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Abstract: Density functional theory (DFT) is a commonly used methodology favored by experts and
non-experts alike. It is a useful tool for the investigation of atomic, molecular and surface systems,
offering an efficient and often reliable approach to calculate ground state properties such as electron
density, total energy and molecular structure. However, fundamental issues are not rare. Of course,
no one can really question the bold impact of DFT on modern chemical science. It is not only the way
research is conducted that has been influenced by DFT, but also textbooks, datasets and our chemical
intuition as well. In this review, issues pertaining to DFT are discussed, and it is pointed out that
without a clear understanding of why we use calculations, an effective combination of experiment
and theory will never be accomplished. Using low-level theoretical frameworks surely does not shed
light on profound problems. To excel in our scientific field and make good use of our tools, we must
very carefully decide which methodologies we are to employ.

Keywords: density functional theory; computational chemistry; physical chemistry; electronic
structure theory

1. Introduction

No one can really question the bold impact of density functional theory (DFT) on
modern chemical science. It is not only the way research is conducted that has been
influenced by DFT, but also textbooks, datasets and our chemical intuition as well. But
what is more profound is the incomparable rate at which it is being used in research articles.
The literature has been growing exponentially between 1990 and 2000. Since then, there has
been a linear growth, where publications more than double in a time interval of 5 years [1].

Figure 1 highlights this growing trend since 1999, accessed from the Web of Science.
The platform indicates that more than 200,000 papers have the keyword “Density Functional
Theory” in their abstract, while the number exceeds 500,000 if we include more relaxed
keywords (such as DFT and TD-DFT). The current situation does not show any signs of
why this should change, conversely, in the years to come.
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the keyword “Density Functional Theory” or “DFT” that are included in an article’s abstract. 
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tifaceted. Firstly, the advance of computer technology, in terms of both software and hard-
ware, has made DFT essentially a very easy computational task. Nowadays, even macro- 
and biomolecules can be treated with such methodologies to yield results in a reasonable 
time. Secondly, DFT is innately a more computationally efficient theory, compared to the 
other wavefunction-based theories (termed as ab initio), thus making it possible to study 
larger, and of course more realistic, systems. The above leads to the point where DFT is 
applicable to a plethora of scientific fields, ranging from chemistry, condensed matter 
physics and biology, further contributing to its popularization. Another thing, which is 
also the most concerning and most criticized, is the straightforwardness with which den-
sity functional calculations are performed these days. The user-friendly character of mod-
ern quantum chemical packages, along with their computing efficiency, has made DFT a 
“black-box” technique [2], where the nonchalant user yields dubious results. 

But, beyond the aforementioned problem of a “black-box technique” and the ques-
tion it generates: “Is it for everybody?”, we should also focus our attention on another, 
less mentioned question: “Is it really useful?”. To put it another way, is it really that im-
portant to include DFT calculations in almost every paper, for example, where a new com-
pound has been synthesized? 

It is clear that some areas of chemistry (such as catalysis and synthesis) have been 
heavily influenced by the use of density functional calculations. They reportedly “shed 
light” on the molecules described in the experimental part of the work. While this may 
occasionally be true, it acts more like an obstruction to the original experimental query, 
just accompanying it rather than offering something. Usually, such calculations are per-
formed with doubtful levels of theory and without any real need to be carried out in the 
first place; therefore, they do not offer any insightful comments on the results already 
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2. Discussion

The reason behind this unprecedented exploitation of a theoretical framework is
multifaceted. Firstly, the advance of computer technology, in terms of both software
and hardware, has made DFT essentially a very easy computational task. Nowadays,
even macro- and biomolecules can be treated with such methodologies to yield results
in a reasonable time. Secondly, DFT is innately a more computationally efficient theory,
compared to the other wavefunction-based theories (termed as ab initio), thus making
it possible to study larger, and of course more realistic, systems. The above leads to
the point where DFT is applicable to a plethora of scientific fields, ranging from chem-
istry, condensed matter physics and biology, further contributing to its popularization.
Another thing, which is also the most concerning and most criticized, is the straight-
forwardness with which density functional calculations are performed these days. The
user-friendly character of modern quantum chemical packages, along with their computing
efficiency, has made DFT a “black-box” technique [2], where the nonchalant user yields
dubious results.

