XHMIKA XPONIKA NEA $\Sigma E I P A$

 CHINIKA CHIRONIKA

 CHINIKA CHIRONIKA
 NEW SERIES

AN INTERNATIONAL EDITION

 OF THE ASSOCIATION OF GREEK CHEMISTS
MANAGING COMMITEE
 Irene DILARIS, Georgia MARGOMENOU-LEONIDOPOULOU, George PETROUTSOS, Panayotis PROUNTZOS, Maria SABATAKOU

Ex. officio Members: Theodoros ARGIRIOU (Repr. Gen. Secretary of G.C.A.), Panayotis PAPADOPOULOS (Treasurer of G.C.A.).
EDITORS - IN - CHIEF
I. DILARIS, G. MARGOMENOU - LEONIDOPOULOU
EDITORIAL ADVISORY BOARD

N. ALEXANDROU

Org. Chem., Univ. Salonica
A. ANAGNOSTOPOULOS

Inorg. Chem.. Tech. Univ. Salonica
D. BOSKOU

Food Chem.. Univ. Salonica
P. CATSOULACOS

Pharm. Chem., Unv. Patras
C.A. DEMOPOULOS

Biochemistry, Univ. Altens
C.E. EFSTATHIOU

Anal. Chem., Univ. Athens
A.E. EVANGELOPOULOS

Blochemistry. N.H.R.F., Athens
S. FILIANOS

Pharmacognosy. Univ. Athens
D.S. GALANOS

Food. Chem., Univ. Athens
A.G. GALINOS

Inorg. Chem., Univ. Patras
P. GEORGAKOPOULOS

Pharm. Techn., Univ. Salonica
I. GEORGATSOS

Biochemistry. Univ. Salonica
M.P. GEORGIADIS

Org./Med. Chem., Agr. Univ. Athens
N. HADJICHRISTIDIS

Polymer Chem., Univ. Aithens
T.P. HADJIIOANNOU

Anal. Chem., Univ. Athens
N. HADJILIADIS

Gen. Inorg. Chem., Univ. Ioannina
E. HADJOUDIS

Phorochem., N.R.C. -Dw, Athens
D. JANNAKOUDAKIS

Phys. Chem., Univ. Salonica
V. KAPOULAS

Biochemistry, Univ. Ioannina
M.I. KARAYANNIS

Anal. Chem., Univ. Ioannina
N. KATSANOS

Phys. Chem.: Unv. Patras
A.KEHAYOGLOU

Org. Chem: Tech. Univ. Salonica A. KOSMATOS

Org. Chem., Univ. loannina
S.B. LITSAS

Bioorg. Chem., Arch. Museum, Athens
G. MANOUSSAKIS

Inorg. Chem., Univ. Salonica
S. MYLONAS

Org. Chem., Univ. Athens

1. NIKOKAVOURAS

Photochem.. N.R.C. "D». Athens
D.N. NICOLAIDES

Org. Chem., Unir. Salonica
C.M. PALEOS
N.R.C. "Democritos*, Athens
V. PAPADOPOULOS
N.R.C. "Democritos* Aihens
G. PAPAGEORGIOU

Biophysics. N.R.C. "D", Athens
V.P. PAPAGEORGIOU

Nat. Producis. Tech. Univ. Salonica
S. PARASKEVAS

Org. Chem.. Univ. Athens
G. PHOKAS

Pharmacognosy. Univ. Salonica
S. PHILIPAKIS
N.R.C. "Democrios», Athens
G. PNEUMATIKAKIS

Inorg. Chem., Liniv. Alhens
C.N. POLYDOROPOULOS

Phys/Quantun Chem.. Univ. Ioannina
K. SANDRIS

Organic Chem, Tech. Univ, Alhens.
M.J. SCOULLOS

Env./Mar. Chem., Univ. Athens
C.E. SEKERIS

Mol. Biology. N.H.R.F. Aihens
G. SKALOS

Microanolysis Tech. Univ. Athens
G.A. STALIDIS

Phys. Chem., Univ. Salonica
Ch. STASSINOPOULOU
N.R.C. "Democritos", Athens
A. STASSINOPOULOS

Argo AERE Athens
A. STAVROPOULOS

Ind. Technol., G.S.I.S., Piraeus
C. THOMOPOULOS

Food Techn., Tech. Unir. Athens
I.M. TSANGARIS

Invig. Chem. Univ. Loannino
G.A. TSATSAS

Pharm. Chem., Univ. Aihens
A.K. TSOL IS

Chem: Technol., Univ. Patras
A. VALAVANIDIS

Org. Chem. Univ. Athens
G. VALCANAS

Org. Chem., Tech. Univ. Alhens
A.G. VARVOGLIS

Org. Chem., Univ. Salonica
G.S. VASSILIKIOTIS

Anal: Chem., Univ. Salonica
S. VOLIOTIS

Instrum. Analysis, Univ. Patras
E.K. VOUDOURIS

Food Chem., Univ, loonnina

[^0]
CHIMIKA CHRONIKA, NEW SERIES

CONTENTS

Complex compounds of Cu, Ni and Co with aliphatic and aromatic mono-and diamines (areview in Greek)by D. Kovala-Demirtzi, N. Hatziliadis and I.M. Tsagaris3Lattice theories for unimolecular adsorption on heterogeneous surfaces (in English) by P. Nikitas, A. Anastopoulos and D. Jannakoudakis 21
Use of rapid methods for detection and presumptive characterization of β-lactamases in en- terobacteriaceae (in English) by G. Saroglou, E. Tzelepi, S.B. Litsas and P. Kontomichalou 33
Synthesis and antimicrobial screening of new 2-(5°-Nitrofurylidene) azino-3-alkylbenzothia- zolines (in English) by M.D. Kazanis and A.I. Vavayannis 39
Short paper
New reactions of 2-phenyliodonio-dimedonate (in English)
by M. Papadopoulou and A. Varvoglis 45
Notes
A study on the action of some reductive reagents on 1-aroyl-5-aroylazo-3,4,4,5-tetramethyl- 2-pyrazolines (in English) by Julia Stephanidou-Stephanatou 53
Determination of cadmium in blood by flameless Atomic Absorption Spectroscopy (in English) by E.A. Piperaki 57

$\Sigma Y M \Pi \Lambda O K E \Sigma$ EN $\Omega \Sigma E I \Sigma$ TOY Cu(II), Ni(II) KAI Co(II) ME MONOAMI-

(Е入ท́чөๆ 10 Oктшßpiov 1983)

Пері́ $\lambda \eta \psi \eta$

 $\kappa \alpha \downarrow \eta$ o-pda.

Eı $\alpha \boldsymbol{\alpha} \boldsymbol{\gamma} \boldsymbol{\gamma} \boldsymbol{\eta}$

 бía.

 $\sigma \varepsilon \omega \varsigma \mu \varepsilon \alpha \mu \mu \omega v^{\prime} \alpha$, о́ $\pi \omega \varsigma ~ \tau \alpha \mathrm{PtCl}_{4} \cdot 6 \mathrm{NH}_{3}, \mathrm{PtCl}_{4} \cdot 5 \mathrm{NH}_{3}, \mathrm{PtCl}_{4} \cdot 4 \mathrm{NH}_{3}, \mathrm{PtCl}_{4} \cdot 3 \mathrm{NH}_{3} \kappa \alpha \iota$

A. Σ о́ $\mu \pi \lambda о к а ~ \mu о v а \mu ı \nu ळ ́ v ~$
 го́иллока $\operatorname{Cu}(I I), N i(I I)$ каı $\operatorname{Co(II)~\mu \varepsilon ~а\mu \mu \omega víа~}$

Н $\alpha \mu \mu \omega v i \alpha$, évas $\tau \cup \pi \iota \kappa o ́ \varsigma ~ \mu о v o \delta o v \tau ı к o ́ \varsigma ~ v \pi о к а \tau \alpha \sigma \tau \alpha ́ \tau \eta \varsigma ~ \delta i ́ v e ı ~ \mu \varepsilon ~ C u(I I) ~ \sigma ט ́ \mu \pi \lambda о-~$

 $\tau \rho \alpha \gamma \omega v$ ккд́ октаєठрıкд́ $\sigma ט ́ \mu \pi \lambda$ ок α (I) $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{NO}_{2}$ то $\sigma \dot{\mu} \mu \pi \lambda$ око $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{PtCl}_{4}$

 кó $\alpha v i o ́ v$. To $\alpha v i o ́ v ~ \pi \rho \varepsilon ̇ \pi \varepsilon ı ~ v \alpha ~ к \alpha \tau \alpha \lambda \alpha \mu ß \dot{v} v \varepsilon ı ~ \delta u ́ o ~ \theta \varepsilon ́ \sigma \varepsilon ı \varsigma ~ \sigma \varepsilon ~ \sigma v ́ \mu \pi \lambda о к \alpha ~ \mu \varepsilon ~ \alpha \rho ı \mu o ́ ~ \varepsilon v-~$

$\Sigma \chi \dot{\eta} \mu \alpha 2$

 $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2} \quad \beta-\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{2}$ к $\alpha 1 \quad \beta-\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}{ }^{*}$. $\Sigma \tau \alpha$ бט́ $\mu \pi \lambda$ ок $\alpha \quad \alpha-\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{2}$

 $\alpha \nu ı 0 ́ v \tau \circ \varsigma ~ \sigma \varepsilon \varepsilon \lambda \alpha \varphi \rho \omega ́ \varsigma ~ \delta 1 \alpha \varphi о \rho \varepsilon \tau \iota \kappa \varepsilon ́ \varsigma ~ \alpha \pi о \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma$.

 $\kappa \varepsilon \vee \eta \dot{\theta} \dot{\varepsilon} \sigma \eta$ тоט $\pi \lambda \dot{\varepsilon} \gamma \mu \alpha \tau о \varsigma$.

 vaı тєтраєठрıко́.

इо́ $л \lambda \lambda о к а ~ а \rho \omega \mu а \tau \iota к \omega ́ v ~ а \mu \iota \nu \omega ́ v ~$

[^1]

 $\dot{\alpha} \tau о \mu \alpha$ тоט $\mathrm{Cu}(\mathrm{II})$.

 $\mathrm{M}(\delta \iota \mu \varepsilon \theta \nu \lambda \alpha \nu \imath \lambda i v \eta)_{2} \mathrm{X}_{2}$ о́ $\boldsymbol{\tau}$ о $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ к $\alpha \iota \mathrm{M}=\mathrm{Cu}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}) \pi \alpha \rho \alpha \sigma \kappa \varepsilon \cup \alpha \dot{\alpha} \tau \eta \kappa \alpha \nu \kappa \alpha \iota$

 тоט $\chi \alpha \lambda \kappa о$ ט́ єival $\tau \varepsilon \tau \rho \alpha \gamma \omega v$ кќ $\dot{\eta} \varepsilon \pi i \pi \varepsilon \delta \alpha$.

 ко́ á $\tau о \mu о . \Sigma \chi \dot{\eta} \mu \alpha 3$.

$\Sigma \chi \dot{\eta} \mu \alpha 3$

 $\kappa \alpha ́ \tau \eta \zeta \mu \varepsilon \mathrm{MSO}_{4}(\mathrm{M}=\mathrm{Cu}, \mathrm{Ni}, \mathrm{Co})$.

 $\theta \eta \kappa \alpha v$ ои $\mu \varepsilon \tau \alpha \tau о \pi i \sigma \varepsilon ı \varsigma ~ \tau \eta \varsigma ~ \sigma u \chi v o ́ \tau \eta \tau \alpha \varsigma ~ \delta о v \eta ँ \sigma \varepsilon \omega \varsigma ~ v(N-H) ~ \sigma \varepsilon ~ \sigma u \sigma \chi \varepsilon \tau ı \sigma \mu o ́ ~ \mu \varepsilon ~ \tau i \varsigma ~ \delta о-~$

 $300 \mathrm{~cm}^{-1} \kappa \alpha \iota \sigma \tau \alpha 225-238 \mathrm{~cm}^{-1}{ }^{17} \tau \omega v \sigma \nu \mu \pi \lambda o ́ \kappa \omega \nu \mathrm{M}(\alpha v \imath \lambda i v \eta)_{2} \mathrm{Cl}_{2} \alpha \pi о \delta i \delta o v \tau \alpha 1 \quad \sigma \varepsilon$

 $\kappa \alpha \tau \alpha \dot{\sigma} \tau \alpha \sigma \eta$ тои $\pi \varepsilon \rho เ \varphi \varepsilon \rho \varepsilon เ \alpha \kappa о и ́ ~ \cup \pi о к \alpha \tau \alpha \sigma \tau \alpha ́ \tau \eta ~ \tau \eta \varsigma ~ \alpha v i \lambda i v \eta \varsigma ~ \alpha \pi o ́ ~ \delta \varepsilon \cup \tau \varepsilon \rho ı \omega \mu \varepsilon ́ v \eta ~ \alpha v i \lambda i-$

 таऽ tทऽ $\pi \mathrm{upı} \delta i v \eta \varsigma v\left(M-\mathrm{NC}_{6} \mathrm{H}_{3}\right)^{27,28}$.

го́ $\mu \pi \lambda о к а$ дıациш́́v

 $\varphi \omega \sigma \eta$ trans ка兀 $\pi \alpha \rho \varepsilon ́ \chi \varepsilon \iota ~ \gamma \varepsilon \varphi \cup \rho \omega \mu \varepsilon ́ v \alpha$ бט́ $\mu \pi \lambda о \kappa \alpha$.

 $\mathrm{Br}, \mathrm{I}^{31}, \mathrm{Cu}(\mathrm{en})_{2}(\mathrm{SCN})_{2}{ }^{31}, \mathrm{Cu}(\mathrm{en})_{2} \mathrm{Hg}(\mathrm{SCN})_{4}{ }^{32}, \mathrm{Cu}(\mathrm{en})_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}^{33}, \mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{NO}_{3}\right)_{2}{ }^{34}$,

 ко́g ขлока兀 $\alpha \sigma \tau \alpha \tau \eta \varsigma^{37}$.

 $\kappa \eta ์ ~ \delta о \mu \eta ́ ~ \mu \varepsilon ~ \alpha \xi о \nu ו \kappa \alpha ́ ~ \varepsilon v \tau \alpha \gamma \mu \varepsilon ́ v \alpha ~ \alpha v i o ́ v \tau \alpha . ~$

 $\rho \eta$ октаєठрікŋ́ бо $\tilde{\eta}^{42}$. $\Sigma \chi \eta \dot{\eta} \mu \alpha 4$.

$\Sigma \chi \check{\eta} \ddot{\mu} \alpha 4$

 $\beta \alpha \theta \mu$ н́ $\omega \sigma \tau \varepsilon$, то бо́ $\mu \pi \lambda$ око $\mu \pi о \rho \varepsilon i ́ v \alpha ~ \theta \varepsilon \omega \rho \eta \theta \varepsilon i ́ ~ о к \tau \alpha \varepsilon \delta \rho ı к о ́ ~ \mu \varepsilon ~ \mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \pi \alpha \rho \alpha \mu о ́ \rho \varphi \omega \sigma \eta . ~$

 $\sigma \eta \tau \eta \varsigma$ o-pda $\sigma \varepsilon \mu \varepsilon \rho \iota \kappa \alpha ́ \alpha \pi o ́ ~ \tau \alpha ~ \sigma ט ́ \mu \pi \lambda о к \alpha ́ ~ \tau \eta \varsigma ~ \alpha \pi o ́ ~ \alpha \varepsilon ́ p l \alpha ~ \alpha \mu \mu \omega v i \alpha . ~ A \pi o ́ ~ \alpha u \tau \eta ์ ~ \tau \eta \nu$

 Lur naon $\chi_{13 g}$ Smзорұм

 -oŕ 120 a

 -о) руоүュнก̣

 $\kappa \alpha \iota$ о Maki ${ }^{48} \gamma 1 \alpha$ to $\sigma u ́ \mu \pi \lambda$ око $\mathrm{Ni}(o-\text {-pda) })_{2} \mathrm{Cl}_{2}$. Гi $\alpha \tau \alpha \sigma \dot{u} \mu \pi \lambda$ ок α (o-pda) ${ }_{4} \mathrm{Ni}(\mathrm{II})$ ठúo

 $\tau \rho \varepsilon ı \varsigma ~ к о р и \varphi \varepsilon ́ \varsigma ~ I ~ \sigma \tau \alpha ~ 8.000-10.000 \mathrm{~cm}^{-1} \mathrm{II} \sigma \tau \alpha 12.000-13.000 \mathrm{~cm}^{1} \kappa \alpha ⿺$ III $\sigma \tau \alpha 22.000-$
 ${ }^{3} \mathrm{~T}_{2 \mathrm{~g}},{ }^{3} \mathrm{~T}_{1 \mathrm{~g}}$ (F) каı ${ }^{3} \mathrm{~T}_{1 \mathrm{~g}}$ (P) аvтíтto七х α.

