Chimica Chronica, New Series, 22, 189-204 (1993)

COORDINATION COMPLEXES OF CAFFEIC AND FERULIC ACIDS WITH

Cu(II), Ni(II), Co(II) AND Fe(III)

A.L.PETROU^{1*}, M.V. KOROMANTZOU¹ and J. M. TSANGARIS¹

 Laboratory of Inorganic Chemistry, University of Athens, Panepistimiopolis, Kouponia, Athens, 15701, Greece.
 Laboratory of Inorganic Chemistry, University of Ioannina, P.O.Box 1186, Ioannina, 45110, Greece.

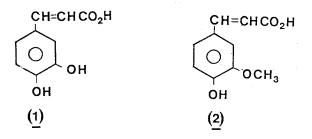
(Received June 10, 1992)

SUMMARY

Complexes of caffeic and ferulic acids with Cu(II), Ni(II), Co(II) and Fe(III) were prepared in the solid state: K₁ [Cu₁ (cafH) $_1$ Cl₁]. 2CH $_3$ OH, K₁[Co₁(cafH) $_2$ Cl₁], K₁[Ni₁(cafH) $_1$ Cl₁]. 2CH $_3$ OH, Fe₁(cafH) $_2$ Cl₂. 2H $_2$ O, K₁[Cu₁(fer) Cl₁], K₁[Co(fer)₁], K₁[Ni₁(fer) $_2$ Cl₁]. 2CH $_3$ OH, Fe₁(fer) $_2$ Cl₂. Spectroscopic, magnetic and thermogravimetric results indicate bis(µ-chloro) tetrahedral binuclear structures with a catechol-type of coordination.

Key words: caffeic, ferulic acid complexes, catechol-type coordination.

INTRODUCTION


3-(3,4-dihydroxyphenyl)-propenoic acid (caffeic acid, abbr.cafH₁)1 and 3-(4-hydroxy-3-methoxyphenyl)-propenoic acid (ferulic acid, abbr. ferH₂)2 are early recognized as constituents of different plants and seeds¹.

Both acids can be found in the soil lignins as degradative products of vegetation, contributing by consequence to the availability of several biotrace metal cations from the soil to the plants¹.

Ferulic acid is a precursor of aryl tetralin lignans related to anticancer active compounds as the podophyloto-

Author to whom correspondence should be addressed.

xin and its methylated derivatives¹. Also the antivirial activity of caffeic acid was lately investigated⁴¹.

Phenolic hydroxyl-containing ligands, which are known to be present in the root exudates, may participate in the transport processes of metal ions from the surrounding soil to the plant roots⁴. Of special interest are trans - 3-(3,4dihydroxyphenyl)propenoic acid (caffeic acid), which is believed to participate in the transport and in the reduction of iron(III) to iron(II) in the soil environment, and chlorogenic acid[1,3,4,5-tetrahydroxycyclohexanecarboxylic acid 3-(3,4-dihydroxycinnamate)], which is a precursor of caffeic acid. Complexes of 3,4-dihydroxyphenyl derivatives e.g. copper(II) complexes of chlorogenic acid and related compounds⁴ have been investigated by pH-metric and spectroscopic methods. Preparation of coordination complexes 3,4-dihydroxyphenylpropionic acid with copper(II), of nickel(II), cobalt(II) and iron(III) was achieved⁵¹. Cupric complexes with 3,4-dihydroxybenzoic acid⁵⁵ have been studied where the bidentate catechol part of the ligand studied predominates as the binding site for metal ion although the carboxyl group may also participate in the metal ion binding leading to creation of the dinuclear species. More con-

COMPLEXES OF CAFFEIC AND FERULIC ACIDS

centrated solutions yield a trimeric complex molecule (Cu_3A_1) with one metal ion bound to four phenolate oxygens and two others bound to the respective carboxylates. Phenolic ligands are also important as the constituents of more complicated humic and fulvic acids, which are the main ligands taking part in the transport and accumulation of the nutrient ions^{3c}.

Considering the chemical and biological importance of catechol-like coordination complexes⁵, the preparation in the solid state, the characterization and the study of the physicochemical properties of several complexes of the above ligands with Cu(II), Ni(II), Co(II) and Fe(III) was undertaken.

Earlier work on the caffeic acid coordination is covered by the potentiometric titrations of the caffeate-metalproton system 6,7 and some spectroscopic (absorption, ESR) measurements on the complexes formed in solution⁶.

It is not evident however, that the complexes formed are mononuclear involving only a catechol-type of coordination⁶, or oligonuclear involving both catecholic and carboxylic coordination especially with Cu(II), playing the role of link between adjoining ligands^{7,8}.