But, beyond the aforementioned problem of a “black-box technique” and the question
it generates: “Is it for everybody?”, we should also focus our attention on another, less
mentioned question: “Is it really useful?”. To put it another way, is it really that important
to include DFT calculations in almost every paper, for example, where a new compound
has been synthesized?

It is clear that some areas of chemistry (such as catalysis and synthesis) have been
heavily influenced by the use of density functional calculations. They reportedly “shed
light” on the molecules described in the experimental part of the work. While this may
occasionally be true, it acts more like an obstruction to the original experimental query, just
accompanying it rather than offering something. Usually, such calculations are performed
with doubtful levels of theory and without any real need to be carried out in the first
place; therefore, they do not offer any insightful comments on the results already obtained.
Current methodology involves searching for a functional/basis set combination that yields
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results similar to the experiment, and further extrapolating this with false reliability. The
way the theory is used currently is like sweeping things under the carpet: we add DFT
calculations to a research paper to compensate for any ambiguous or disappointing experi-
mental results we obtained. And it is not the use of DFT that is to blame, rather it is the
haphazard way it is used.

In most cases, using our logic and intuition as chemists could yield important and
meaningful results, just by the addition of simple experiments. The resort to questionable
theoretical frameworks can be easily replaced by a thoughtful and logical set of questions
that will ultimately prove/disprove a concept just through experimentation. Such recourses
would render a simple DFT calculation unneeded and the research article more mature and
trustworthy, since it is founded on sound experimental data.

For example, a computed reaction path could be the first step towards a more elaborate
mechanism elucidation based on reaction kinetics and spectroscopy, which are far more
important than a mechanism that was calculated so as to satisfy our chemical disposition.
Moreover, ab initio methods are far more authoritative than low-level DFT methods in
systems where density functionals are by nature unsuitable, e.g., in situations where charge
transfer dominates. By low-level we mean a functional not well-suited to the particular
case and/or a small and incompetent basis set. Of course, using a time- and resource-
demanding ab initio calculation may be prohibitive and may even provide the same results
the DFT calculation; but still, adding it would yield a much more reliable and reproducible
result. Compressing theory into a few sentences does not enable the theoretician to study
the problem from its root, and thus yields a story not fully completed!

Many deficiencies of the DFT method have been pointed out throughout its long
history and a lot of ground-breaking work has been realized during this time and still
continues to push forth boundaries, in order to overcome them [3–10]. Nevertheless, many
such illnesses still remain unresolved, either due to fundamental issues concerning the
implementation of the theory or due to the profound difficulties of the matter at hand [11].
Some characteristic areas where the DFT method fails are presented below, along with
indicative examples from the literature. Any justification for the resulting failure will be
indicated and potential remedies will be proposed.

An archetypal problem for DFT is the correct description of weak, long-range in-
teractions, and many excellent reviews exist [12–15]. The need to describe such interac-
tions correctly is obvious, due to their ubiquitous involvement in nature [16–18], and
the years before the 21st century were full of such cases, even for atomic/diatomic
systems [19–24]. Although the conventionally used semilocal and hybrid functionals
offer a great accuracy/cost ratio, they fail to describe correctly: first, situations with strong
electron delocalization, due to fractional charges (delocalization error [25,26]), and second,
attractive dispersion interactions at large distances, which decay with 1/R6. It has been
found that such issues are strongly functional-dependent [12,24] and, despite the different
schemes developed to overcome these, our solutions include various empirical compo-
nents and still no universally sound functional exists [12]. Therefore, in order to obtain
meaningful results, many combinations of functionals and dispersion corrections have to
be used, before settling on a preferred method. Still, it is essential to understand how and
why the chosen functionals were developed and for what types of systems. However, to
date, dispersion-corrected density functional theory (DFT-D) methods represent the most
effective methods for conducting precise quantum mechanical calculations on molecu-
lar systems, spanning from small clusters to microscopic and even mesoscopic samples,
containing hundreds or thousands of molecules [27–29].