$\Gamma \downarrow \alpha$ то $\sigma \dot{\cup} \mu \pi \lambda$ око 6:1 $\mathrm{Ni}(\mathrm{o}-\mathrm{pda})_{6} \mathrm{Cl}_{2}$ ol Marks, Phillips к α Redfern ${ }^{51}$ v $\pi \varepsilon \dot{\varepsilon} \theta \varepsilon \sigma \alpha \nu$ ó-

 $\gamma \omega v ı$ ќ $\varepsilon \pi i \pi \varepsilon \delta о ~ \mu \varepsilon$ то $\dot{\alpha} \tau о \mu о$ тоv $\mathrm{Ni} \sigma \tau о$ кย́vтро.

(α)

$\Sigma \chi \dot{\eta} \mu \alpha 5$

 $\left.\mathrm{NO}_{3},{ }^{1}{ }^{2} \mathrm{SO}_{4}, \mathrm{ClO}_{4}\right) \kappa \alpha _\left[\mathrm{ML}_{3}\right] \mathrm{X}_{2}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{NO}_{3}, \mathrm{ClO}_{4}\right)$. H ү६vıкๆ́ $\delta \varepsilon \mu \varepsilon ́ \theta o \delta o \varsigma ~ \pi \alpha \rho \alpha-$

 $\pi \lambda о ́ \kappa \omega \nu \mu \varepsilon 1,3$ каı 1,4-pda, каı $\mu \varepsilon \tau \alpha \dot{\alpha} \alpha \pi o ́ ~ \tau \eta \nu \mu \dot{\varepsilon} \tau \rho \eta \sigma \eta ~ \tau \eta \varsigma ~ \mu \alpha \gamma \nu \eta \tau \iota \kappa \eta ́ \varsigma ~ \rho о \pi \eta ́ \varsigma ~ 4,6$

 т $\rho \circ \lambda$ о́тєऽ $8-22 \mathrm{Ohm}^{-1} \sigma \varepsilon \delta 1 \alpha \dot{\lambda} \lambda \nu \mu \alpha 0^{-3} \mathrm{DMF}$.

 S.M. Paraskevas ${ }^{36} \sigma v v \varepsilon ́ \theta \varepsilon \sigma \alpha \nu \tau \eta v$ abeda $\kappa \alpha 1 \pi \alpha \rho \alpha \sigma \kappa \varepsilon v ́ \alpha \sigma \alpha v ~ \tau \alpha ~ \sigma v ́ \mu \pi \lambda о \kappa \alpha ~ \mathrm{CuCl}_{2}{ }^{\cdot}$ a-

 $\Sigma \chi \dot{\eta} \mu \alpha 6$.

$\Sigma \chi \eta \dot{\eta} \mu \mathrm{a}$
$\Sigma \dot{\mu} \mu \pi \lambda$ ок $\alpha \tau \eta \varsigma$ о-аba $\mu \varepsilon \mathrm{Cu}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Co}(\mathrm{II}) \sigma \nu v \theta \dot{\varepsilon} \sigma \alpha \mu \varepsilon \pi \rho o ́ \sigma \varphi \alpha \tau \alpha \sigma \tau о$ $\varepsilon \rho \gamma \alpha \sigma \tau \dot{\eta}-$

 $\tau \varepsilon \varsigma \simeq 100 \mathrm{~cm}^{-1}$ (крı$\tau \dot{\rho} \rho \circ$ Barvinok-Bukhareva) ${ }^{58}$. β) A $\pi \dot{o} \tau \eta \nu \tau \alpha \lambda \dot{\alpha} \nu \tau \omega \sigma \eta \kappa \dot{\alpha} \mu \psi \varepsilon \omega \varsigma \delta$ $\left(\mathrm{NH}_{2}\right), \eta$ олоí $\varepsilon \mu \varphi \alpha v i \zeta \varepsilon \tau \alpha \iota ~ \sigma \alpha v \mu i \alpha ~ \iota \sigma \chi \rho \eta \dot{\eta} \tau \alpha เ v i \alpha \sigma \tau \alpha 1650 \mathrm{~cm}^{-1} \sigma \tau \circ v \varepsilon \lambda \varepsilon ט ́ \theta \varepsilon \rho \circ$

 октаєठрıкŋ் $\delta о \mu \eta ́ \alpha \pi o ́ ~ \tau \eta \nu \mu \varepsilon \lambda \varepsilon ́ \tau \eta ~ \tau \omega v ~ \varphi \alpha \sigma \mu \alpha ́ \tau \omega v ~ I R, U V-V i s ~ \sigma \varepsilon ~ \sigma v v \delta v a \sigma \mu o ́ ~ \mu \varepsilon ~ \tau \eta v ~$

 $\alpha \lambda o \gamma o v o i ̈ o ́ v \tau \omega v$. H $\mu i \alpha \mu o ́ v o ~ \tau \alpha ı v i \alpha \sigma \tau \alpha 373 \mathrm{~cm}^{-1} v(\mathrm{Ni}-\mathrm{Cl}) \pi o v \alpha \pi o \delta i \delta \varepsilon \tau \alpha 1 \sigma \tau \eta v \sigma v-$

$\Sigma \chi \dot{\eta} \mu \alpha \quad 7$

 тоט. $\Sigma \chi \eta \dot{\mu} \mu 8$.

CuLCl_{2}

$\mathrm{CuL}_{2} \mathrm{Br}_{2}$
$\Sigma \chi \dot{\eta} \mu \alpha \quad 8$
 η олоí $\sigma \cup \mu \pi \varepsilon \rho \alpha i v \varepsilon \tau \alpha \iota ~ \alpha \pi o ́ ~ \tau \eta \nu \mu_{\text {eff }} \sim 4,2$ BM $\sigma \varepsilon \sigma \cup v \delta v \alpha \sigma \mu o ́ \mu \varepsilon \tau \alpha ~ \varphi \alpha ́ \sigma \mu \alpha \tau \alpha \delta \delta \alpha \chi \cup \tau \iota-$

$\Sigma \chi \dot{\eta} \mu \alpha 9$

$\Sigma \nu \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha$

 $\pi \alpha . \rho \varepsilon \mu \pi о \delta i \sigma \varepsilon ו \varsigma$.

 pda va $\delta \rho \alpha \sigma \alpha \nu \mu о v o \delta o v \tau \iota \kappa o ́ s ~ v \pi о к \alpha \tau \alpha \sigma \tau \alpha ́ \tau \eta \varsigma ~ \varepsilon ́ \chi \varepsilon ı ~ \alpha \pi о \delta о \theta \varepsilon i ́ ~ \sigma \tau \eta \nu ~ \varepsilon \lambda \alpha ́ \tau \tau \omega \sigma \eta ~ \tau \omega \nu$
 $\mu \varepsilon \tau \alpha \lambda \lambda_{1} \kappa o ̛$ ıóv.

MINAKAE I

EN $\Omega \Sigma H$	$\Delta \mathrm{IA} \mathrm{\Lambda YTH} \Sigma$	Dq $\left(\mathrm{cm}^{-1}\right)$	B $\left(\mathrm{cm}^{-1}\right)$
$\left.\mathrm{NiL}^{(} \mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Br}_{2}$	$\mathrm{H}_{2} \mathrm{O}$	1027	759
$\mathrm{NiL}_{2} \mathrm{Cl}_{2}$	$\mathrm{H}_{2} \mathrm{O}$	1059	910
$\mathrm{NiL}_{2} \mathrm{Br}_{2}$	$\mathrm{H}_{2} \mathrm{O}$	1066	920
	DMF	1045	1021
$\left[\mathrm{NiL}_{3}\right] \mathrm{Cl}_{2}$	$\mathrm{H}_{2} \mathrm{O}$	1079	940
	DMF	1066	1005
$\left[\mathrm{NiL}_{3}\right] \mathrm{Br}_{2}$	$\mathrm{H}_{2} \mathrm{O}$	1078	946
	DMF	1069	1031

Summary

Complex compounds of Cu, Ni and Co with aliphatic and aromatic mono-and diami-

 nesThe present paper is reviewing the complexes of the aliphatic and aromatic, mono-and diamines, e.g. NH_{3}, aniline or en (ethylenediamine), o-pda (o-phenylenediamine) with the $1^{\text {strow }}$ transition metals $\mathrm{Cu}(\mathrm{II}), \mathrm{Ni}$ (II) and Co (II). More specifically it refers to the structures of these complexes and makes a brief review of the experimental methods used for their preparation It also refers to the corresponding complexes formed between the diamine o-aba (o-aminobenzylamine) with the same metals and compares the donor properties of this ligand with those of other similar ones like en and o-pda.

Key words: Complexes, metal ions, monoamines aliphatic, diamines aliphatic, monoamines, aromatic, diamines aromatic.

Паралоилє́ऽ

1. J.C. Bailar, H.J. Emeleus, R. Nyholm, A.F. Trotman-Dickensoṅ aComprehensive Inorganic Chemistry" Pergamon Press, Oxford (1975):
2. B.J. Hathaway and A.A.G. Tomlinson: Coordin. Chem. Rev., 5, 1 (1970).
3. C.A. Hampel, «The Encyclopedia of the Chëmical. Elements». Reinhold (1968).
4. G.W. Watt: Inorg. Syntheses, 3, 194 (1950).
5. R.G.W. Wyckoff: Crystal Structures, 2nd edition Vol 3, Interscience (1965),
6. I.S. Ahuja, D.W. Brown, R.H. Nuttall and D.W.A. Sharp: J. Inorg. Nucl. Chemistry, 27, 1105 (1965).
7. T.I. Malinovskii: Krystallografiya, 2, 734 (1957),
8. G.B. Bokii, T.I. Malinovskii and A.V. Abloy: Krystallog., 1, 49 (1956).
9. N.G. Yaroslavskii and L.V. Konovalov: Doklady. Acad. Nauk. SSSR, 162, 144 (1965).
10. M.A.J. Jungbáuer and C. Curran: Spectrochim. Acta, 21, 641 (1965):
11. I.S. Ahuja, D.W. Brown, R.H. Nuttall and D.W.A. Sharp: J. Inorg. Nucl. Chem., 27, 1625 (1965).
12. P.R. Johnson and D.A. Thornton: Chimia, 28, 345 (1974).

13 M. Noji and Y. Kidani: Bunseki Kagaku, 24, 545 (1975).
14. I.S. Ahuja, D.W. Brown, R.H. Nuttall, D.W.A. Sharp.: J. Chem. Soc. (A), 938 (1966).
15. E. Hamburg; Rev. Roumaine Chim., 10, (8), 779 (1965).
16. M.S. Barvinok, J.S. Bukhareva, L.V. Konovalow and N.G. Yaroslavskii: Zh. Neorg. Khim., 12 (11) 3076 (1967).
17. M.S. Barvinok, J.S. Bukhareva, Vu.S. Yarshavskii; Primen. Mol. Spectrosk. Khim., 56 (3) 108 (1966).
18. L.V. Konovalow, N.G. Yaroslavskii: Prikl. Spectrosk., 2 (16), 35 (1.969).
19. M.S. Barvinok, L.V. Konovalow, J.S. Maslennikova, N.G. Varoslavskii; Zh. Fiz. Khim., 44(1) 13 (1970).
20. L.V. Konovalow, N.G. Yaroslavskii: Theor. Eksp. Khim., 6 (2) 258 (1970).
21. D. Raciunescu, D. Oancea, Fis. Nuture. Madrite, 3, 819 1970).
22. M. Goldstein and R.J. Hughes: Inorg. Chim. Acta, 40, 229 (1980).
23. M. Goldstein and W.D. Unsworth; Spectrochim. Acta, 28A, 1297 (1972).
24. L. Sacconi and A. Sabatini; J. Inorg. Nucl. Chem. 25, 1389 (1963).
25. M. Goldstein and W.D. Unsworth; Inorg. Chim. Acta, 4, 342 (1970).
26. R.J.H. Clark and C.S. Williams: J. Chem. Soc., (A) 1425 (1966).
27. M. Goldstein and W.D. Unsworth: J. Mol. Structure, 14, 451 (1972).
28. M. Goldstein and W.D. Unsworth; Spectrochim. Acta, 28A, 1107 (1972).
29. K. Nakamoto «Infrared Spectra of Inorganic and Coordination Compounds» J. Wiley and Sons, New York, p. 224,159,152 (1978).
${ }^{\top} 0$. a) M.E. Baldwin: Spectrochim. Acta, 19, 315 (1963).
b) W.W. Wendlandt: J. Inorg. and Nucl. Chem., 25, 833, (1963).
c) F. Halmes and D.R. Williams: J. Chem. Soc., (A) 1702 (1967).
31. (a) T.M. Procter, B.J. Hathaway and D. Nicholls: J. Chem. Soc. (A) 1678 (1968);
(b) H.B. Jonassen and T.H. Dexter: J. Am. Chem. Soc. 71, 1553 (1949);
(c) G. Gordon and R.K. Birdwhistell: J. Am. Chem. Soc., 81, 3567 (1959);
(d) L.O. Morgan and P.F. Cox: J. Am. Chem. Soc., 81, 5043, (1959); (e) Ibid, 6409 (1959).
32. H. Scouloudis: Acta Cryst. 6, 651 (1953).
33. R.D. Ball, C.E.F. Richard and T.N. Waters: J. Chem., Soc., (A) 1435 (1967).
34. Y. Komiyama and E.C. Lingafelter: Acta Cryst., 17, 1145 (1964).
35. A. Pajunen; Suomen. Kem., 40, 32 (1967), Chem. Abs. 67, 15818e (1967).
36. M. Cola, G. Giuseppetti and F. Mazzi: Atti Acad. Sci. Torino, 96, 381 (1962).
37. a)J. Bjerrum and E.J. Nielsen; Acta Chem. Scand, 2, 307 (1948).
b) R.A. Palmer and T.S. Piper: Inorg. Chem., 5, 864 (1966).
38. A.B.P. Lever and E. Mantóvani, Inorg. Chem., Vol. 10 No 4, 817 (1971).
39. L.N. Swink and M. Atoji, Acta Cryst., 13, 639 (1960).
40. Gmelin's: Handbuch der Anorganischen Chemie, 57, (c,1) Verlag Chemie (1968).
41. M.G.B. Drew, D.M.L. Goodgame, M.A. Hitchman and D. Rogers: Chem. Communs, 447 (1965).
42. A.E. Shvelashvilii, M.A. Porai-Koshits and A.S. Antsyshkina: Zh. Strukt. Khim., 5, 797 (1964).
43. A.B.P. Lever, J. Lewis and R.S. Nyholm: J. Chem. Soc., 2552 (1963).
44. C.K. Jorgensen "Inorganic Complexes", Academic Press, London and New York, p. 70 (1963).
45. W. Hieber, C. Schliessman and K. Ries: Z. anorg. Chem.; 180, 89 (1929).
46. W. Hieber and H. Appel, Z. anorg. Chem., 196, 193 (1931).
47. D. Bandyopadhayay: J. Indian Chem. Soc., 34, 798. (1957).
48. G. Maki: J. Chem. Phys., 29, 1622 (1958).
49. D.P. Mellor and D.P. Craig: J. Proc. Roy. Soc. New South Wales, 74, 475 (1941).
50. M.S. Barvinok and I.S. Bukhareva: Zhur. neorg. Khim., 10, 861 (1965).
51. D.R. Marks, D.J. Phillips and J.P. Redfern: J. Chem. Soc., (A) 1464 (1967).
52. C.G. Macaronici, G. Schmidt and E. Hamburg: Rev. Roumaine Chim., 5; 51 (1964).
53. D.R. Marks, D.J. Phillips and J.P. Redfern: Inorg. Phýs. Theor.; 2013 (1968).
54. R.C. Elder, D. Koran and H.B. Mark: Inorg. Chem., 13 (7) 1644 (1974).
55. E.J. Duff: J. Chem. Soc. (A), 434 (1968).
56. J.M. Tsangaris and S.M. Paraskevas: Z. Naturf., 29b, 538 (1974).
57. a) D. Kovala-Demertzi, J.M. Tsangaris and N. Hadjiliadis, Trans. Metal. Chemistry, 8, 140 (1983).