Infering from analogous behaviour of several dihydroxy benzoic acids, the last type of coordination was proposed as more probable⁹⁻¹¹.

EXPERIMENTAL

ŧ.

The caffeic (dec.223-225°C) and ferulic (m.p.174°C) acids were obtained from Merck Co. and were used without further purification; mass spectra: m/e of the molecular ion for caffeic acid 180 (calc.180.163), for ferulic acid 194 (calc. 194.215). The metal salts $MCl_1(M=Cu, Ni, Co)$ and $MCl_3.6H_2O$ (M=Fe) used as starting materials for the preparation, were pro analysi grade from Fluka.

Upon refluxing MCl₂ or MCl₃.6H₂O with caffeic or ferulic acid in methanolic solution containing equimolecular amount of KOH with a final ratio metal ion:acid:KOH 1:2:2, solid coloured complexes (1-8, TABLE I) were obtained. Details for the preparation are given in a previous paper concerning hydrocaffeic acid⁵⁴.The coloured precipitates were also washed with 80% MeOH. Elemental analysis, physicochemical and spectroscopic measurements were carried out by published methods¹²⁻¹⁴. The magnetic susceptibilities in the solid state were performed at 24°C. The cafH₂Na.H₂O and ferHNa.H₂O salts were prepared and characterized as previously⁵⁴.

RESULTS AND DISCUSSION

Preparative and analytical data, colours and molar conductivity values are reported in TABLE I. The prepared complexes are either microcrystalline (2,3,4,8) or powder-like (1,5,6,7), relatively stable in atmospheric conditions (oxygen, humidity) except for the complexes 1, 5 which gave evidence of structural changes upon time (see TABLE II). All complexes have a limited solubility in DMSO, DMF and MeOH. The molar conductivities of the complexes 1,2,3,5,6,7 in both DMSO and MeOH are low for their formulation as 2:1 electrolytes. This probably arises from the existing large volume anions in the complexes¹⁵. The complexes 4 and 8 show a conductivity which increases with time and this can be attributed to the strong donor capacity of the solvent used, which leads to displacement of anionic ligands and changes the complexes to electrolytes¹⁵.

complexes
r the com
for t
neasurements
conductivity
and
results
, analytical
colours,
data,
Preparative
TABLI

romper numper	dd Complex	Final pH in the prepara- tion 1:2:2 a	Yield \$	-а ж	\$CI p	۹ ۲	ÅH Å	A K ohm - Jaol - Ica 2	01 ⁻¹ cr	Colour 2
-	$R_2[Cu_2(cafH)_2Cl_2].2CH_3OH 5.8$	5.8	55	18.52 (18.25)	10.35 (10.20)	18.52 (18.25) 10.35 (10.20) 34.26 (34.48) 2.56 (2.87) 48 88 Asth haven	2.56 (2.87)	48 81	1	The herein
~	$x_2[c_0_2(cafH)_2c_1_2]$	5.5	35	19.03 (18.91)	11.54 (11.40)	19.03 (18.91) 11.54 (11.40) 34.92 (34.68) 1.86 (1.93) 80 03 4	(1.91) 38.1		5	darb gun
	$x_2[Ni_2(cafH)_2C1_2]$. 2CH ₃ OH	6.0	62	17.33 (17.10)	10.18 (10.34)	17.33 (17.10) 10.18 (10.34) 34.52 (34.97) 2 87 (2 91) 77 22 34.51	2.87 (2 91)	5 5	7 6	dark yree
	$Fe_2(cafH)_2C1_2.2H_2O$	2.0	11	19.65 (19.42)	12.41 (12.36)	19.65 (19.42) 12.41 (12.36) 37 81 (37.59) 7 64 (2.79) 57	(Tr. 7) 10.7		70	uark gree
	$K_2[Cu_2(fer)_2Cl_2]$	4.5	25	19.56 (19.24)	10.66 (10.76)	19.56 (19.24) 10.66 (10.76) 36.12 (36.34) 2.30 25 25	(01.2) FU.2	10	0	ou plack
••	$X_2[Co(fer)_2]$	6.2	48	11.75 (11.31)	0.00 (0.00)	11.75 (11.31) 0.00 (0.00) 45.84 (46 07) 2.02 (2.14) 22 24 24 14 17	100 (2 01)			DI OND
	K ₂ [Ni ₂ (fer) ₂ Cl ₂].2CH ₃ OH	6.7	56	16.40 (16.43)	9.85 (9.94)	9.85 (9.94) 37.18 (36.95) 3 10 (3.35) 85 8612	3.10 (2.36)	* u	e 1	VIOLET
	$Fe_2(fer)_2Cl_2$	2.8	10	19.56 (19.70)	12.65 (12.53)	19-56 (19.70) 12.65 (12.53) 42.08 (42.36) 2.75 (2.82) 55 57 hrownieh	2.75 (2.82)	, <u>5</u> 5	22	hrownie)

COMPLEXES OF CAFFEIC AND FERULIC ACIDS

^c molar conductivity for ca. 10^{-3} mol.1 ⁻¹ solution in DMSO and CH₃OH respectively at 25 m C.