Another case where DFT struggles a lot is spin. As spin is an invaluable property
for the development of electronic and magnetic devices, a method to properly describe
such systems is imperative. Due to the size, and often multimetallic nature, of such com-
mon systems, DFT presents the only obvious choice. Still, it suffers from the inability
to make correct predictions of spin-state energetics [30]. The major limitation is the un-
systematic nature of the errors of the relative energies for different spin states [30–37].
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Exchange–correlation functionals depend on both the spin state and the spin density. The
latter is also a factor that undermines the DFT method, as it gives incorrect qualitative
results [38–40]. It has been found [30–32] that, in order to obtain at least qualitative re-
sults concerning the correct ground state multiplicity, a very judicious choice of functional
and basis set must be made. Furthermore, the reparametrization of the commonly used
functionals might be imperative, which contradicts the black-box character of DFT and its
implantation by the chemical community. Again, safe predictions are only to be made by
using high-level (and also highly resource-hungry) ab initio methods, while at the same
time DFT goes hand in hand with experimental results in order to be referenced. However,
some of the DFT issues regarding symmetry and spin can be successful be handled via the
broken symmetry DFT (BS-DFT) technique. BS-DFT is an extension of DFT that accounts
for situations where the symmetry of the calculated system is “broken” or lower than
the symmetry of the underlying Hamiltonian symmetry, i.e., the calculated system does
not retain the Hamiltonian symmetry due to charge distribution, spin polarization and
geometrical distortion. The symmetry constraints, such as spin or spatial symmetry, are
relaxed to allow for lower-symmetry solutions. For instance, the electronic structure of
transition-metal complexes may show lower symmetry due to the presence of different
ligand environments or in cases where spin symmetry is broken, and spin-polarized DFT
calculations can be carried out. A system with two possible spin states (up and down)
would also be problematic and might undergo a “spin-flip” in the calculation to find a
more accurate ground state and, in general, the spin arrangement can then be handled. In
general, BS-DFT is widely used in the study of magnetic materials, where spin symmetry
is often spontaneously broken [41–43]. Furthermore, in the case of metallic complexes,
with significant dynamical correlation, BS-DFT can predict the experimental geometries
of low-spin multiplicity, which the ab initio complete active space SCF (CASSCF) cannot,
while at the same time standard DFT fails. However, BS-DFT significantly overestimates
the difference between the low- and high-spin electronic states for a given oxidation state.
For this type of system, the ab initio N-electron valence state perturbation theory (NEVPT2)
can lead to an accurate calculation of the energetics [44].

Another seemingly innocent thing to calculate via DFT is torsional barriers. Although
hybrid and semilocal functionals give accurate descriptions for common torsional barri-
ers [45–47], some cases remain problematic [48]. For example, conjugated systems represent
a difficult case, as the delocalization error [49] of DFT yields extremely density-sensitive
results. It has been shown [48] that many of the commonly used functionals are unable to
describe the torsional barriers of simple molecules, both qualitatively and quantitatively.
Increasing the percentage of HF exchange may improve the results, but with significant
errors always lurking, as it may, for example, interrupt the cancelation of errors [50]. An-
other informative study [51] showed that, among a plethora of routinely used functionals,
only M05-2X managed to provide good results for the specific system and was the only
approach that featured the correct geometry for styrene. It has to be noted here that such
functionals are developed [52] for specific tasks and generality, again, is not a feature
of DFT.

Presumably, the most precarious path to walk in the DFT-realm is the chemistry
of transition metals (TMs [53]), along with its applications ranging across chemical re-
actions [54–56], investigation of excited states [57–59], charge-transfer processes [60–62],
etc. As before, schemes have been developed to overcome such issues, with task-specific
functionals, but the situation is still slippery. The modeling of mechanistic pathways entails
many pitfalls, and an excellent recent tutorial review exists on this topic [63]. In the case of
excited states, the use of TDDFT [64] has been an irreplaceable tool for the computational
chemist. Nevertheless, it should still represent the starting step for more profound methods,
as the errors are unpredictable and of the order of 0.5 eV [65] and are susceptible to even
larger errors concerning, for example, charge transfer states [66]. In general, many are the
pitfalls [67] awaiting the careless. Singlet–triplet gaps may be difficult and, apart from
quantitative errors [68], may lead to inverted [59] singlet–triplet gaps or may not even be
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able to predict them. The study of potential energy surfaces may lead to subtle situations
where incorrect qualitative results may also be obtained [69,70].