58. a) G.F. Svatos, C. Curran and J.V. Quagliano: J. Am. Chem. Soc., 77, 6159 (1955).
b) J.V. Quagliano, G.F. Svatos and C. Curran. Anal. Chem., 26, 429 (1954).
59. a) M. Kato, H.B. Jonassen and J.C. Fanning; Chem. Rev. 64, 99 (1964).
b) H.C. Neison, J.F. Villa: J. Inorg. Nucl. Chem. 42, 1089 (1980).
60. a) M. Iwata, K. Nakatzu and Y. Saito: Acta. Cryst., B25, 2562 (1969).
b) F. Durant, P. Piret and M. Van Meerssche: Acta, Cryst., 23, 780 (1967).
61. K. Broderson; Z. Anorg. U. Allgem. Chem., 298, 142 (1959).
62. a) J. Reedijk, P.W.N.M. Van Leeuwen and W.L. Groeneveld: Recueil 87, 129 (1968).
b) L. Sacconi, P. Nannelli, N. Nardi and U. Campigli: Inorg. Chem. 4, 943 (1965).

LATTICE THEORIES FOR UNIMOLECULAR ADSORPTION ON HETEROGENEOUS SURFACES

P. NIKITAS, A. ANASTOPOULOS and D. JANNAKOUDAKIS
Laboratory of Physical Chemistry, University of Thessaloniki, Thessaloniki, Greece

(Received May 2, 1984)

Abstract

Summary A generallized model for the unimolecular pure gas adsorption with latteral interactions on heterogeneous surfaces is developed by means of lattice statistical thermodynamics. From this model localized and mobile adsorption on either random or patchwise heterogeneous surfaces are derived as specific cases and discussed in detail.

Numerical calculation examples are also presented in order to illustrate the properties of the adsorption isotherms obtained.

Key Words: Lattice statistical thermodynamics, Physical adsorption.

Introduction

One of the most important problems of physical adsorption is that of the heterogeneity of actual surfaces, due to the existence of impurities, cracks, dislocations, different crystal surfaces etc. The great majority of the studies performed on this subject refer to localized adsorption with no latteral interactions ${ }^{1,2}$. This model leads to fairly simple isotherms which can be quite easily employed to the analysis of experimental systems. On the other hand, the models accounting for latteral interactions as well as those refering to mobile adsorption on heterogeneous surfaces generally lead to non analytical solutions ${ }^{3-5}$. It is also notable that non adequate research work was directed to this subject.

It the present work we attempt a systematic application of the lattice theories of statistical thernodynamics to the study of heterogeneous adsorption. A generallized lattice model is analyzed for the adsorption of pure gases on heterogeneous surfaces. From this nodel, localized and mobile adsorption on either patchwise or random heterogeneous surfaces are derived and discussed as specific cases.

General equations

In order to study the unimolecular adsorption on heterogeneous surfaces by means of the lattice theories of statistical thermodynamics, we consider the following generallized model for the adsorption layer:

1. It is assumed that the adsorbed molecules form a two dimensional layer (unimolecular adsorption).
2. Each molecule is adsorbed on a single adsorption site. Each adsorption site can accomodate only one adsorbed particle. The adsorption sites can be either cells formed by the neighbouring adsorbed molecules or points. In both cases the adsorption sites follow the geometry of a regular hexagonal lattice.
3. The energy of adsorption is different for different sites. We denote by L_{i} the number of adsorption sites having energy U_{i}. If L is the total number of the adsorption sites, then obviously

$$
\mathrm{L}=\frac{_{\mathrm{i}}}{} \mathrm{~L}_{\mathrm{i}} \text { is valid. }
$$

4. The number N_{i} of molecules adsorbed on sites with energy U_{i} is equal or less than L_{i}, i.e. $N_{i} \leqslant L_{i}$.
5. Each adsorbed molecule is under the influence of the field of the adsorbing surface and of the neighbouring molecules. However the distribution of the molecules on the adsorbing surface is absolutely random (Bragg-Williams approximation ${ }^{6}$).

Let N molecules be adsorbed on the L sites and ξ a distribution $\xi_{1}, \xi_{2}, \ldots \xi_{\mathrm{i}}, \ldots$ of the N molecules on the adsorption sites, where ξ_{i} denotes that the number of molecules adsorbed on the sites with energy U_{i} is equal to $N_{\xi_{i}}$. Since $N_{\xi_{i}}<L_{i}$, then for each ξ distribution the partition function Q_{ξ} of the adsorption layer can be written as

$$
\begin{equation*}
\mathrm{Q}_{\xi}=\prod_{i}\left\{\frac{L_{i}!}{N_{\xi_{\mathrm{i}}}!\left(\mathrm{L}_{\mathrm{i}}-\mathrm{N}_{\xi_{\mathrm{i}}}\right)!}\left(\mathrm{q}_{\mathrm{in(i)}} \cdot \mathrm{q}_{\mathrm{t}(\mathrm{i})}\right) \mathrm{N}_{\xi_{\mathrm{i}}} \exp \left(\mathrm{~N}_{\xi_{\mathrm{i}}} \mathrm{U}_{\mathrm{i}} / \mathrm{kT}\right)\right\} \exp \left(-\mathrm{z}^{\prime} \mathbf{w} / \mathrm{kT}\right) \tag{1}
\end{equation*}
$$

In Eq. (1) $q_{i n(i)}, q_{t(i)}$ are the internal and the translational partition functions of an adsorbed molecule on an L_{i} site. We assume that a molecule of any of these L_{i} sites has the same internal and translational partition functions. In the same equation, w is the potential energy of interaction for any nearest neighbour pair. As in the case of unimolecular adsorption on homogeneous surfaces, we assume that only interactions between adsorbed molecules on nearest neighbour sites need to be taken into account (nearest neighbour statistics).

Finally z^{\prime} is defined from the relation ${ }^{3}$:

$$
\begin{equation*}
\exp (-\mathrm{zw} / \mathrm{kT})=\frac{\Sigma \mathrm{g}(\mathrm{z}) \exp (-\mathrm{zw} / \mathrm{kT})}{\Sigma \mathrm{g}(\mathrm{z})} \tag{2}
\end{equation*}
$$

where z is the number of the nearest neighbour pairs and $g(z)$ the number of configurations with z nearest neighbour pairs. The total partition function Q is the sum of the partial functions Q_{5}, i.e.

$$
\begin{equation*}
\mathrm{Q}=\frac{\bigcup_{\xi}^{\prime}}{} \mathrm{Q}_{\xi} \tag{3}
\end{equation*}
$$

For the determination of Q we can make use of the well known maximum term method, i.e. by replacing $\ln Q$ by the logarithm of the largest Q_{ξ}.

Thus if $\mathrm{N}_{\xi_{\mathrm{i}}}$ corresponds to the equilibrium distribution, we have:

$$
\begin{gather*}
\ln Q=\frac{\searrow}{i}\left\{L_{i} \ln \frac{L_{i}}{L_{i}-N_{\xi_{i}}}-N_{\xi_{i}} \ln \frac{N_{\xi_{i}}}{L_{i}-N_{\xi_{i}}}+N_{\xi_{i}} \ln \left(q_{i n(i)} q_{t(i)}\right)\right. \tag{4}\\
\left.+\frac{N_{\xi_{i}} U_{i}}{k T}\right\}-\frac{z^{\prime} w}{k T}
\end{gather*}
$$

In order to proceed further, the way in which the sites with different energies are distributed on the surface and also the nature of the adsorption layer are to be defined.

Here we shall analyze the cases where a) the sites of different energy are scattered randomly over the surface (random site distribution) and b) the sites of equal energy are present in groups (patchwise site distribution). In each one of these cases the mobile as well as the localized adsorption will be examined.

Random site distribution

1. Mobile adsorption

In this case each molecule is free to perform translational motion on the adsorbing surface, but this motion is confined within its cell. Thus we have:

$$
\begin{equation*}
\mathrm{q}_{\mathrm{t}(\mathrm{i})}=\frac{2 \pi \mathrm{mkT}}{\mathrm{~h}^{2}} \mathrm{a}_{\mathrm{f}_{\mathrm{i}}}=\lambda \cdot \mathrm{a}_{\mathrm{f}_{\mathrm{i}}} \tag{5}
\end{equation*}
$$

where $\mathrm{a}_{\mathrm{f}_{\mathrm{i}}}$ is the free area available for the motion of the molecule within its cell.
When the adsorbed molecules are almost spherical and non polar, then an approximation of the free area $\mathrm{a}_{\mathrm{f}_{\mathrm{i}}}$ is given by the relation ${ }^{7-10}$:

$$
\mathrm{a}_{\mathrm{f}_{\mathrm{i}}}=\left(1-\frac{\mathrm{N}}{\mathrm{~L}}\right) \omega
$$

where ω is the free area of a molecule having empty all its nearest neighbouring sites.
In addition due to the random distribution of the adsorbed molecules we have ${ }^{3}$:

$$
\begin{equation*}
\mathrm{z}^{\prime}=\mathrm{cN}^{2} / 2 \mathrm{~L} \tag{6}
\end{equation*}
$$

where c for a given site, is the number of the nearest neighbour sites.
On the basis of the above approximations the partition function of the adsorption layer, Eq. (4), takes the form:

$$
\begin{align*}
& \ln Q=\grave{i}^{i}\left\{L_{i} \ln \frac{L_{i}}{L_{i}-N_{\xi_{i}}}-N_{\xi_{i}} \ln \frac{N_{\xi_{i}}}{L_{i}-N_{\xi_{i}}}+N_{\xi_{i}} \ln \left(q_{i n(i)} \lambda \omega\right)\right. \\
& \left.\quad+N_{\xi_{i}} \ln \left(1-\frac{N}{L}\right)+\frac{N_{\xi_{i}} U_{i}}{\mathrm{kT}}\right\}-\frac{\mathrm{cN}_{2}^{2} w}{2 L k T} \tag{7}
\end{align*}
$$

The chemical potential of the adsorbed molecules of the L_{i} sites may now be calculated from

$$
\begin{equation*}
\frac{\mu_{\xi_{\mathrm{i}}}}{\mathrm{kT}}=-\left(\frac{\partial \ln \mathrm{Q}}{\partial \mathrm{~N}_{\xi_{\mathrm{i}}}}\right)_{\mathrm{L}, \mathrm{~T}, \mathrm{~N}_{\xi_{\mathrm{i}} \neq \mathrm{N}_{\xi_{1}}}} \tag{8}
\end{equation*}
$$

which results to:

$$
\begin{equation*}
\frac{\mu_{\xi_{1}}}{\mathrm{kT}}=\ln \frac{\theta_{1}}{\left(1-\theta_{1}\right)(1-\theta)}+\frac{\theta}{(1-\theta)}+\frac{\mathrm{cw}}{\mathrm{kT}} \theta-\frac{\mathrm{U}_{1}}{\mathrm{kT}}-\ln \left(\mathrm{q}_{\operatorname{in}(1)} \lambda \omega\right) \tag{9}
\end{equation*}
$$

where $\theta_{1}=N_{\xi_{i}} / L$
and $\quad \theta=\mathrm{N} / \mathrm{L}=\underset{\text { 个 }}{\mathrm{L}} \theta_{1} / \mathrm{L}$
The adsorption isotherms result from the equilibrium relations:

$$
\begin{equation*}
\mu_{\xi_{1}}=\mu_{\mathrm{gas}} \tag{12}
\end{equation*}
$$

For a perfect gas we have:

$$
\begin{equation*}
\frac{\mu_{\mathrm{gas}}}{\mathrm{kT}}=\ln \mathrm{P}-\ln \left(\lambda^{3 / 2} \mathrm{kT} \mathrm{q}_{\mathrm{G}}(\mathrm{~T})\right) \tag{13}
\end{equation*}
$$

where P is the pressure of the gas in equilibrium with the adsorbate and $\mathrm{q}_{\mathrm{G}}(\mathrm{T})$ is the internal partition function of a molecule in the bulk gas phase.

The partial adsorption isotherm which results from Eqs. (9), (12) and (13) can be expressed by:

$$
\begin{equation*}
\theta_{1}=1 /\left\{\frac{1}{(1-\theta) \mathrm{P}} \frac{\lambda^{1 / 2} \mathrm{kTq}_{\mathrm{G}}(\mathrm{~T})}{\omega \mathrm{q}_{\mathrm{in}(1)}} \exp \left(\frac{\theta}{1-\theta}\right) \exp \left(-\frac{\mathrm{U}_{1}-\mathrm{cw} \theta}{\mathrm{kT}}\right)+1\right\} \tag{14}
\end{equation*}
$$

Obviously Eqs. (11) and (14) define the overall adsuption isotherm. In Eq. (14) we can approximately set

$$
\begin{equation*}
\mathrm{q}_{i n(1)} / \mathrm{q}_{\mathrm{G}}(\mathrm{~T})=\mathrm{q}_{\mathrm{val})} \tag{15}
\end{equation*}
$$

where $\mathrm{q}_{\mathrm{v}(1)}$ is the partition function for vibration normal to the adsorbing surface. In addition if the distribution of L_{1} is such that we can replace summation over the L_{1} by integration, we let $\mathrm{Lf}(\mathrm{U}) \mathrm{dU}$ be the number of cells with values of U between U and $U+d U$. Then $f(U)$ must satisfy the normalization condition:

$$
\begin{equation*}
\int \mathrm{f}(\mathrm{U}) \mathrm{d} U=1 \tag{16}
\end{equation*}
$$

and the total adsorption isotherm may be expressed by:

$$
\begin{equation*}
\theta=\int \frac{f(U) d U}{\frac{1}{(1-\theta) P} \cdot \frac{\lambda^{1 / 2} \mathrm{kT}}{\omega \mathrm{q}_{V}(\mathrm{U}, \mathrm{~T})} \exp \left(\frac{\theta}{1-\theta}\right) \exp \left(-\frac{\mathrm{U}-\mathrm{cw} \theta}{\mathrm{kT}}\right)+1} \tag{17}
\end{equation*}
$$

The above integral can receive only a numerical solution if the distribution function $f(U)$ is known. This function is either determined by experimental means, or it is selected from the already known distribution functions.

For this purpose the Gaussian, the Maxwell-Boltzmann and the exponential distribution functions are more frequently used.

If $f(U)$ is the Dirac delta function and the limits of integration are taken from 0 to $+\infty$, then Eq. (17) results to the isotherm of the hole theory for the adsorption on homogeneous surfaces ${ }^{9}$:

$$
\begin{equation*}
\frac{\theta}{(1-\theta)^{2}} \exp \frac{\theta}{(1-\theta)} \exp \left(\frac{\mathrm{cw}}{\mathrm{kT}} \theta\right)=\mathrm{P} \beta \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=\left(\omega \mathrm{q}_{\mathrm{v}}(\mathrm{U}, \mathrm{~T}) / \lambda^{1 / 2} \mathrm{kT}\right) \exp (\mathrm{U} / \mathrm{kT}) \tag{19}
\end{equation*}
$$

2. Localized adsorption

In localized adsorption the three translational degrees of freedom of an adsorbed gas molecule; are converted to vibrational modes, i.e. each adsorbed molecule is restricted on a single adsorption site, being unable to perform translational motion on the adsorbing surface.

Thus we have $\mathrm{q}_{\mathrm{t} i \mathrm{i}}=1$ and Eq. (7) may be written as

$$
\ln Q=\frac{V}{i}\left\{L_{i} \ln \frac{L_{i}}{L_{i}-N_{\xi_{i}}}-N_{\xi_{i}} \ln \frac{N_{\xi_{i}}}{L_{i}-N_{\xi_{i}}}+N \xi_{i} \ln q_{i n(i)}+\frac{N_{\xi_{i}} U_{i}}{k T}\right\}-\frac{c N^{2} w}{2 L k T}(20)
$$

From this equation working in the same way as in the case of mobile adsorption we obtain:

$$
\begin{equation*}
\theta_{1}=1 /\left\{\frac{\lambda^{3 / 2} \mathrm{kT}}{\mathrm{Pq}_{\mathrm{v}(1)}} \exp \left(-\frac{\mathrm{U}_{1}-\mathrm{cw} \theta}{\mathrm{kT}}\right)+1\right\} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta=\int \frac{\mathrm{f}(\mathrm{U}) \mathrm{dU}}{\frac{1}{\mathrm{P}} \frac{\lambda^{3 / 2} \mathrm{kT}}{\mathrm{q}_{v}(\mathrm{U}, \mathrm{~T})} \exp \left(-\frac{\mathrm{U}-\mathrm{cw} \theta}{\mathrm{kT}}\right)+1} \tag{22}
\end{equation*}
$$

This isotherm was first derived by Hill ${ }^{3}$ by the use of undetermined multipliers.
As in the case of mobile adsorption, Eq. (22) cannot be solved analytically except of the case when $f(U)$ is the Dirac delta function. Then from Eq. (22) we obtain the well known Frumkin isotherm ${ }^{11,}{ }^{12}$:
where

$$
\begin{gather*}
\frac{\theta}{1-\theta} \exp \left(\frac{\mathrm{cw}}{\mathrm{kT}} \theta\right)=\mathrm{P} \beta \tag{23}\\
\beta=\left(\mathrm{q}_{\mathrm{v}}(\mathrm{U}, \mathrm{~T}) / \lambda^{3 / 2} \mathrm{kT}\right) \exp (\mathrm{U} / \mathrm{kT}) \tag{24}
\end{gather*}
$$

An interesting case is also when $w=0$ and $q_{v}(U, T)=q_{v}(T)$.
In this case it is proved that Eq. (22) can be used to reproduce the isotherms of Temkin and Freundlich ${ }^{2}$.