Thermogravimetric studies of the prepared complexes in the range 35-600°C show that the methanol present in 1,3,7 is completely lost between 60-70°C and is lattice-held. In 4, water is lost between 100-110°C and is also latticeheld. Complexes 1, 2, 3 decompose between 200-500°C with the same decomposition pattern possibly indicating analogous structures. Similarity in their structures is also indicated from the same thermal decomposition pattern of the complexes 5, 6, 7, which is effected in a relatively narrow temperature range between 240-320°C. Complexes 4, 8 are decomposed in higher temperatures. Complexes 1, 5 have a sudden and low temperature (200-220°C) decomposition, indicating bridged structures. All complexes were decomposed in a thermogravimetric experiment in the presence of atmospheric oxygen and gave as products metal oxides and KCl until a final temperature of 650-700°C.

The low magnetic moments of the complexes 1 and 5 are due to their binuclear structures and are typical for antiferromagnetic character. Their diffuse reflectance spectra clearly indicate distorted tetrahedral stereochemistry^{16,17}. The ${}^{1}E \leftarrow {}^{1}T_{1}$ transition expected for a d⁹ system like Cu(II) in a tetrahedral environment is split to more transitions, due to Jahn-Teller effect, known also to take place in such sy-stems¹⁸. More particularly the distortion of the tetrahedron as a flattening around the two-fold axis will result in D₁₄ symmetry, which retains the d₁₁, d₁₁ degeneracy, splitting of both the ground and excited levels, so that either three or four transitions are expected¹⁹ namely from the ground ${}^{1}B_{1}$ to ${}^{1}E$, ${}^{1}B_{1}$ and ${}^{1}A_{1}$ states 20 as is in our case (TABLE II). The complexes 2 and 6 acquire diffuse reflectance spectra ^{18,21} and magnetic moments^{22,23} close to tetrahedral structures, especially complex 6.

194

ompou	Ind		CT		d-d				μ _{eff} BM	
1	· · ·	22700	20800	18700	17700		15500	14200	1.30 [°]	
2		21050		18900	sh 16400	sh	14800		4.75	
3		21500		17500	15800	sh	14800		3.88	
4	26700	23300	21500	17900	sh 16700		15000		4.97	
5	25600				16100		15000		1.41	
6					16400	sh	15200		4.78	
7		21500	,	19800			14285		4.26	
8	. ·	21300	,		15600		14700		3.50	

TABLE II: Electronic spectra and solid state magnetic moments of the complexes

^ain cm⁻¹. ^b at 298 K. ^cupon keeping the solids for 4-6 weeks at room temperature in a vacuum desiccator these values are increasing continuously to 2.10 BM.

A usual value for the magnetic moment of a tetrahedral weak field Ni(II) complex is 4.1 BM²³. The values of magnetic moments for the complexes 3 and 7 suggest tetrahedral structures. The bands at 14800 and 14285 cm⁻¹ in the diffuse reflectance spectra of 3 and 7 respectively, satisfactorily account for the ${}^{3}T_{1}$ (P) $\leftarrow {}^{3}T_{1}(F)$ transition. In 3 there is a splitting due to low symmetry fields $^{.4,15}$. The observed μ_{*ff} values for the complexes 4 and 8 at room temperature are too small for high spin S=5/2 complexes (μ_{eff} =5.9 BM) or too large for low spin S=1/2 complexes (μ_{eff} = 2.0 BM) assuming an octahedral d⁵ system. An intermediate spin state (S=3/2) should have $\mu_{iff} = 4.0$ BM. Both tetrahedral or octahedral complexes with A and E terms require higher values than those observed¹³. The measured values can be explained either by antiferromagnetic coupling of the iron(III) in dimeric complexes²⁶, or by a spin equilibrium between high and low spin states¹⁷. An alternative situation can also be proposed assuming a square pyramidal structure around iron (III) with ${}^{4}A_{1}$ electronic ground state, since a five coordinated structure is manifested by the stoichiometry of 4, or a spin-paired tetrahedral with ${}^{6}A_{1}$ ground term both with large orbital contribution¹⁸. The last situation seems more probable for 4.