Regarding atoms and common molecules, DFT is particularly effective in calculating
the ground state electron density. DFT directly solves electron density, which is a natural
representation for atoms and molecules. It provides a good approximation for many
atomic and molecular properties, i.e., geometry, ionization energies, electron affinities and
electron density distributions with a reasonable balance between computational cost and
accuracy. Regarding the electron correlation, while DFT does not account explicitly for
electron–electron correlation, as do sophisticated ab initio methods such as coupled-cluster
(CC) methods, multireference configuration interactions (MRCIs), perturbation theory (PT),
etc., it still captures a part of both dynamic and static electron correlation.

At this point, it might be useful to showcase more vividly some examples from the
literature, where DFT (or its congener methods such as TD-DFT and BS-DFT) has been
unable to correctly describe the system under study, or at least to do so in a consistent way.
This may happen even with seemingly simple and small systems and the following table
(Table 1) highlights exactly this.

Table 1. Examples of calculated systems where the DFT method fails. Green-hued are the cases where
DFT gives the correct description, while red-hued are those where it fails.

Chemical System
Electronic Structure Method

Ref.
DFT and Issues Appropriate Methodology

H2
+, H2

Geometry
Potential Energy Curves

Delocalisation error exists
Static Correlation error exists

MR methods [49]

RuC- Assignment of the ground
state (Λ value) MRCISD [71]

RuB, NbB, LaB,
OsB

Assignment of the
ground state (Λ value) MRCISD [72]

S=CH2

Geometry and Vertical
Energies

Potential Energy Surfaces
Population Dynamics

MRCISD and MS-CASPT2 [73]

Heptazine,
Cyclazine and

Related
Compounds

S-T gap
(an inverted S-T gap

is predicted)

MRPT2, MCSSCF,
STEOM-CCSD, CIS(D)

(MC-PDFT with a proper choice
of double hydride functional)

[59]

[Fe2S2(SMe)4]2−,3−,4−

LS State Geometry:
DFT, BS-DFT

HS State Geometry:
DFT, BS-DFT

Energetics:
DFT, BS-DFT

MRCISD, NEVPT2, AC0 [44]

Overall, the limitations of DFT are: (1) The approximate exchange–correlation func-
tional—the accuracy of DFT depends heavily on the choice of this functional. Even for
atoms, functionals like LDA or GGA can give reasonable results, but they are not always
very good. In some cases, more advanced functionals, such as hybrid functionals like
B3LYP or meta-GGA functionals are needed to improve accuracy. (2) The Self-Interaction
Error—a well-known issue of DFT, and considered as one of the major sources of error
in most approximate exchange–correlation functionals. Usually, it is large with all lo-
cal exchange–correlation functionals and with some hybrid functionals. It occurs when
an electron incorrectly “interacts” with itself due to approximations in the exchange–
correlation functional. This error may affect some properties, mainly in systems with highly
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localized electrons (e.g., anions or transition metal atoms with unfilled d-orbitals) [74].
(3) Electron Localization—for some systems, even atoms, having strong electron localiza-
tion (e.g., highly charged ions), DFT may present issues with the accurate calculation of
the electron density, leading to deviations from experimental values of atomic properties.
In some diatomic molecules, DFT correctly predicts the spin multiplicity, but occasionally
1Λ (e.g., for transition metal–boron diatomics such as YB, ZrB, RhB, etc.) has issues with
the assignment of the Λ value of the ground state configuration 2S+1Λ [72]. (4) Relativis-
tic Effects—for heavy atoms, or molecules including heavy atoms, the relativistic effects
(such as spin–orbit coupling) are important. Common DFT does not account for these
effects. However, relativistic corrections can address this issue or the use of relativistic
DFT methods using for instance the four-component Dirac equation or scalar relativistic
approximations [75]. (5) Excited States—initially, DFT was developed for ground state
properties, so it may not provide accurate results for excited states. However, for the
calculation of the excited states, the time-dependent DFT (TD-DFT) may provide good
results. In general, complexes of transition metal atoms can be calculated by DFT, but issues
with electron correlation (especially for transition metals with partially filled d-orbitals)
might require more advanced treatments than DFT.