The Temkin isotherm ${ }^{13,}{ }^{14}$ results from Eq. (22) when $f(U)=C$ where C is a constant and by integrating from 0 to U .

Then at low pressures, Eq. (22) reduces to:

$$
\begin{equation*}
\theta=C \mathrm{kTln}\left(\frac{\mathrm{Pq}_{\mathrm{v}}(\mathrm{~T})}{\lambda^{3 / 2} \mathrm{kT}} \exp (\mathrm{U} / \mathrm{kT})\right) \tag{25}
\end{equation*}
$$

which is the Temkin's isotherm.
If $f(U)$ is of the form $f(U)=\operatorname{Cexp}(-A U)$
where C, A are constants, then Eq. (22) gives as a first approximation the Freundlich isotherm ${ }^{15}$:

$$
\begin{equation*}
\theta=C\left(\frac{q_{v}(T)}{\lambda^{3 / 2} k T} P\right)^{A k T} \tag{27}
\end{equation*}
$$

Patchwise site distribution

1. Mobile adsorption

Since the sites of different energies are present in groups, assuming that each group is large enough to eliminate edge effects, the free area $a f_{i}$ is given by the relation:

$$
\begin{equation*}
\mathrm{a}_{\mathrm{f}_{\mathrm{i}}}=\left(1-\frac{\mathrm{N}_{\mathfrak{\xi}_{\mathrm{i}}}}{\mathrm{~L}_{\mathrm{i}}}\right) \omega \tag{28}
\end{equation*}
$$

In this case we also have: $z^{\prime}=\frac{_{i}}{} \mathrm{cN}_{\mathrm{E}_{\mathrm{i}}}^{2} / 2 \mathrm{~L}_{\mathrm{i}}$ Therefore, from Eq. (4) we obtain:

$$
\begin{align*}
\ln Q=\bigvee_{i}\left\{L_{i} \ln \frac{L_{i}}{L_{i}-N_{\xi_{i}}}\right. & -N_{\xi_{i}} \ln \frac{N_{\xi_{i}}}{L_{i}-N_{\xi_{i}}}+N_{\xi_{i}} \ln \left(q_{i n(i)} \lambda \omega\right)+N_{\xi_{i}} \ln \left(1-\frac{N_{\xi_{i}}}{L_{i}}\right) \tag{30}\\
& \left.+\frac{N_{\xi_{i}} U_{i}}{k T}-\frac{\mathrm{cN}_{\xi_{j}}^{2} w}{2 L_{i} k T}\right\}
\end{align*}
$$

The partial adsorption isotherms which are obtained from Eq. (30) may be expressed as follows:

$$
\begin{equation*}
\ln \mathbf{P}-\ln \frac{\theta_{1}}{\left(1-\theta_{1}\right)^{2}}+\frac{\theta_{1}}{1-\theta_{1}}+\frac{\mathrm{cw}}{\mathrm{kT}} \theta_{1}-\frac{\mathrm{U}_{1}}{\mathrm{kT}}+\ln \frac{\lambda^{1 / 2} \mathrm{kT}}{\omega \mathrm{q}_{\mathrm{v}}(\mathrm{l})} \tag{31}
\end{equation*}
$$

The total adsorption isotherm results from Eq. (31) and (11) or for a continuous distribution of the adsorption energies from Eqs. (31) and (32)

$$
\begin{equation*}
\theta=\int \theta_{1} \mathrm{f}(\mathrm{U}) \mathrm{dU} \tag{32}
\end{equation*}
$$

The study of mobile adsorption for the case of a patchwise surface can also be performed by the simple cell theory of the liquid state ${ }^{16}$. For this purpose we must assume that a) the number of the adsorbed molecules is equal to the total number of the adsorption sites, i.e. $\mathrm{N}=\mathrm{L}$, and b) that, as a first approximation, the energy per adsorbed molecule due to latteral interactions with the other adsorbed molecules is proportional to the surface density of the adsorbed molecules, $\mathrm{N}_{\xi} / \mathrm{S}_{\mathrm{i}}$, where S_{i} is the area of the adsorbing surface with an adsorption energy U_{i}.
The first assumption implies that in the cell model each adsorbed molecule moves in its cell and due to $\mathrm{N}=\mathrm{L}$ every change of the surface density of the molecules necessarily results to the change of the cell dimensions. On the contrary in the previous model the variation of θ implies the change of the number of the empty cells. In the cell model an approximate expression fo $\mathrm{a}_{\mathrm{f}_{\mathrm{i}}}$ is given by:

$$
\begin{equation*}
\mathrm{a}_{\mathrm{f}_{\mathrm{i}}}=\pi\left(\mathrm{a}_{\mathrm{i}}-\mathrm{d}\right)^{2} \tag{33}
\end{equation*}
$$

where a_{i} is the average distance of the adsorbed molecules in the group of sites with energy U_{i} and d is their diameter.

In a regular hexagonal lattice the following relations are valid:

$$
\begin{align*}
& \mathrm{a}_{\mathrm{i}}^{2}=\frac{2 \sqrt{3}}{3}\left(\mathrm{~S}_{\mathrm{i}} / \mathrm{N}_{\xi_{\mathrm{i}}}\right) \tag{34}\\
& \mathrm{d}^{2}=\frac{2 \sqrt{3}}{3}\left(\mathrm{~S}_{\mathrm{io}_{0}} / \mathrm{N}_{\xi_{\mathrm{i}}}\right) \tag{35}
\end{align*}
$$

where $S_{i o}$ is the surface covered by the $\mathrm{N}_{\xi_{\mathrm{i}}}$ molecules when they are in contact with each other.

If a_{0} is the effective area covered by an adsorbed molecule and $N_{s(i)}$ the maximum value of $\mathrm{N}_{\mathrm{E}_{\mathrm{i}}}$, then from Eqs. (33), (34) and (35) we obtain:

$$
\begin{equation*}
\mathrm{a}_{\mathrm{f}_{\mathrm{i}}}=\frac{2 \sqrt{3 \pi}}{3 \mathrm{~N}_{\xi_{i}}}\left(\mathrm{~S}_{\mathrm{i}}^{1 / 2}-\mathrm{S}_{\mathrm{io}}^{1 / 2}\right)^{2}=\frac{2 \sqrt{3 \pi \mathrm{a}_{0}}}{3 \mathrm{~N}_{\mathrm{i}}}\left(\mathrm{~N}_{s}^{1 / 2}\left(\mathrm{i}^{2}\right)-N \xi_{i}^{1 / 2}\right)^{2} \tag{36}
\end{equation*}
$$

Assumption (b) implies that the energy term $z^{\prime} w / \mathrm{kT}$ in Eq. (4), must be replaced by:

$$
\begin{equation*}
\vdots \frac{\gamma N_{\xi_{i}}^{2}}{S_{i} k T}=\frac{V}{i} \frac{\gamma N_{\xi_{i}}^{2}}{a_{0} N_{s(i)} k T} \tag{37}
\end{equation*}
$$

where γ is a proportionality constant.
If we account for the above reasoning then Eq. (4) becomes:

$$
\begin{gather*}
\ln Q=\bigcup\left\{N_{\xi_{i}} \ln \left(q_{i n(i)} \lambda a_{o} 2 \sqrt{3 \pi / 3}\right)-N_{\xi_{i}} \ln N_{\xi_{i}}+2 N_{\xi_{i}} \ln \left(N_{s}^{1 / 2}-N_{\xi_{i}}^{1 / 2}\right)\right. \\
\left.+\frac{N_{\xi_{i}} U_{i}}{k T}+\frac{N_{\xi_{i}^{2}} \gamma}{a_{o} N_{s(i)} \mathrm{kT}}\right\} \tag{38}
\end{gather*}
$$

while the partial adsorption isotherms resulting from Eq. (38) can be written as:

$$
\begin{equation*}
\ln P=\ln \frac{\lambda^{1 / 2} k T 3 e}{q_{v(1)} a_{o} 2 \sqrt{3} \pi}-\frac{U_{1}}{k T}+\ln \frac{\theta_{\mathbf{I}}}{\left(1-\sqrt{\theta_{1}}\right)^{2}}+\frac{\sqrt{\theta_{\mathbf{I}}}}{1-\sqrt{\theta_{\mathrm{I}}}}-\frac{2 \gamma}{\alpha_{\mathrm{o}} \mathrm{kT}} \theta_{1} \tag{39}
\end{equation*}
$$

An analytical solution for θ_{I} is again not possible. Therefore the use of numerical or graphical methods is necessary for the determination of the total adsorption isotherm from the system of Eqs. (11) and (39) or (32) and (39).

In the case where $f(\mathrm{U})$ is the Dirac delta function Eqs. (32) and (39) reduce to the cell isotherm ${ }^{17}$, ${ }^{18}$:

$$
\begin{equation*}
\frac{\theta}{(1-\sqrt{\theta})^{2}} \exp \frac{\sqrt{\theta}}{(1-\sqrt{\theta})} \exp \left(-\frac{2 \gamma}{\mathrm{a}_{\mathrm{o}} \mathrm{kT}} \theta\right)=\mathrm{P} \beta \tag{40}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=\left(\mathrm{q}_{\mathrm{v}} \mathrm{a}_{\mathrm{o}} 2 \sqrt{\left.\left.3 \pi / \lambda^{1 / 2} \mathrm{kT} 3 \mathrm{e}\right) \exp (\mathrm{U} / \mathrm{kT})\right)}\right. \tag{41}
\end{equation*}
$$

The above model is valid only for patchwise surfaces. It is evident that this model cannot be applied to a random surface because this contradicts the assumption (3) of the general model, especially for low values of θ.

2. Localized adsorption

In this case we have $\mathrm{q}_{(\mathrm{t})}=1$, while in parallel Eq. (29) is satisfied. Thus we have:
$\ln Q=\frac{Y}{i}\left\{L_{i} \ln \frac{L_{i}}{L_{i}-N_{\xi_{i}}}-N_{\xi_{i}} \ln \frac{N_{\xi_{i}}}{L_{i}-N_{\xi_{i}}}+N_{\xi_{i}} \ln q_{i n(i)}+\frac{N_{\xi_{i}} U_{i}}{k T}-\frac{c w}{2 k T} \cdot \frac{N_{\xi_{j}}^{2}}{L_{i}}\right\}$
and

$$
\begin{equation*}
\ln \mathrm{P}=\ln \frac{\theta_{\mathrm{I}}}{1-\theta_{\mathrm{I}}}+\frac{\mathrm{cw}}{\mathrm{kT}} \theta_{\mathrm{I}}-\frac{\mathrm{U}_{\mathrm{I}}}{\mathrm{kT}}+\ln \frac{\lambda^{3 / 2} \mathrm{kT}}{\mathrm{q}_{\mathrm{v(I)}}} \tag{43}
\end{equation*}
$$

Again the total isotherm is determined from Eqs. (11) and (43) or (32) and (43). If $\mathrm{w}=0$ and $\mathrm{q}_{\mathrm{v}(1)}=\mathrm{q}_{\mathrm{v}}(\mathrm{T})$, then from Eqs. (32) and (43) we have:

$$
\begin{equation*}
\theta=\int \frac{\mathrm{f}(\mathrm{U}) \mathrm{dU}}{\frac{1}{\mathrm{P}} \cdot \frac{\lambda^{3 / 2} \mathrm{kT}}{\mathrm{q}_{\mathrm{v}}(\mathrm{~T})} \exp \left(-\frac{\mathrm{U}}{\mathrm{kT}}\right)+1} \tag{44}
\end{equation*}
$$

which can be reduced to the Temkin or the Freundlich isotherm as in the case of a random surface.

Numerical examples

In order to illustrate the isotherms derived above we have examined an adsorbate-adsorbent system having the following characteristics: We have considered Argon adsorption on two model surfaces. For the first of them a random distribution of the adsorption site energies was assumed (random surface), while for the second one a patchwise distribution was adopted (patchwise surface). For both the above cases we assumed that the surface site energies follow a gaussian type distribution function:

$$
\begin{equation*}
\mathrm{f}(\mathrm{U})=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\left(\mathrm{U}-\mathrm{U}_{\mathrm{o}}\right)^{2} / 2 \sigma^{2}\right) \tag{45}
\end{equation*}
$$

with $\mathrm{U}_{\mathrm{o}}=2000 \mathrm{cal} \cdot \mathrm{mole}^{-1}$. In the above relation the σ parameter describes the width of the distribution and thus it accounts for the heterogeneity of the adsorbent. The function (45) is somewhat physically unreal since it predicts that a finite number of sites of positive energy will be present. However as an approximation, it appears to give a reasonably adequate representation and for this reason it has been widely used.

Argon molecules in the adsorption layer are assumed to interact mutually with a Lennard-Jones potential:

$$
\begin{equation*}
u(r)=4 \varepsilon\left\{\left(r_{o} / r\right)^{12}-\left(r_{0} / r\right)^{6}\right\} \tag{46}
\end{equation*}
$$

with $r_{o}=3.405 \AA[19]$ and $\varepsilon / k=100$ [20].
Therefore as far as it was accepted that only the interactions between the nearest neighbour molecules contribute to the total energy of the system; we have: $w / k=-$ $\varepsilon / \mathrm{k}=-100$.

In addition for a hexagonal close-packed configuration of the adsorbed molecules we have $c=6$ and $\omega=\sqrt{3 a^{2} / 2}$ where $a=2^{1 / 6} r_{o}$.

For the case of the cell isotherm the approximations $\mathrm{a}_{0}=\pi(\mathrm{a} / 2)^{2}$ and $2 \gamma / \mathrm{a}_{0} \mathrm{k}=$ $-\varepsilon / k$ were used.

The q_{v} function in the isotherms developed above includes vibrations normal to the adsorbing surface and it can be approximately expressed by:

$$
\begin{equation*}
\mathrm{q}_{\mathrm{v}}=\mathrm{e}^{-\mathrm{x} / 2} /\left(1-\mathrm{e}^{-x}\right) \tag{47}
\end{equation*}
$$

where $\mathrm{x}=\mathrm{hv} / \mathrm{kT}$ and v is the vibration frequency of the adsorbed particles. The frequency v depends on the energy $U|3|$.

However here due to the selection of the gaussian function (45), which allows for positive site energies, it was approximately assumed that v is constant and equal to $1 \cdot 10^{12} \mathrm{sec}$!.

On the basis of the above approximations, extensive calculations were carried out for the determination of the characteristic features of the isotherms here obtained. Numerical integrations were performed by means of Simpson's rule, in a UNIVAC 1106 computer. The most characteristic results are indicatively provided in figures 12.

From these figures the following conclusions can be drawn relatively to the unimolecular gas adsorption on heterogeneous surfaces:

Independently of the adsorption model the theoretical curves of the isotherms for heterogeneous adsorption are lying on top of the corresponding isotherms for homogeneous adsorption ($\sigma=0$) at low pressures, while the inverse holds for high pressures. This means that with increasing heterogeneity of the adsorption surface the adsorption is favoured at low surface coverages. This is due to the fact that at low coverages the molecules are adsorbed preferentially on the most active sites, whereas as adsorption proceeds and these sites become occupied, the less active sites come into play.

The increase of adsorption at low coverages with increasing heterogeneity is expected to affect the critical properties of the adsorption layer. In fact the study of the adsorption isotherms on random surfaces at low temperatures reveals that the heterogeneity of the surface strongly affects the critical temperature and pressure which are shifted to lower values, while leaving unchanged the critical surface coverage (Figs. 1, 2). In what concerns the adsorption on patchwise surfaces, Eq. (32) cannot be used for the determination of the total isotherm because at the phase transition region the $\theta_{1}-U$ curves, resulting from Eqs. (31), (39) and (43), are of sigmoid shape. However a different situation from that of random surfaces is not expected to exist. The occurence of a phase transition is well known to be due to attractive interactions. Thus the observed change of the critical temperature and pressure shows that the heterogeneity of the surface acts in the opposite sence with respect to the attractive intermolecular forces.

