H_{ad}$, E and A. At larger t_{ox} the oxide crystallinity increases, while the extend of deviation from stoichiometric ratio decreases. The decrease of the latter is the main cause for the fact that the oxide exposes more active centers of greater intensity, thus yielding greater values for the parameters E, A, A/m_{ox}, $k_{350°C}$ and $k_{350°C}/m_{ox}$. The values of these parameters attain a maximum at $t_{ox} = 48$ min, where the deviation from stoichiometric ratio becomes very low. For $t_{ox} > 48$ min the deviation from stoichiometric ratio does not change significantly while crystallinity increases; the later predominating yields an oxide exposing active centers of smaller number and of lower intensity. Thus for $t_{ox} > 48$ min the value of the above mentioned parameters decrease. The rate of decrease of these parameters is expected to become zero for $t_{ox} > 48$ min as indeed shown in Figs. 4, 5. In conclusion t_{ox} is responsible for the variation of surface acidity and kinetic parameters during the catalytic decomposition of HCOOH on el. γ -Al₂O₃. The exact nature of acidic or/and basic centers on γ -Al₂O₃ is still in doubt and the views on the subject are different and frequently contradictory.

In other areas of research it has been also proved that the variation of t_{ox} affects significantly some other properties such as the protective ability of el. γ -Al₂O₃ against stress corrosion cracking of Al metal.^{17, 18}

As it has been shown, the complete study of the catalytic behaviour of el. γ -Al₂O₃ prepared at constant bath temperature, current density and at various t_{ox} demands a comprehensive study of structure, semiconductivity and the nature of acidity of these oxides. This will be the aim of subsequent work.

Περίληψη

Καταλυτικές ιδιότητες του ηλεκτρολυτικά παρασκευασμένου γ-Al₂O₃ Ι. Επίδραση του χρόνου ανοδικής οξείδωσης στις καταλυτικές του ιδιότητες

Στην εργασία αυτή μελετήθηκαν οι καταλυτικές ιδιότητες του γ-Al₂O₃ που παρασκευάζεται ηλεκτρολυτικά με την μορφή πορώδους μεμβράνης πάνω σε μεταλλικό ΑΙ και σε σταθερή θερμοκρασία λουτρού και πυκνότητα ρεύματος αλλά σε διάφορους χρόνους ανοδικής οξείδωσης. Σαν αντίδραση αναφοράς χρησιμοποιήθηκε η καταλυτική διάσπαση του ΗCOOH. Η καταλυτική διάσπαση του ΗCOOH πάνω στο ηλεκτρολυτικό γ-Al₂O₃ είναι κατ' εξοχήν αντίδραση αφυδάτωσης και η τάξη της είναι μηδενική στις πειραματικές συνθήκες που χρησιμοποιήθηκαν. Οι κινητικές παράμετροι: ενέργεια ενεργοποίησης, παράγοντας συγνότητας, σταθερά της ταγύτητας σε σταθερή θερμοκρασία διάσπασης μεταβάλλονται με ενιαίο τρόπο και εμφανίζουν όλες ένα μέγιστο στις τιμές τους και στον ίδιο χρόνο ανοδικής οξείδωσης. Η καταλυτική αυτή συμπεριφορά του ηλεκτρολυτικού γ-Al-O, δεν οφείλεται τόσο στη μεταβολή της μάζας, του πάγους και του πορώδους της μεμβράνης του οξειδίου, αλλά κυρίως στη μεταβολή των δομικών του χαρακτηριστικών όπως κρυσταλλικότητα, εκτροπή από τη στοιχειομετρική αναλογία του οξειδίου και την οξύτητα της επιφάνειάς του που μεταβάλλονται επίσης με το χρόνο ανοδικής οξείδωσης.

References

- 1. Th. Skoulikidis and C. Sarropoulos: Proc. Inter. Congr. on Bauxite, Alumina, Aluminium ICSOBA, 4th, Athens, Vol. 3, p.p. (356-374), Athens (1978).
- 2. G. Patermarakis: Ph. D. Thesis, NTU, Athens (1983).
- 3. L. Young: Anodic Oxide Films, p.p. (193-221), Academic Press, London (1961).
- 4. L.L. Shreir: Corrosion, Vol. 2, p.p. (16:3-16:32), Newnes-Butterworths, London (1976).
- 5. G. Bond: Catalysis by Metals, p.p. (421-432), Academic Press, London (1962).
- 6. O. Krelov: Catalysis by Nonmetals, p. (137), Academic Press, New York (1970).
- 7. Mamoru Ai: J. of Catalysis, 50, 291 (1977).
- 8. G. Schwab and H. Kral: Proc. Inter. Congr. Catalysis, 3rd, Amsterdam, I No. 20 (1964).
- 9. H. Pines and J. Manassen: Advances in Catalysis, Vol. 16, p. (49), Academic Press (1966).
- 10. S.G. Hindin and S.W. Weller: J. Phys. Chem., 60, 1501 (1956).
- 11. J.B. Peri: J. Phys. Chem., 69, 220 (1965).

- 12. J.B. Peri: Ibid, 69, 211 (1965).
- 13. J.B. Peri: *Ibid*, **69**, 231 (1965).
- 14. E.B. Cornelius, T.H. Milliken, G.A. Mills and A.G. Oblad: J. Phys. Chem., 59, 809 (1955).
- 15. G. Schwab and E. Schwab-Agallides: J. of Amer. Chem. Soc., 71, 1806 (1949).
- 16. K. Tamaru: Dynamic Heterogeneus Catalysis, p.p. (115-121), Academic Press, London (1978).
- 17. Th. Skoulikidis and Ath. Karageorgos: Br. Corros. J., 13, 28 (1978).

18. Th. Skoulikidis and P. Spathis: Ibid, 17, 79 (1982).

Acknowledgments

The author would like to express his thanks to Professor Th. Skoulikidis, Laboratory of Physical Chemistry and Applied Electrochemistry, Section of Material Science and Technology, Department of Chem. Eng. N.T.U. Athens, for his helpfull discussions and careful observations during the course of this work.