Here, we should point out that several of the above-mentioned issues stem from the
very fact that DFT is a single-reference method (SR), i.e., only one Slater determinant is used
to describe the (approximate) wavefunction of the system. This leads to fundamental prob-
lems with electronic structure description. For example, even for the H2 molecule, when
one tries to stretch it, huge mistakes are made using such SR methods. This is also true for
transition metal complexes where multiple electron configurations are at play, even in the
ground state. Moreover, even the coupled cluster singles, doubles and perturbative triples
CCSD(T) method is SR and can safely serve as “golden standard” only for the ground state
of molecules. Multireference (MR) methods arise from the summation of multiple Slater
determinants, representing the contribution of different electronic configurations, and are
more than useful for a plethora of problems. Therefore, multiconfigurational and/or MR
methods such as, multireference configuration interaction + singles + doubles (MRCISD),
complete active space self-consistent field second-order perturbation theory (CASPT2),
second-order N-electron valence state perturbation theory (NEVPT2), MR second-order
perturbation theory (MRPT2), linearized integrand approximation of adiabatic connection
(AC0) and others as outlined above, are not only recommended but imperative. Theo-
retically, this should leave DFT out of the discussion of excited-state chemistry, but the
balance of advantages and disadvantages of the method (vide infra) changes that. Closing
this comment, the emergence of the multideterminantal versions of DFT i.e., multicon-
figurational DFT [76,77] (MCDFT) and multistate DFT [78,79] (MSDFT) along with their
potential ground-breaking applications should not be disregarded.

To sum up, despite the already-known problematic cases of DFT, the theory is without
doubt one of the most important (computational) tools of the modern chemist’s arsenal.
Maintaining relatively low computational cost, DFT can provide highly accurate ground
state geometries for a plethora of molecules, enabling the structural and electronic elucida-
tion of thought-provoking molecules [80–83]. This can also serve as a sound starting point
for even ab initio calculations, which can by no means treat the optimization calculations
of big molecules. In combination with the high-level MRCI method (DFT/MRCI [84]),
robust information can be nowadays obtained for the excited states [85,86] of (relatively big)
molecules and the photodynamics of processes can even be reconsidered [87]. Nevertheless,
in the hands of the trained computational chemist, DFT as a standalone theory can also
produce meaningful results [88–93]. Transition-metal chemistry is a field where DFT is well
appreciated [94,95], yielding fast and generally decent results that can provide answers
and guidance. DFT also represents our best option for generating large databases for the
training of machine learning [8,96–101] algorithms, and is thus an indispensable tool for
the future [3] of (computational) chemistry.
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All in all, some key advantages and disadvantages of DFT, as it is implemented, are
shown in Figure 2 below.
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3. Conclusions

To conclude, DFT is a useful tool for the investigation of chemically important systems,
generally offering an efficient and reliable approach to calculate ground state properties
such as electron density, total energy and molecular structure. However, its accuracy
depends on the choice of the exchange–correlation function and special care may be
required for elements exhibiting significant relativistic effects or strong electron correlation.
For most molecular systems, DFT achieves a good balance between computational efficiency
and accuracy.

In this article the problems of DFT have been highlighted, mainly because in recent
years there has been an increasing tendency in articles to include both experimental and
computational data. Since there are commercial or academic computational chemistry
packages that are user-friendly, and that are becoming more and more user-friendly, ev-
eryone can run some calculations without the appropriate background and without the
necessary knowledge. Thus, many experimental articles just include some calculations.
What really needs to be emphasized is the fact that without a clear understanding of why
we use calculations, an effective combination [102] of experiment and theory will never be
accomplished. Just using low-level theoretical frameworks surely does not shed light on
the problem we are dealing with. In order to excel in our scientific field and make good
use of our tools, we must very carefully decide which methodologies we are to follow;
both experimental and theoretical. Modern advances in quantum chemistry are bound to
provide our community with exciting results; should we use them carefully. . .
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