In what concerns the specific characteristics of the isotherms due to the type of surface we must point out the following:

The isotherm curves corresponding to heterogeneous adsorption on random surfaces present a common intersection point. This point is located at $\theta=0.5$ and it corresponds to pressures determined by the following relations:

$$
\begin{equation*}
P=\frac{2 \lambda^{1 / 2} \mathrm{kT}}{\mathrm{q}_{\mathrm{v}}} \exp \left(-\frac{\mathrm{U}_{\mathrm{o}}-\mathrm{cw} / 2}{\mathrm{kT}}\right) \tag{48}
\end{equation*}
$$

for mobile adsorption, and

$$
\begin{equation*}
\mathbf{P}=\frac{\lambda^{3 / 2} \mathrm{kT}}{\mathrm{q}_{\mathrm{v}}} \exp \left(-\frac{\mathrm{U}_{0}-\mathrm{cw} / 2}{\mathrm{kT}}\right) \tag{49}
\end{equation*}
$$

FIG. 1: Theoretical adsorption isotherms for mobile adsorption on heterogeneous surfaces. (A), (B) isotherms defined from Eq. (17) for adsorption on a random surface. (C), (D) isotherms defined from Eqs. (31), (32) and (32), (39) respectively for adsorption on patchwise surfaces. Figures by the isotherms indicate σ values.

FIG. 2: Theoretical adsorption isotherms for localized adsorption on (A) patchwise and (B) random heterogeneous surfaces. Figures by the isotherms indicate σ values.
for localized adsorption. For patchwise surfaces the isotherms present a common intersection point only for the case of localized adsorption. This point has the same coordinates as for the case of random surfaces. It is also observed that at low coverages the adsorption on patchwise surfaces is slightly stronger than that on random ones for the case of localized adsorption, while the opposite holds for the case of mobile adsorption. In any way these differences between random and patchwise isotherms, is the significant shift of the critical tamperature and pressure to lower theoretical isotherms.

In conclusion the major influence of the adsorption surface heterogeneity on the isotherms is the significant shift of the critical temperature and pressure to lower values, which is due to the increase of the adsorption on heterogeneous surfaces at low pressures.

Перí $\eta ч ч \eta$

 $\mu \eta \tau \iota \kappa \dot{\omega} v \pi \alpha \rho \alpha \delta \varepsilon \iota \gamma \mu \alpha \dot{\tau} \omega v$.

References

1. D. Young and A. Crowell: Physical Adsorption of gases, Butterworths, London, 1962.
2. B. Kindl. R.A. Pachovsky, B.A. Spencer and B.W. Wojciechowski: J. Chem. Soc. Faraday Trans.

I, 69, 1162 (1973).
3. T.L. Hill: J. Chem. Phys., 17, 762 (1949).
4. F.C. Tompkins: Trans. Faraday Soc., 46, 569 (1950).
5. W. Steele: J. Phys. Chem., 67, 2016 (1963).
6. E.A. Guggenheim: Mixtures, Oxford University Press, London, 1951.
7. D. Henderson: J. Chem. Phys., 37, 631 (1962).
8. G.E. Blomgren: J. Chem. Phys., 34, 1307 (1961); 38, 1714 (1963).
9. D. Jannakoudakis and P. Nikitas: Chimica Chronika, N.S., 10, 23 (1981).
10. P. Nikitas, A. Anastopoulos and D. Jannakoudakis: Chimicà Chronika, N.S. in press.
11. A.N. Frumkin: Z. Phys. Chem., 116, 466 (1925).
12. E.A. Guggenheim: Trans. Faraday Soc., 41, 150 (1945).
13. A. Frumbin and A. Slygin: Acta Physicochim. U.R.S.S., 3, 791 (1935).
14. M. Temkin and V. Levich: Zhur. Fiz. Khim., 20, 1441 (1946).
15. H. Freundlich: Colloid and Capillary Chemistry: Methuen, London, 1926.
16. J.A. Barker: Lattice theories of the liquid state, Pergamon, Oxford, 1963.
17. S. Sarangapani and V. Venkatesan: Electrochimica Acta, 24, 975 (1979).
18. S. Rangarajan: J. Electroanal. C iem., 45, 283 (1973).
19. A. Michels, Hub. Wijker and H.K. Wijker: Physica, 15, 627 (1949).
20. R. Wolfe and J. Sams: J. Chem. Phys., 44, 2181 (1966).

USE OF RAPID METHODS FOR DETECTION AND PRESUMPTIVE CHARACTERIZATION OF β-LACTAMASES IN ENTEROBACTERIACEAE

G. SAROGLOU, E. TZELEPI, S. B. LITSAS and \dagger P. KONTOMICHALOU
University of Athens, School of Medicine, Department of Clinical Therapeutics, Alexandra Hospital, Athens, Greece
(Received May 21, 1984)

Abstract

Summary The type of β-lactamase produced by Enterobacteriaceae is an important factor predicting the efficacy of β-lactamase inhibitors. We evaluated three common rapid methods: chromogenic nitrocefin, acidimetric commercial Beta-test and iodometric, for their ability to detect and differentiate, in Enterobacteriaceae, β-lactamases already characterized by substrate profile and isoelectric focusing. Nitrocefin was the most sensitive and the Beta-test the less sensitive method to detect the presence of β-lactamases. This nonsensitive Beta-test was the less specific to detect chromosomal β-lactamases, hence it was almost specific for the detection of plasmid β-lactamases. None of the methods differentiated between TEM and non-TEM β-lactamases.

Key words: β-Lactamases, enzyme detection and characterization

Introduction

Rapid β-lactamase screening in pathogens such as Haemophilus influenzae, Staphylococcus aureus and Neisseria gonorrhoeae has become a common procedure in clinical laboratories ${ }^{1}$. The chromogenic cephalosporin nitrocefin test, the acidimetric spot test and the rapid iodometric assay are the most successful and widely used methods for the above organisms ${ }^{1,2,3}$. In addition, rapid tests have been evaluated as suitable screening methods for the presence of β-lactamase in association with sensitivity to ampicillin and cephalosporins. These studies concluded that, while nitrocefin test easily detects cephalosporinases, the acidimetric method is unreliable ${ }^{4}$.

In Enterobacteriaceae two acidimetric methods have been compared with nitrocefin assay in detection of β-lactamases. None of these tests were found reliable in correlating bacterial sensitivity and β-lactamase presence ${ }^{5}$. In addition, until now, no rapid method has been applied in the characterization of β-lactamase type in Enterobacteriaceae. Such an application might be helpful, because after the introduction of β-lactamase inhibitors in chemotherapy rapid techniques are required to detect and identify β-lactamase prior to disk sensitivity. Rapid differentiation for β -
lactamases produced by Enterobacteriaceae might be clinically important, since different types of β-lactamases show different degrees of sensitivity to various β lactamase inhibitors ${ }^{6}$. For these reasons we tried in this study to compare three rapid methods for their ability to detect β-lactamase production in Enterobacteriaceae and to apply these methods for presumptive characterization of β-lactamases.

Experimental

Bacteria: A total of 49 ampicillin resistant Enterobacteriaceae were tested, which had been previously characterized for β-lactamase production ${ }^{7,8}$. Forty one strains were nosocomial isolates from our laboratory and 8 strains were kindly provided by E. Lederberg of the Plasmid Reference Center (Stanford University, California). From the nosocomial isolates 19 were E. coli, 11 Klebsiella and Enterobacter species, 9 Proteus species and 2 Citrobacter. Minimal inhibitory concentration to ampicillin ranged between 50 and $\geqslant 800 \mu \mathrm{~g} / \mathrm{ml}$ by tube dilution method.
β-Lactamase production: The initial characterization of β-lactamases had been based on the classic methods of pI determination and on substrate profile of ten β lactam compounds: benzyl penicillin, ampicillin, carbenicillin, cephaloridine, cefazolin, cephalothin, cefoxitine, cefuroxime, cefamandole ${ }^{9,10}$. From 41 clinical isolates resistant to ampicilin, 29 carried plasmid type β-lactamases and 12 produced only cephalosporinases of chromosomal type with pI range 7 to 8.8 (Table I).

TABLE I. Types of β-lactamases produced by 49 Enterobacteriaceae.

Strains	Number	Chromosomal cephalosporinases	Various plasmid types
$\text { E. coli } \begin{aligned} & \text { wild } \\ & K_{12} R C 85 \end{aligned}$	13	2	10 TEM-1, TEM-1+OXA-3
	6	0	4 TEM-1, PSE-2, b-lactamase of R22K (11)
Klebsiella and Enterobacter sp.	11	8	TEM-1, TEM-1+ OXA-1, TEM-2
Proteus sp.	9	2	5 TEM-2, TEM-1, PSE-3
Citrobacter	2	0	TEM-1, TEM-1+OXA-1
E. coli K_{12} (Reference strains)	8	0	$\begin{aligned} & \text { HMS-1, SHV-1, OXA-1,OXA-2,OXA-3 } \\ & \text { PSE-1, PSE-2, PSE-3 } \end{aligned}$
Total	49	12	37

Plasmid location of β-lactamase genes for certain wild type strains was confirmed by conjugal transfer experiments ${ }^{7,11,12}$. Type of enzymes produced by β-lactamase reference strains are also shown on Table I. On pI determination traces of host cephalosporinases were detected on most of the clinical and reference strains which mediated plasmid type β-lactamases.

Rapid β-lactamase tests: Three rapid methods were tested for their ability to detect and identify the known β-lactamases produced by the 49 Enterobacteriaceae used in the study.
Nitrocefin test: Several colonies of the tested bacteria from an overnight growth on trypticase-soya agar (BBL) were suspended in 0.5 ml sterile saline. Aliquots of $50 \mu \mathrm{l}$ of the cell suspension were mixed with equal volumes of nitrocefin working solution (5 mg of solid nitrocefin -Glaxo Co. - dissolved in 0.5 ml dimethylosulfoxide was added to 9.5 ml phosphate buffer $0.1 \mathrm{M}, \mathrm{pH} 7$). The color change from yellow to red within 30 min was regarded as criterion of β-lactamase production.
Rapid acidimetric method: Beta-test strips (Medical Wire and Equipment Co., Both Ltd, Wiltshire UK) moistened with normal saline were placed on slides. Two or three colonies from 18 hour growth of tested bacteria cultured on trypticase-soya agar were spread on these strips. A change in color from purple to yellow within 10 min was regarded as positive for the presence of β-lactamase.
Iodometric assay: A modification of the method described by Catlin ${ }^{1}$ was applied. Two separate solutions containing $10,000 \mathrm{IU} / \mathrm{ml}$ penícillin G and $5 \mathrm{mg} / \mathrm{ml}$ cephaloridine, both in phosphate buffer of $0.05 \mathrm{M}, \mathrm{pH} 7$, were dispensed in volumes of 0.5 ml in small tubes. The tested bacteria from an 18-hour growth on trypticasesoya agar were suspended in the above solutions to make densities of approximately 10^{9} cells. After one hour at room temperature, two small drops of starch indicator ($1 \% \mathrm{~W} / \mathrm{V}$) were added and immediately afterwards one drop of iodine reagent (2.03 g iodine and 53.2 g KI in 100 ml distilled water). After mixing the solution well, decolorization within 10 min was regarded as positive for the presence of β lactamase.

Results

Results gathered from the application of three rapid methods, nitrocefin test, Beta-test (acidimetric) and iodometric assay (cephaloridine substrate and penicillin substrate) are shown in Table II, based on their ability to detect the presence of known β-lactamase in the Enterobacteriaceae strains. The nitrocefin test detected the β-lactamases in 94% among 49 strains used. The iodometric method with penicillin G substrate alone detected in 82%, with cephaloridine substrate alone in 76% of the strains, while cumulative results from the application of the method with both substrates revealed the presence of β-lactamase in 92% of these strains. Beta-test detected only 51%. Of the three strains, in which the nitrocefin test didn't detect β lactamase presence, the one, an E. coli strain, produced a TEM-1 β-lactamase, detected by the Beta-test, the uther, an Enterobacter strain, produced two plasmid β lactamases, TEM-1 and OXA-1, detected only by iodometric test with cephaloridine substrate. The third was an Enterobacter producing a cephalosporinase, also detected by iodometric method with cephaloridine substrate.

On Table II, analysis of the three rapid methods' results, based on their ability to differentiate between chromosomal and plasmid-mediated β-lactamases and between different types of plasmid mediated β-lactamases, is shown. The nitrocefin test detected 92% of the chromosomal cephalosporinases and 95% of the plasmid mediated β lactamases. The Beta-test detected only 8% of the chromosomal, but 65% of plasmid

TABLE II. Results of the three rapid methods for detection of β-lactamase presence and differentiation between types of β-lactamases.

Rapid method	Detection of β-lactamase (\% possitive reaction)	Type of β-lactamase detected (\% positive reaction)		Type of plasmid β-lactamase detected (\% positive reaction)	
		Plasmid	Chromosomal	TEM-1,TEM-2	All other types
Nitrocetin test	46/49 (94\%)	35/37(95\%)	11/12 (92\%)	24/26 (92\%)	11/11(100\%)
Beta-test (acidimetric)	25/49 (51\%)	24/37 (65\%)	1/12 (8\%)	21/26 (81\%)	3/11 (27\%)
lodometric Assay (cephaloridine and penicilline G substrates)	45/49 (92\%)	35/37 (95\%)	10/12 (83\%)	25/26(96\%)	10/11 (91\%)

mediated, while iodometric assay with both substrates (the one or/and the other positive) detected 83% of chromosomal and 95% of plasmid mediated β-lactamases. Among plasmid mediated β-lactamases, the nitrocefin test detected 92% of TEMtype and 100% of all other types. The Beta-test detected 81% of TEM-type and 27% of the other types and, finally, the iodometric assay detected 96% and 91% respectively.

Discussion

We applied the rapid methods in order to compare their ability to verify the presence of known β-lactamase in Enterobacteriaceae. The nitrocefin test was found to be the most sensitive. The iodometric assay detected only an $92 \% \beta$-lactamase presence, when both substrates were considered cumulatively. The Beta-test was completely unreliable. Nitrocefin and iodometric assays were not found to differentiate between chromosomal and plasmid β-lactamase producing isolates. On the contrary, the Beta-test reaction showed a greater differentiating ability between plasmid and chromosomal enzymes, probably because the method requires higher enzyme quantities for a positive reaction and it is well known that plasmid β-lactamases are usally produced in much higher quantities than chromosomal ones ${ }^{9}$.

When we tried to compare the three rapid methods for their ability to differentiate between TEM and non-TEM plasmid mediated β-lactamases, we found that none of the three methods differentiated them satisfactorily.

Among Enterobacteriaceae causing urinary tract infections, the production of chromosomal cephalosporinases and plasmid mediated β-lactamases is a very common resistance mechanism to β-lactam antibiotics. It has been reported that 75% of the isolates owe their resistance to plasmid mediated β-lactamases ${ }^{13}$. Recently, a lot of clinical studies are using β-lactamase inhibitors in combination with β-lactam antibiotics against Enterobacteriaceae pathogens producing β-lactamases. The action of β-lactamase inhibitors is influenced by, among other factors, the type of β-lactamase produced ${ }^{8,14}$. Pechere et al has shown that clavulanic acid is more effective against plasmid mediated β-lactamases than against chromosomal cephalosporinases ${ }^{15}$. This
has also been shown in our laboratory ${ }^{8}$. Therefore, it becomes essential to know the type of β-lactamase produced by an isolate causing clinical infection.

The classic methods for exact characterization of β-lactamase type requires substrate profile and pI determination. These methods require prolonged and tedious laboratory work and are not suitable for rapid results needed to assist the clinician in choosing the proper β-lactamase inhibitor. Rapid methods for detection and characterization of β-lactamases should be useful. Our results have shown that the rapid acidimetric method of Beta-test is almost specific for plasmid β-lactamases in the sense that it is almost negative for chromosomal cephalosporinases. Thus, according to our findings, Beta-test may give an indication for the nature of a β-lactamase, the presence of which has been revealed by the rapid nitrocefin test, as shown in Fig. 1.

Fig. 1: After the detection of a β-lactamase by the Nitrocefin test, the commercial acidimetric method of Beta-test can give an indication for the genetic origin of this β-lactamase, since it is almost specific for plasmid β-lactamases (it detects 67% of the plasmid, but only 8% of the chromosomal enzymes).

Acknowledgement

This work was supported by a research grant from the Greek Ministry of Health and Welfare.

$\Pi \varepsilon \rho i ́ \lambda \eta \psi \eta$

 вактпріовı $\delta \dot{\eta}$.
 $\alpha \pi о \tau \varepsilon \lambda \varepsilon i \quad \sigma \eta \mu \alpha \nu \tau \iota \kappa o ́ ~ \pi \alpha \rho \alpha ́ \gamma o v \tau \alpha, \quad \pi о \cup \quad \pi \rho о \lambda \varepsilon ́ \gamma \varepsilon \iota ~ \tau \eta \nu \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota \kappa о ́ \tau \eta \tau \alpha ~ \tau \omega \nu$

 $\pi \lambda \alpha \sigma \mu t \delta \iota \alpha \kappa \dot{\omega} v \beta-\lambda \alpha \kappa \tau \alpha \mu \alpha \sigma \dot{\omega} \nu($ TEM к $\alpha \iota \mu \eta$ TEM).

References

1. Catlin, B.W.: Antimicrob. Agents Chemother. 7, 265-270 (1975).
2. Montgomery, K., Drew, W.L.: J. Clin. Microbiol. 9, 205-207 (1979).
3. Lucas, T.J.: J. Clin. Pathol. 32, 1061-1065 (1979).
4. Jepsen, O.B., Mortensen, I., Rosdahl, V.T.: J. Antimicrob. Chemother. 5, 383-389 (1979).
5. Shannon, K., Phillips, I.: J. Antimicrob. Chemother. 6, 617-621 (1980).
6. Neu, H.C., Fu, K.P.: Antimicrob. Agents Chemother. 14, 650-655 (1978).
7. Kontomichalou, P., Papachristou, E.G., Levis, G.M.: Antimicrob. Agents Chemother. 6, 60-72 (1974).
8. Paniara, O., Sima, A., Saroglou, G., Koltsida, P., Paraskevopoulou, P., Kontomichalou, P.: In Periti P. and Crassi G.G. (ed) Current Chemotherapy and Immunotherapy, American Society for Microbiology, 1, 788-790 (1982).
9. Neu, H.C.: Lorian V. (ed) Antibiotics in Laboratory Medicine. Williams and Wilkins, Baltimore, pp 454-473 (1980).
10. Matthew, M.: J. Antimicrob. Chemother. 5, 349-358 (1979).
11. Bobrowski, M., Matthew, M., Barth, B.T., Datta, N., Grinter, N.J., Jacob, A.E., Kontomichalou, P., Dale. J.W., Smith, J.: J. Bac. 125, 149-159 (1976).
12. Tzelepi, E., Angelatou, F., Vomvogianni, B., Kontomichalou, P.: In Levy S., Clowes R. and Koening H. (ed.), Molecular Biology, Pathogenicity and Ecology of Bacterial Plasmids, Plenum Press, New York, p. 669 (1981).
13. Simpson, I.N., Harper, P.B., O'Callaghan, C.H.: Antimicrob. Agents Chemother. 17, 929-936 (1980).
14. Reading, C.: In Leigh D.A. and Robinson O.P.W. (ed), The Biochemistry and Mode of Action of Augmentin, Clavulanate-potentiated Amoxycillin (BRL25000): Proceedings of an international symposium. Excerta Medica, pp 5-21 (1982).
15. Pechere, J.C., Letarte: R., Guay, R.: In Nelson J.D. and Grassi C. (ed.) Current Chemotherapy and Infectious Diseases American Society for Microbiology, Washington, pp 323-326 (1980).

SYNTHESIS AND ANTIMICROBIAL SCREENING OF NEW 2-(5'NITROFURYLIDENE) AZINO-3-ALKYLBENZOTHIAZOLINES*

M.D. KAZANIS, A.I. VAVAYANNIS

Dïvision of Pharmaceutical Chemistry, Department of Pharmacy, University of Athens, Solonos 104, GR-106 80 Athens, Greece.
(Received September 28, 1984).

Summary

The present work describes the synthesis and antimicrobial screening of new 2-(5)nitrofurylidene) azino-3-alkybenzothiazolines. Their synthesis was accomplished by reaction of 3 -alkyl-2-benzothiazoline hydrazones either with 5 -nitro-2-furfuraldehyde diacetate or 2 -acetyl-5-nitrofuran. A number of selected compounds were tested for antimicrobial activity and were found to be inactive.

Key words: 3-alkyl-2-benzothiazoline hydrazones, 2-(5-nitrofurylidene) azino-3-alkylbenzothiazolines, antimicrobial screening.

Introduction

In a recent communication ${ }^{1}$ we reported the synthesis and antimicrobial activity of compounds of the general formula $4\left(\mathrm{R}^{2}: \mathrm{CH}_{2} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}\right)$. In the present paper we wish to report an extension of this project with the synthesis and biological evaluation of a new series of derivatives 4 where R^{2} :alkyl (Scheme 1).

Scheme 1. $\mathrm{R}^{1}: \mathrm{H}, \mathrm{CH}_{3}, \mathrm{Cl}, \mathrm{R}^{2}:$ alkyl , $\mathrm{R}^{3}: \mathrm{H}, \mathrm{CH}_{3}$.

[^2]
Chemistry

As reported elsewhere the 3-alkyl-2-benzothiazoline hydrazones (3) are prepared by reaction of hydrazine hydrate either with 2 -methylmercapto-3-alkylbenzothiazolium iodides ${ }^{2 \mathrm{a} . \mathrm{b}}$ or with 2 -imino-3-alkyl-benzothiazolines(2) ${ }^{3}$. Initially we followed the latter method with a slight modification i.e., using ethanol as a solvent instead of 2-methoxyethanol. However we found that direct reaction of hydrazine with the 2-amino-3-alkyl-benzothiazolium iodides (1) (Scheme 1) gave higher yields. Besides the intermediate step of formation of the free base 2 was avoided. Therefore this method was preferred to those mentioned above.

The final products 4 were obtained by refluxing in ethanol the intermediates 3 either with 5 -nitro-2-furfuraldehyde diacetate in the presence of conc. $\mathrm{HCl}(4 \mathrm{a}-\mathrm{d}, \mathrm{i}, \mathrm{j})$ or with 2-acetyl-5-nitrofuran (4e-h) and were recrystallized from THF. Yields and melting points are listed in Table I.

TABLE I: Products of the general formula 4.

4	R^{1}	R^{2}	R^{3}	$\begin{gathered} \text { Yield } \\ \% \end{gathered}$	Melting point $/{ }^{\circ} \mathrm{C}$
a	H	CH_{3}	H	95	234-5
b	"	$\mathrm{C}_{2} \mathrm{H}_{5}$	"	90	210-12
c	"	$\mathrm{C}_{3} \mathrm{H}_{7}$	"	90	193-5
d	"	$\mathrm{C}_{4} \mathrm{H}_{9}$	"	85	163-4
e	"	CH_{3}	CH_{3}	90	215-6
f	"	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	75	174-5
g	"	$\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	70	219
h	"	$\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}	70	144-5
i	CH_{3}	CH_{3}	H	70	255
j	Cl	CH_{3}	"	70	227

Six of the synthesized compounds 4 were selected for preliminary antimicrobial screening against bacteria, yeasts and fungi.

Antimicrobial Screening

Inoculation cultures were prepared by incubation of the bacterial strains in BrainHeart Infusion broth (BHI) at $37^{\circ} \mathrm{C}$ for 18 hr and the yeast strains in Sabouraud's maltose broth (Sab.) for 18 hr at 30° or $37^{\circ} \mathrm{C}$ depending on the optimal growth temperature of the strain. To stimulate the growth of Streptococcus pyogenes 10% horse serum was added to the broth. The fungi were grown on 10 ml Mycological agar containing 0.05% inositol, 0.01% thiamine, 0.5% cycloheximid and 0.1% o chloramphenicol for 5 days at $22^{\circ} \mathrm{C}$ (phytopathogenic strains) or $30^{\circ} \mathrm{C}$ (dermatophytes) in 100 ml erlenmeyers.
TABLE II: ${ }^{1} \mathrm{H}$ NMR data of the final products $4\left(8 / \mathrm{CDCl}_{3}\right)$.

Compound	Group	Methylene			Aromatic(benzene \& furan)	$-\mathrm{N}=\mathrm{CH}-$
		$\mathrm{CH}_{3}-$	$-\mathrm{CH}_{2}-$	$-\mathrm{CH}_{2} \mathrm{~N}$		
4 a	R_{2}	3H,s/3.65				
4 b	R_{2}	3H,t/1.35		2H,q/4.2		
4 c	R_{2}	3H,t/1.0-1.1	2H,m/1.85-2.0	2H, t/4.1		
4e-h	R 3	3H,s/2.4				
4a-d						1H, s/7.9-8.2
4a-h					6H,m/7.3	

The microbial inoculum, with the exception of fungi, consisted mostly of approximately 10^{5} colony forming units per ml.In that respect, unless otherwise specified (Table III), the overnight bacterial and yeast cultures were diluted 10^{-3} in BHI broth and Sab . broth respectively. The 5 -day fungi cultures were suspended in 15 ml saline and used undiluted. Microtiter plates were used for MIC determinations. For each of the tested compounds a $2000 \mathrm{mcg} / \mathrm{ml}$ sterile stock solution in DMSO was prepared. After dilution with sterile distilled water to $400 \mathrm{mcg} / \mathrm{ml}$, serial twofold dilutions in BHI broth (bacteria) or Sab. broth (yeasts and fungi) were prepared (100-1.5 $\mathrm{mcg} / \mathrm{ml}$) and pipetted in $50 \mu \mathrm{l}$ quantities into the wells of the microtiter plate. Then $50 \mu \mathrm{l}$ freshly prepared inoculum was pipetted into each well, followed by covering with a plastic film to prevent evaporation. Plates were incubated at the appropriate temperatures and results read after 24 or 48 hr (Table III).

Inoculated blank 5\% solvent solutions and blank media were used as controls.
The MIC was defined as the lowest concentration of the compound under examination at which no visible growth of the microorganisms appeared.

Results and discussion

The results of the antimicrobial screening appearing in Table III clearly show that the newly synthesized compounds are less active compared to the compounds of the general formula 4 where $\mathrm{R}^{2}: \mathrm{CH}_{2} \mathrm{COOH}, \mathrm{COOC}_{2} \mathrm{H}_{5}$. This fact may possibly be attributed to low penetration through the cell membranes of the test organisms due to poor solubility of the compounds in water (their DMSO solutions become turbid upon dilution with water).

Experimental

Melting points were determined in a Büchi capillary apparatus and are uncorrected. IR spectra were recorded on a PERKIN-ELMER 177 instrument in KBr . NMR spectra were run on a VARIAN A-60 spectrometer using $\mathrm{Me}_{4} \mathrm{Si}$ as internal reference in CDCl_{3}. Mass spectra were taken on a HITACHI/PERKINELMER RMU-6M apparatus (electron energy 70 eV , emission of ion source $40 \mu \mathrm{~A}$, temperature $120-140^{\circ} \mathrm{C}$). The recorded molecular ions were in accord with the structures assigned.

The resuits of elemental analyses ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) were within $\pm 0.4 \%$ of the theoretical values and were done by Service Central de Microanalyse (C.N.R.S.), Fiance.
$I R$: A common complex system of bands appeared in the region between 1580$1500 \mathrm{~cm}^{-1}$, assigned to conjugated $\mathrm{C}=\mathrm{N}$ and aromatic $\mathrm{C}=\mathrm{C}$ bond stretching ${ }^{2 \mathrm{~b}, 4}$.
${ }^{1} \mathrm{H}$ NMR data of the final products 4 are listed in Table II.
3-alkyl-2-benzothiazoline hydrazones (3)
A solution of 0.03 mole of a 3-alkyl-2-aminobenzothiazolium iodide and 0.12 mole $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in ethanol was refluxed for 1 hr . After cooling the precipitate was filtered off. An additional crop was obtained after addition of water to the concentrated filtrate. The combined solids were recrystallized from benzene-ligroin.
TABLE 1II: Minimum inhibition concentrations of the tested compounds.

Test organisms	Inoculation cultures			Microtiter plates						
	Incubation time and temperature		Culture	Incubation time and temperature		Compounds (mcg/ml)				
			dilution			4 a	4 b	4 d	4 e	4 g
Bacteria										
Pseudomonas aeruginosa A1058	18 hr	$37^{\circ} \mathrm{C}$	10^{-3}	24 hr	$37^{\circ} \mathrm{C}$	>100	>100	>100	>100	>100
Escherichia coli UZO	"	"	"	"	"	"	"	"	"	"
Klebsiella pneumoniae A265	"	"	"	"	"	"	"	11	"	"
Staphylococcus aureus A321	"	"	"	"	"	"	"	"	"	"
Streptococcus pyogenes ATCC12344	"	"	10^{-1}	"	"	"	"	"	"	"
Bacillus subtilis	"	"	10^{-3}	"	"	"	"	"	"	"
Yeasts										
Saccharomyces bailii A 3042	18 hr	$30^{\circ} \mathrm{C}$	10^{-2}	48 hr	$30^{\circ} \mathrm{C}$	"	"	"	"	"
Candida albicans A7	"	$37^{\circ} \mathrm{C}$	10^{-3}	24 hr	$37^{\circ} \mathrm{C}$	"	"	"	"	"
Fung:										
Penicilliun italicum 278-58	5 d.	$22^{\circ} \mathrm{C}$	10^{-2}	48 hr	$22^{\circ} \mathrm{C}$	"	"	"	"	"
Phytophtora cactorum 435-64	5 d .		"	"	"	"	"	"	"	"
Trichophyton mentagrophytus R177		$30^{\circ} \mathrm{C}$	"	"	$30^{\circ} \mathrm{C}$	"	"	"	"	100
Trichophyton rubrum 494-62		"	"	"	"	"	"	"	"	>100

2-(5'-nitrofurylidene) azino-3-alkyl-benzothiazolines (4).

For the synthesis of compounds $4 \mathrm{a}-\mathrm{d}, \mathrm{i}, \mathrm{j}\left(\mathrm{R}^{3}: \mathrm{H}\right), 0.012$ mole of a hydrazone 3 and 0.012 mole 5 -nitro-2-furfuraldehyde diacetate were dissolved in 50 ml ethanol, 2 ml concentrated HCl was added and the mixture was refluxed for 1 hr under stirring. The coloured precipitate was filtered off, washed with water and then with methanol and the solid was dried and recrystallized from THF. The methyl analogues $4 \mathrm{e}-\mathrm{h}$ $\left(\mathrm{R}^{3}: \mathrm{CH}_{3}\right.$) were similarly prepared in non-acidic medium employing 0.012 mole 2 -acetyl-5-nitrofuran.

$\Pi \varepsilon \rho і \lambda \eta \psi \eta$

 $\tau \omega \nu \varepsilon v \omega ́ \sigma \varepsilon \omega \nu$ $\sigma \tau 0$ vعрó.

References

1: Kazanis M.D. and Macheras P.E.: Eur. J. Med. Chem. 17, 291 (1982).
2a. Mohanty S., Patil D.C. and Rout M.K.: Ind. J. Chem. 6, 136 (1968).
2b. Pays M. and Beljean M.: Bull. Soc. Chim. 1973 (III), 3044.
3. Seefelder M. and Reppe H.G. (BASF, Brit, pat. 880, 653): Chem. Abs. 56, 5972i (1962).
4. Larive H., Chambonnet A.J. and Metzger J.: Bull. Soc. Chim., 1963, 1675.

Acknowledgements

The authors wish to thank Dr. J.G. Oostendorp of Gist-Brocades N.V., Delft, The Netherlands, responsible for the antimicrobial screening, Prof: Dr. H. Timmerman, Department of Pharmacochemistry, Vrije University, Amsterdam, The Netherlands, for his helpful remarks and Dr. V. Papadopoulos of the Analytical Laboratory of the N.R.C. «DEMOKRITOS» for the performance and interpretation of the mass spectra.

NEW REACTIONS OF 2-PHENYLIODONIO-DIMEDONATE

M. PAPADOPOULOU AND A. VARVOGLIS
Laboratory of Organic Chemistry, University of Thessaloniki, Thessaloniki Greece

(Received April 2, 1984)

Trivalent iodine forms a variety of ylids with several types of organic compounds. The most widely studied iodonium ylids are those derived from iodobenzene and 1,3-diketones;2-phenyliodonio-dimedonate, 1 , has received much attention because of its accessibility and relative stability.
lodonium ylids are reactive compounds and their reactivity pattern is often different from that of ylids of other elements. Their reactivity, however, is limited by the fact that heating is normally not permitted, because a rearrangement ${ }^{1}$ takes place to the iodoether 2 (Scheme 1). Transylidations constitute the greater part of the known chemistry of 1 and relative compounds.

Scheme 1

Thus, triphenylphosphine ${ }^{2}$, triphenylarsine ${ }^{3}$, pyridine and substituted or condensed pyridines ${ }^{2,4}$ and several types of sulfur compounds ${ }^{4,5}$ react with l displacing iodobenzene under formation of new ylids. New iodonium ylids may be formed by reaction of l with active methylene compounds, which are stronger acids than dimedone ${ }^{6}$. These reactions apparently involve nucleophilic attack to a carbanionic centre but it is more probable that prior dissociation of 1 into iodobenzene and carbene or a carbenoid acceptor takes place. The formation of a cyclopropane derivative with cyclohexene ${ }^{3}$ as well as the thermal decomposition of several iodonium ylids in various solvents ${ }^{7}$ are in favour of a carbene mechanism. 1 is fairly basic and it is protonated even by weak acids to form iodonium salts which may react further, e.g. $\mathrm{H}_{2} \mathrm{~S}$ gives initially 2 -sulfhydryl-dimedone ${ }^{8}$ and HCl gives 2chlorodimedone ${ }^{9}$ etc, whereas p-toluene-sulfonic acid gives a stable iodonium tosylate ${ }^{10}$.

Iodonium ylids may react also with electrophiles, their nucleophilic site being the carbonyl oxygen rather than the carbanionic carbon, as is the case with ylids of other elements. Thus O-ethyl and O-benzoyl iodonium salts are formed with triethyloxonium tetrafluoroborate and benzoyl chloride, respectively ${ }^{11}$. Participation of O has been also noted in the reactions of 1 with several heterocumulenes, under formation of a variety of heterocyclic compounds ${ }^{12}$. Finally, reducing agents such as SO_{2} convert I into dimedone ${ }^{13}$, whereas oxidising agents such as ozone and HNO_{3} afford generally $1,2,3$-triketones ${ }^{14}$.

The enhanced reactivity of iodonium ylids in comparison with ylids from other elements such as P, N and S as well as their versatility made desirable a further investigation of their chemical properties. Three reactions of a novel type are described below, all with the iodonium ylid 1 .

Results and Discussion

Among the several reagents tested some did not react at room temperature (carbonyl compounds, oxiranes, Grignard compounds), whereas other gave a mixture of products which were not due to a reaction between 1 and themselves (diazocompounds). Triethyl phosphite, acetyl hypoiodite and diaryliodonium salts react smoothly with 1 , each in a different way, affording products of various types. Their reactions are described below.

Reaction with triethyl phosphite. In contrast to the reaction of 1 with triphenylphosphine which gives the triphenylphosphonium ylid of dimedone ${ }^{2}$, triethyl phosphite afforded a mixture of O-ethyl-2-iododimedone, 3, and diethyl benzenephosphonate; 4 , along with small amounts of triethyl phosphate and iodobenzene (Scheme 2).

Both 3 and 4 are known, but it is remarkable that 3 has been obtained in 65% yield, whereas low yields have been reported from other reactions by which it was formed ${ }^{15}$. The above reaction is of a new type for iodonium ylids, because for the first time breaking of the I-phenyl bond is observed rather than the usual breaking of the I-dimedonyl bond. There is no doubt that phosphorus attacks the benzene ring and this is a rare case of nucleophilic aromatic substitution of a little activated system under so mild conditions. It is not known presently whether the attack is at C_{1} or C_{4}, although C_{1} attack appears more reasonable. It must be noted that an analogous reaction has been observed between diphenyliodonium salts and triethyl phosphite; that reaction afforded not only 4 but also 1,4 -diiodobenzene under more drastic conditions ${ }^{16}$.

Reaction with acetyl hypoiodite. It is known that a mixture of iodine and diacetoxy-iodobenzene reacts to afford the non-isolable acetyl hypoiodite, AcOI, which may be used in situ in such reactions as iodination of aromatics, addition to a double bond etc. ${ }^{17}$ In the absence of a suitable acceptor AcOI decomposes homolytically into MeI and CO_{2}. When 1 was added to a mixture of $\mathrm{Phl}(\mathrm{OAc})_{2}$ and I_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the solution instantly decolorised but on standing a violet colour started to develop. Rapid chromatographic separation afforded besides iodobenzene 2.2-

5

7

$\underline{6}$ or

7'

Scheme 3
diiododimedone ${ }^{18}$ 7, as the main product along with varying amounts of 2iododimedone ${ }^{11}, 8$, and $2,2^{\circ}$-diiodo-bis-dimedonyl,9, a new compound.

2,2-Diiododimedone has been given the assigned structure ${ }^{18}$ but on the basis of spectral evidence it is highly probable that its actual structure is that of the isomeric 2 -iodo-O-iododimedone, 7^{\prime}. Indeed, α, α-dihaloketones ${ }^{19}$ are known to exhibit a carbonyl stretching frequency at the region of $1750 \mathrm{~cm}^{-1}$, whereas compound 7 (7') absorbs at $1685 \mathrm{~cm}^{-1}$, which value is in the region of α, β-unsaturated ketones.

Diiododimedone was not the expected product from the reaction of 1 with AcOI, since iodo-acetoxydimedone, 5 or 5^{\prime}, appeared a more reasonable candidate.

However, it is still possible that 5 or 5^{\prime} is first formed and then by reaction with AcOI is converted into diiododimedone, with simultaneous formation of diacetylperoxide. Another possibility involves formation of 6 or 6°, which by reaction with AcOI give also diiododimedone, with generation of $\mathrm{PhI}(\mathrm{OAc})_{2}$ (Scheme 3). Compounds 5^{\prime} or 6^{\prime} are favored over 5 or 6 , because the latter would have come from direct nucleophilic attack by the carbanionic C of 1 , which is without precedent.

After the end of the reaction the characteristic colour reaction of $\mathrm{PhI}(\mathrm{OAc})_{2}$ with acetoxime is positive. However, there is no way to tell which pathway has been followed, because $\mathrm{PhI}(\mathrm{OAc})_{2}$ may be also formed from PhI and $(\mathrm{AcO})_{2}$, so that neither the absence of $(\mathrm{AcO})_{2}$ nor the presence of $\mathrm{PhI}(\mathrm{OAc})_{2}$ can prove the preferred pathway.

Diiododimedone is the first relatively stable compound formed. However upon storage and more quickly in solution it decomposes liberating iodine, whereas on melting (at $137^{\circ} \mathrm{C}$) a part of it resolidifies to melt again at $162^{\circ} \mathrm{C}$, which is the . m.p. of 8 . Therefore both 8 and 9 may be considered as decomposition products of diiododimedone, 8 coming from hydrolysis and 9 from thermolysis (Scheme 4).

Scheme 4

It is of interest to note that the carbonyl stretching frequency of 9 appears at $1760 \mathrm{~cm}^{-1}$, which is against an isomeric structure with -O-I bonds.

Reaction with iodonium salts. Several iodonium salts, $\operatorname{Ar}_{2} \mathrm{I}^{+} \mathrm{X}^{-}$, did not react with 1 in chloroform at room temperature, whereas at reflux 1 was converted into 2 . However in a mixture of $\mathrm{MeOH}-\mathrm{EtOH}$ at reflux temperature a reaction took place, which gave not any C -or O -arylated derivative but instead 2-halogenodimedone, 11, along with some 2 , i.e. a product coming formally from nucleophilic attack at C_{2} of 1 by the anion of the iodonium salt. The formation of 11 may be explained taking
into account the basic character of 1 . It is known ${ }^{10}$ that the conjugate acid 10 of 1 has a pK_{a} value of 1.4 in aqueous EtOH . Therefore it is suggested that 10 is initially formed, for which no rearrangement is possible and then it is attacked by X^{-}under displacement of PhI (Scheme 5). This reaction must be accompanied by formation of $\mathrm{Ph}_{2} \mathrm{IOR}$, which is known to be unstable ${ }^{20}$ decomposing into $\mathrm{PhOR}, \mathrm{PhH}$ and PhI . A search for these by-products was not attempted.

Scheme 5
It is noted that the reaction of iodonium salts with diazocompounds, which may be considered as N -ylids according to the resonance form $\mathrm{RCH}^{-}-\mathrm{N}_{2}^{+}$, gave similarly halogenoderivatives, e.g.

$$
\mathrm{ArCHN}_{2}+\mathrm{Ar}_{2} \mathrm{I}^{+} \mathrm{X}^{-} \xrightarrow{\mathrm{BuOH}} \mathrm{ArCH}_{2} \mathrm{X}
$$

By contrast, phosphonium ylids react with iodonium salts in a different way, affording O-phenylated products ${ }^{21}$.

Experimental

Melting points have been obtained on a Kofler hot stage apparatus. IR spectra were obtained from Nujol mulls with a Perkin-Elmer Model 257 spectrophotometer. ${ }^{1} \mathrm{H}$-nmr spectra were recorded on a Varian A-60A spectrometer in CDCl_{3}, with TMS as an internal standard. The mass spectra were obtained with a Hitachi-PerkinElmer Model RMU-6L spectrometer with ionisation energy 70 eV .

Reaction with $P(\mathrm{OEt})_{3}$. Compound $1(2.92 \mathrm{mmol}, 1 \mathrm{~g})$ was stirred in excess $\mathrm{P}(\mathrm{OEt})_{3}$ under a N_{2} atmosphere, until it dissolved. The excess of $\mathrm{P}(\mathrm{OEt})_{3}$ and PhI formed were removed by distilation in vacuo. From the residue 3 crystallised out in a 65% yield, m.p. $130^{\circ} \mathrm{C}$ (lit. ${ }^{11}$ m.p. $130-131^{\circ} \mathrm{C}$). The filtrates after collection of 3 were chromatographed (silica gel column, hexane-chloroform) and 4 was collected in a 65% yield (oil, characterised by nmr spectroscopy, identical with an authentic sample).

Reaction with AcOl. Compound $1(1.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{ml})$ was treated with $\mathrm{Phl}(\mathrm{OAc})_{2}(0.88 \mathrm{mmol})$ and $\mathrm{I}_{2}(0.88 \mathrm{mmol})$. The dark colour due to I_{2} after some time of stirring turned to yellow but after 45 min the dark colour appeared age The solvent of the reaction mixture was then evaporated and the resides chromatographed (silica gel, hexane, hexane- CHCl_{3} and CHCl_{3}) ≥ 2

$140^{\circ} \mathrm{C}$) and then $2,2^{\circ}$-diiodo-bis-dimedonyl 9 , in 20% yield, m.p. $192{ }^{\circ} \mathrm{C}$ (from hexane- CHCl_{3}) IR (Nujol) $1760,1730,1670,1650 \mathrm{~cm}^{-1}$; MS (m/z) $530\left(\mathrm{M}^{+}\right), 403(\mathrm{M}-$ 127), 266,254 etc. Anal. calc'd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{I}_{2} \mathrm{O}_{4}$: C 36.22; H 3.77. Found C $36.18 ; \mathrm{H}$ 3.45.

Reaction with iodonium salts. The diphenyliodonium salts $\mathrm{Ph}_{2} \mathbf{I}^{+} \mathrm{X}^{-}$, where $\mathrm{X}=\mathrm{Cl}$, $\mathrm{Br}, \mathrm{I}(1 \mathrm{mmol})$ and $I(1 \mathrm{mmol})$ were refluxed in 30 ml of $\mathrm{MeOH}-\mathrm{EtOH}$ (1:1) for such time, until all solids dissolved. Upon cooling about 50% of the unreacted iodonium salt crystallised out and was removed by filtration.

Removal of solvents from the filtrate gave an oil which was chromatographed (silica gel, hexane- $\mathrm{CHCl}_{3}, \mathrm{CHCl}_{3}, \mathrm{EtOH}$) and, besides PhI and the rearranged product, 2, the 2 -chloro-(or 2 -bromo-or 2 -iodo) dimedone was obtained in 50% yield. Their m.p.'s were in agreement with reported values ${ }^{11,18}$.

Abstract

Summary The iodonium ylid 2 -phenyliodonio-dimedonate, 1 , undergoes three reactions of a new type. It reacts: (a) with triethyl phosphite to afford benzene-phosphonate and O-ethyl-2-iododimedone, (b) with acetyl hypoiodite to give 2,2 -diiododimedone and $2,2^{2}$-diiodo-bisdimedonyl and (c) with diaryl iodonium chlorides, bromides and iodides to afford the corresponding 2-halogenodimedone. Possible mechanistic pathways for these reactions are briefly discussed.

Key words: Acetyl hypoiodite, Diphenyl iodonium salts, Triethyl phosphite, O-Ethyl-2-iododimedone, 2,2-Diiodo-dimedone, 2, 2°-Diiodo-bis-dimedonyl.

$\Pi \varepsilon р і \lambda \eta \psi \eta$

 $\omega \varsigma ~ \alpha v o ́ v ~ a \lambda o \gamma o ́ v o ~ \sigma \chi \eta \mu \alpha \tau i \zeta o v \tau \alpha \imath ~ 2-\alpha \lambda o \gamma o v o-\delta ı \mu \varepsilon \delta o ́ v e \varsigma . ~$
$\mathrm{M} \varepsilon \beta \alpha \dot{\sigma} \eta \tau \alpha \pi \varepsilon \iota \rho \alpha \mu \alpha \tau 1 \kappa \alpha \dot{\alpha} \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha \pi \rho о \tau \varepsilon i v o v \tau \alpha \imath \mu \eta \chi \alpha v 1 \sigma \mu \circ i \tau \omega \nu \alpha v \tau 1 \delta \rho \alpha ́ \sigma \varepsilon \omega v$.

References

1. Takaku M., Hayasi Y., Nozaki H.: Tetrahedron, 26, 1243 (1970).
2. Adamsone B., Neiland O., Kampare R.: Zh. Org. Khim., 18, 890 (1982).
3. Hood J.N.C., Lloyd D., MacDonald W.A., Shepherd T.M.: Tetrahedron, 38, 3355 (1982).
4. Kappe T., Korbuly G., Stadlbauer W.: Chem. Ber., HI, 3857 (1978).
5. Lazaris A., Egorochkin A.: Khim. Get. Soed., 117 (1981).
6. Prikule D., Neiland O.: Zh. Org. Khim., 7, 2441 (1971).
7. Hayasi Y., Okada T., Kawanisi M.: Bull. Chem. Soc. Jpn., 43, 2506 (1970).
8. Koser G.F., Yu S.-M.: J. Org. Chem., 41, 125 (1976).
9. Neiland O., Vanag G.: Zh. Obsch. Khim., 31, 146 (1960).
10. Kalnina S., Neiland O.: Zh. Org. Khim., 7, 1606 (1971).
11. Neiland O., Vanag G.: Zh. Obsch. Khim., 30, 510 (1960).
12. Koser G.F., Yu S.-M.: J. Org. Chem., 40, 1166 (1975).
13. Prikule D., Neiland O.: Zh. Org. Khim., 13, 1124 (1977).
14. Schank K., Lick C.: Synthesis, 392 (1983).
15. Koser G.F., Linden S., Shih Y.: J. Org. Chem., 43, 2676 (1978).
16. Varvoglis A.: Tetrahedron Letters, 31 (1972).
17. Merkushev E.B., Simakhina N., Grigorev M.: Synthesis, 486 (1980).
18. Gudriniece E., Vanag G., Makzlake L.: Zh. Obsch. Khim., 30, 2379 (1960).
19. Bellamy L.J., Williams R.L.: J. Chem. Soc., 4294 (1957).
20. Lubinkowski J.J., Knapczyk J.W., Calderon J.L., Peht L.R., McEwen W.E.: J. Org. Chem., 40, 3010 (1975).
21. Nesmeyanov N.A., Zhuzhlokova S.T., Reutov O.A.: Izv. Akad. Nauk SSSR, Ser. Khim. 194 (1965).

A STUDY ON THE ACTION OF SOME REDUCTIVE REAGENTS ON 1-AROYL-5-AROYLAZO-3,4,4,5-TETRAMETHYL-2-PYRAZOLINES

JULIA STEPHANIDOU-STEPHANATOU

Laboratory of Organic Chemistry, University of Thessaloniki, Thessaloniki, Greece
(Received 13 January, 1984).

Recently we have studied ${ }^{1}$ the oxidation of some bis-aroylhydrazones of 3,3-dimethyl-pentane-2,4-dione (1) with lead tetra-acetate (LTA) to 1-aroyl-5-aroylazo-3,4,4,5-tetramethyl-2-pyrazolines (2) in good yields (50-60\%).

We now report that reduction of the aroylazo-pyrazolines (2) under mild conditions and with several reducing reagents such as sodium hydrosulphite ${ }^{2-5}$, sodium borohydride ${ }^{4}$ and by catalytic hydrogenation ${ }^{2-5}$ leads to the formation of the starting bis-aroylhydrazones (1) in high yields (85-95\%) (Scheme 1).

(a) $x=H$
(b) $x=M e$
(c) $\mathrm{X}=\mathrm{Cl}$
(d) $X=\mathrm{NO}_{2}$

SCHEME 1

Attention should be drawn to the fact that this reversible oxidation-reduction system between the bis-aroylhydrazones of 3,3-dimethyl-pentane-2,4-dione (1) and their oxidation products, the 1 -aroyl- 5 -aroylazo-3,4,4,5-tetramethyl-2-pyrazolines (2), is the first ever observed reversible system between hydrazones and their oxidation products.

However, when other reducing agents such as titanous chloride or lithium aluminium hydride are used a reductive aroylazo cleavage is observed. So, by titanous chloride reduction ${ }^{4,5}$ the 1 -aroyl-5-hydroxy-3,4,4,5-tetramethyl-2-pyrazolines ${ }^{1}$ (3) are formed in good yields ($68-81 \%$), whereas in the case of lithium aluminium hydride reduction ${ }^{4.5}$ two products are isolated the 1 -aroyl-5-methylene-3,4,4-trimethyl-2-
pyrazoles ${ }^{1}$ (4) (15-29\%) and the 1 -aroyl-3,4,4,5-tetramethyl-2-pyrazolines ${ }^{1}$ (5) (37$43 \%$). In all cases the aroylazo-moiety is isolated as the corresponding acid hydrazide (6) (Scheme 2). However one exception is observed, namely the isolation of the hydroxy-pyrazoline (3d) instead of the tetramethyl-pyrazoline (5d) by the lithium aluminium hydride reduction of the nitro-substituted aroylazo-pyrazoline (2d).

It should be mentioned that the reduction products are known compounds and their structure was elucidated by their spectral data and elemental analysis as described previously ${ }^{1}$.

It is also worth mentioning that reduction of the aroylazo-pyrazolines (2) should give the corresponding amino- or hydrazo-derivatives ${ }^{2-5}$. Therefore the behaviour of these compounds (2) towards reducing agents is interesting and unusual.

From all mentioned above it is evident that the reduction products are remarkably influenced by the reductive ability of the reducing reagent. Thus, when mild reducing reagents are used a reversible reaction is observed whereas with stronger reducing agents a reductive cleavage is observed.

Experimental ${ }^{6}$

Reduction of 1-Aroyl-5-aroylazo-3,4,4,5-tetramethyl-2-pyrazolines (2).
A. Sodium hydrosulphite reduction ${ }^{2,3,4}$. To the yellow aroylazo-pyrazoline ($2 \mathrm{a}-\mathrm{d}$) $(0.001 \mathrm{~mol})$ in ethanol (20 ml) a solution of sodium hydrosulphite (0.002 mol) in water (10 ml) was added under stirring and the stirring was continued until a colorless solution was obtained $(\sim 1 \mathrm{~h})$. The ethanol was evaporated and the water layer was extracted with chloroform. The chloroform extract was dried and evaporated to leave behind the bis-aroylhydrazone (la-d) in 89-93\% yield (1a 91\%; lb 90%; 1c 93%; 1d 89%).
B. Sodium borohydride reduction ${ }^{4}$. To a stirred solution of the aroylazo-pyrazoline
($2 \mathrm{a}-\mathrm{d}$) (0.001 mol) in dry ether (20 ml) sodium borohydride (0.01 mol) was added and the reaction mixture was stirred for 24 h . The suspension was quenched with water and the ether was removed in vacuo. The precipitated bis-aroylhydrazone (1ad) was filtered off, washed with water and dried. Yield $85-95 \%$ (la 85%; $1 \mathrm{~b} 87 \%$; 1c 95%; 1d 85%).
C. Catalytic hydrogenation ${ }^{2-5}$. A solution of the aroylazo-pyrazoline (2a-d) (0.001 mol) in ether (40 ml) was hydrogenated under pressure 3 atm in the presence of palladium on charcoal ($40 \mathrm{mg}, 10 \%$) for 2 h . The catalyst was filtered off and the solvent was evaporated to leave behind the bis-aroylhydrazone (1a-d) in $88-95 \%$ yield (la 89%; lb 92%; 1c 95%; ld 88%).
D. Titanous chloride reduction ${ }^{4,5}$. To the yellow aroylazo-pyrazoline (2a-d) (0.001 mol) in ethanol (20 ml) a titanous (III) chloride solution ($5 \mathrm{ml}, 12.5 \%$) was added under stirring. The stirring was continued for another 5 min and then the solution was made alkaline with lithium hydroxide solution. The ethanol was evaporated and the remainder was extracted with chloroform. The chloroform layer was dried, evaporated and the remainder was subjected to column chromatography on silica gel (starting with petroleum ether-ethylacetate $7: 1$) to give the 1 -aroyl-5-hydroxy-3,4,4,5-tetramethyl-2-pyrazolines (3a-d) in $68-81 \%$ yield (3a 76%; 3b 81%; 3c 68%; 3d 70%) and the corresponding acid hydrazides ($6 \mathrm{a}-\mathrm{d}$).
E. Lithium aluminium hydride reduction ${ }^{4,5}$. To a stirred solution of the aroylazopyrazoline ($2 \mathrm{a}-\mathrm{d}$) (0.001 mol) in dry ether (20 ml) lithium aluminium hydride (0.001 mol) was added and the stirring was continued for 30 h . Addition of wet ether was followed by addition of water. The organic layer was dried, evaporated and the remainder was subjected to colum chromatography on silica gel (starting with petroleum ether-ethylacetate $7: 1$) to give in elution order the 1 -aroyl-5-methylene-3,4,4-trimethyl-2-pyrazoles (4a-d) in 15-29\% yield (4a 21\%; 4b 19\%; 4c 15\%; 4d 29%), the 1 -aroyl-3,4,4,5-tetramethyl-2-pyrazolines ($5 a-c$) in $37-43 \%$ yield ($5 \mathrm{a} 43 \%$; $5 \mathrm{~b} 38 \%$; 5 c 37%) and the corresponding acid hydrazides ($6 \mathrm{a}-\mathrm{d}$). In the case of the nitro-substituted aroylazo-pyrazoline (2d) the hydroxy-pyrazoline (3d) was isolated in 52% yield instead of the tetramethyl-pyrazoline (5d).

Abstract

Summary Reduction of some 1 -aroyl-5-aroylazo-3,4,4,5-tetramethyl-2-pyrazolines (2) with mild reducing reagents leads to the formation of the starting bis-hydrazones (1) whereas, with stronger reducing reagents a reductive cleavage is observed.

Key words: Reduction, Catalytic hydrogenation, Aroylazo-pyrazolines.

$\Pi \varepsilon р і \lambda \boldsymbol{\eta} \boldsymbol{\eta}$

Мєдє́тך $\tau \eta \varsigma ~ E \pi \iota \delta \rho a ́ \sigma \varepsilon \omega \varsigma ~ A v a \gamma \omega \gamma ı \kappa \omega ́ v ~ A v \tau \iota \delta \rho a \sigma \tau \eta \rho i ́ \omega v ~ \sigma \tau \iota \varsigma ~ 1-A \rho o и ̈ \lambda o-5-~$ ароӥда弓 $\omega-3,4,4,5-\tau \varepsilon \tau \rho а \mu \varepsilon \theta v \lambda о-2-\pi v \rho a \zeta о \lambda i ́ v \varepsilon \varsigma$.

Oı 1- $\rho \rho о \ddot{\lambda} \lambda \sigma-5-\alpha \rho о \ddot{\lambda} \lambda \zeta \omega-3,4,4,5-\tau \varepsilon \tau \rho \alpha \mu \varepsilon \theta \nu \lambda 0-2-\pi \nu \rho \alpha \zeta \circ \lambda i v \varepsilon \varsigma$ (2) $\mu \varepsilon \tau \alpha \tau \rho \varepsilon ́ \pi о \nu \tau \alpha 1$

 $\alpha р о и ̈ \lambda \alpha \zeta \omega-о \mu \alpha ́ \delta \alpha \varsigma$.

References and notes

1. Stephanidou-Stephanatou J.: J. Heterocyclic Chemistry., 20, 845 (1983).
2. Schröter R. and Möller F.: «Amine durch Reduktion» in Müllers E.: Methoden der Organischen Chemie (Houben-Weyl), Band XI/1, pp. 522-531, Georg Thieme Verlag, Stuttgart, 1957.
3. Laing I.G.: «Nuclear Substituted Benzenoid Hydrocarbons with more than one Nitrogen Atom in the Substituent Group" in Coffeys S.: Rodd's Chemistry of Carbon Compounds, Vol IIIc (2d edition), pp. 177-181, Elsevier Scientific Publishing Company, Amsterdam, London, New York, 1973.
4. Newbold B.T.: «Reduction and Synthetic Uses of Hydrazo, Azo and Azoxy Compounds» in Patais S.: The Chemistry of the Hydrazo, Azo and Azoxy Groups, Part 2, pp. 599-638, John Wiley and Sons, London, New York, Sydney, Toronto, 1975.
5. Zollinger H.: Azo and Diazo Chemistry, Aliphatic and Aromatic Compounds, p. 300, Interscience Publishers, LTD, London (1961).
6. For m.ps. and analytical data of compounds (1)-(5) see ref. 1.

DETERMINATION OF CADMIUM IN BLOOD BY FLAMELESS ATOMIC ABSORPTION SPECTROSCOPY

E.A. PIPERAKI

Laboratory of Analytical Chemistry, University of Athens, Athens, Greece (Received May 24, 1984).

Introduction

There is presently a great concern about possible poisoning from industrial exposure or environmental contamination by heavy metals ${ }^{1}$. Among the heavy metals of toxicological importance, cadmium has received considerable attention, because it is one of the most dangerous of the atmospheric and water pollutants. Cadmium has been associated with arterial hypertation ${ }^{2}$ and cardiovascular disease ${ }^{3}$.

As is the case with mercury, very little is known about the fate and distribution of cadmium in the environment, but as long as large quantities of the metal are refined, more of it becomes available to interact with man.

Although the amounts of cadmium in the environment is small in comparison to lead, its toxicity is greater, therefore there is a need for its determination in biological samples.

Several analytical methods for determining trace quantities of cadmium have been reported including UV and visible spectrophotometry, neutron activation, optical emission spectrophotometry and atomic absorption spectroscopy (AAS). Among those methods, AAS has received the greatest attention because of its excellent sensitivity for cadmium. More commonly used AAS techniques involve direct determination or chelation and solvent extraction of cadmium into an organic solvent ${ }^{4-12}$.

In this work a method is presented for the determination of Cd in blood by flameless atomic absorption spectroscopy after wet digestion and extraction of Cdtrioctylamine chelate into methylisobutylcetone (MIBK).

As experiments in progress show, the method can be used for the determination of other heavy metals in blood such as lead, copper, bismuth and zinc.

Experimental

Apparatus

A Beckman Atomic Absorption spectrophotometer Model 1272 was used with a Perkin Elmer Graphit Furnace Atomizer Model HGA 74, Cadmium hollow cathode lamp and a Deuterium background corrector.

Reagents

Trioctylamine (Merck-Schuchardt) $15 \% \mathrm{v} / \mathrm{v}$ in Methylisobutylcetone, nitric acid, sulfuric acid and hydrochloric acid (Merck, suprapure).

Procedure

The measurements were followed at 228.8 nm with 0.54 nm slit width and the HGA power supply was programmed as follows: drying 25 s at $100^{\circ} \mathrm{C}$, charring 60 s at $350^{\circ} \mathrm{C}$, atomizing 10 s at $1900^{\circ} \mathrm{C}$.

Sample preparation

In 25 ml quartz glasses 1.0 ml blood, $0.5 \mathrm{ml} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 1 ml HNO 3 were heated to dry. The addition of HNO_{3} was repeated twice. Then 0.5 ml HCI was added and heated to dry. The residue was taken with 1.0 ml 2.5 N HCl . The organic substance can be destroyed if 1.0 ml of blood and 0.7 ml of HNO_{3} are transferred in a KotzTölg bomb and heated for $3-4 \mathrm{~h}$ at $160^{\circ} \mathrm{C}$. After cooling the solution was heated to dry and the residue was taken as before with 1.0 ml 2.5 N HCI .0 .5 ml trioctylamine solution in MIBK was added to the solution, mixed well for 1 min and centrifuged for 5 min to phase seperation. The standards for the calibration curve were prepared in the same way.

For each measurement $20 \mu \mathrm{l}$ of sample was introduced to the graphite cuvette automatically by the Perkin Elmer AS-1 Auto Sampler.

Results

The results obtained for the recovery of Cd are given in Table I. The recovery test was carried out for solutions of Cd added to blood samples.

TABLE I. Recovery of Cd

Cd added $(\mu \mathrm{g} / \mathrm{l})$	Cd found $(\mu \mathrm{g} / 1)$	recovery $\%$
4.0	4.6	115
6.0	5.8	96.7
8.0	8.2	102.5
10.0	10.3	103
12.0	12.6	105
		$104.4 \pm 5.7 \%$

Results obtained by the proposed method were compared with those obtained by the Differential Pulse Anodic Stripping Voltamentry method (DPASV). For the measurements seven equal samples were taken from about 11 of mixed blood. Different amounts of a standard Cd solution were added to six of them. For each sample 10.0 ml of blood were acid digested (25 ml acid mixture) and then taken with HCI 2.5 N
(20 ml) as described above. The hydrochloric acid solution was used for Cd determination by the extraction and flameless Atomic Absorption method and the DPASV method. The results obtained are listed in Table II.

TABLE II. Determination of Cd in blood by two methods*

Sample	Cd added $(\mu \mathrm{g} / \mathrm{I})$	DPASVCd found ($\mu \mathrm{g} / \mathrm{l})$ TOA/MIBK/AAS	
1	-	5.0	4.7
2	2.0	7.4	7.3
3	4.0	9.2	9.3
4	6.0	10.3	11.8
5	8.0	13.0	12.9
6	10.0	14.1	15.0
7	12.0	16.1	17.3

* These results have been included in the paper of F. Alt, Z. Anal. Chem., 308, 137 (198I).

The statistical regration of the two methods gave: intercept $a=-0.77$ slope $b=1.11$, $\mathrm{r}=0.992(\mathrm{n}=7)$ The results obtained by the two methods are in good agreement and within the relative error of each method.

Five normal blood samples were analysed by the proposed method. Results obtained are listed in Table III.

TABLE III. Cd in whole blood ($\mu \mathrm{g} / 100 \mathrm{ml}$)

Sample	A	B	C	D	E
Cd	1.35	1.75	1.53	1.62	0.57

All values are in the normal range for Cd in blood.
Work in progress shows that $\mathrm{Pb}, \mathrm{Cu}, \mathrm{Bi}$ and Zn can also simultaneous extracted from 0.5 ml blood with 0.5 ml trioctylamine and determined by flameless $\mathbb{A} A S$. That is the advandage of the method since it makes possible the determination of five metals from 0.5 ml blood. That is desirable specially in cases of taking blood from young children when small blood volumes are available.

[^3]Key Words: Cadmium in blood, extraction, Atomic Absorption Spectroscopy.

$\Pi \varepsilon р і \lambda \eta \psi \eta$

References

1. N.A. Schroeder and A.P. Nason: Clin. Chem., 17, 461 (1971).
2. R.E. Carroll: J. Amer. Med. Ass., 198, 267 (1966).
3. N.A. Schroeder: Arch. Environ. Health, 21, 798 (1970).
4. H.T. Delves, G. Shepherd and P. Vinter: Analyst, 96, 260 (1971).
5. T.R. Hanser, T.A. Hinners and J.C. Kent: Anal. Chem., 44, 1819 (1972).
6. R.T. Ross, J.G. Gonzales: Anal. Chim. Acta, 70, 443 (1974).
7. P.A. Ullucci and J.Y. Hwang: Talanta, 21, 745 (1974).
8. E. Schumacher and F. Umland: Z. Anal. Chem., 270, 285 (1974).
9. F.D. Posma, J. Balke, R.F.M. Herber and E.J. Stulk: Anal. Chem., 47, 834 (1974).
10. G. Lundgren: Talanta, 23, 309 (1976).
11. P. del Castilho, R.F.M. Herber: Anal. Chim. Acta, 94, 269 (1977).
12. M. Stoeppler and K. Brandt: Z. Anal. Chem., 300 (s) 372 (1980).

[^0]: Correspondence, submission of papers, subscriptions, renewals and changes of address should be sent to Chimika Chronika, New Series, 27 Kaningos street, Athens, Greece. The Guide to Authors is published in the first issue of each volume, or sent by request. Subscriptions are taken by volume at 1000 drachmas for members and 2000 drachmas for Corporations in Greece and 28 U.S. dollars to all other countries except Cyprus, where subscriptions are made on request.
 Phototypesetted and Printed in Greece by EPTALOFOS S.A.
 ARDITTOU STR. 12-16, 11636 ATHENS

[^1]: 189 (1962), F. Hanic, Abstracts 5th, I.C.C.C. (London) (1959)).

[^2]: * Dedicated to Ass. Professor D. Lambrou, who died suddenly on June 18th, 1985.

[^3]: Summary
 A method is described for Cd determination in blood. The method involves acid digestion of the blood sample and extraction by trioctylamine in methylisobutylcetone, and flameless atomic absorption spectroscopy. Results obtained by this method are in good agreement with those taken by differential pulse anodic stripping voltametry.