The bands in the diffuse reflectance spectra of the complexes 4 and 8 are weak, as it is expected since the electronic transitions of the iron(III) systems are spin forbidden. There is a considerable masking of the weak bands from the strong charge-transfer bands at 21300-26700 cm⁻¹. It is known that in spin equilibrium iron(III) systems the high spin form is characterized by a band at 18000-20000 cm⁻¹ and the low spin by another one at 14000-16000 cm^{-1 29-31}. Only in 4 the 17900 cm⁻¹ shoulder demonstrates a high spin system,

196

but in both 4 and 8 the two low spin bands are present at 14700-15800 cm⁻¹. The presence of two low spin bands can be explained assuming low symmetry pseudo-tetrahedral structure in the complexes. No spectroscopic evidence has been noticed indicating presence of Fe(II) in complexes 4 and 8 owing to an oxidation-reduction mechanism sometimes found in analogous catecholic systems³².

In TABLE III some diagnostic ir bands of the prepared complexes are reported. The broad band at 3500 cm⁻¹ exhibited by the complexes 1, 3, 7 is due to lattice methanol. The lattice water in cafH₂Na.H₂O,ferHNa.H₂O and in 4 is shown by the broad strong bands at 3600 and 3570 cm⁻¹ respectively^{33,34}.

In the spectra 1-8 the following relation is observed :

$$\Delta_{\text{complex}} = \Delta_{\text{LK}_{4},\text{H2O}}$$

where $L=cafH_2$ or ferH and Λ is the separation between $v_{ii}(CO2)^$ and $v_{i}(CO2)^-$. This indicates that the carboxylate group of either of caffeic or ferulic acid is not coordinated to the metal ions in all prepared complexes^{35,36}. Complexes 1, 2, 3, 4, 5, 7, 8 show a medium intensity ir band at 215-257 cm⁻¹ assignable to the metal-halogen stretching mode associated with bridged structures³⁷.

The complexes 1-4 show medium intensity band at 470-485 cm⁻¹ due to $v_{(R-0R)}$ vibration whereas the complexes 5-8 show a similar medium intensity band in higher frequencies at 580-590 cm⁻¹ possibly assignable to the $v_{(R-0R)}$ stretch³⁸. All complexes exhibit a strong band at 605-667 cm⁻¹ assignable to the $v_{(R-0R)}$ stretch³⁸.

In FIG 1 and FIG 2 the titration curves for deprotonation and coordination reaction in solution of MeOH: H_1O 9:1 for cafH₃ and ferH₂ respectively are reported. For the

Assignments	cafH ₁	cafH ₂ Na .	H_20 f	erH2	cafH ₂ Na .H ₂ 0 ferH ₂ ferH Na .H ₂ 0 1	_	7	ŝ	4		9		1 8	.
						3447sbr	1	3447sbr	sbr				3457sbr	
v(OH) _{alcoholic} v(OH)		3600s			3600s				3567s				-700,0	
ې	3421m 3243.2850	3420m		3440m 2920,2860m	3435m	3368	3395 n		3377	3368m	3335		00000	
v(C=0) _{acid}	1663s			1690s 1420 1400		1614	1649.15	196 ů 164	1614m [649.1596m [649 1728.1623m		1658,1614#	1649,16140	1640,1605m	1640,1605m 1658,1605m
ring stretching	15260			1518			1500m	·,	1518m 1535m		15268	1518m	1518m	1570,1526m
vibrations v (CAO ⁻)	enert	1468s			1472s	14025	s 1425s		1447s 1420s		1417s	14085	14095	14215
v_(C00 ⁻)		13465			1347s	1280s	s 1303s		1327s 1298s		12925	12835	12045	C071
6(0H),+v(C-0),	0)4	1293 a			1325m,1290m						ļ		0770	877c
actu	031.	902m		915m	900 a	8685	3s 860s		860s 860s	s.	8115	8//8	0110	
(Un)acid	17/					6405)s 640s	10	6145 614S		6585	6145	6055	66/S
v(H-0Ph)						480a	0m 485m		480m 470m	_				
(H0-N)											550	575m	590m	572
^v (n-och3) ^v d(n-cl)						22	220m 218m	-	257a 220a		215m		220a	210

198

coordination reactions the titration was effected in the presence of metal cation in the ratio metal to ligand 1:2. It can be seen from the potentiometric titration curves that the precipitation of the complexes occurs at relatively low pH's before the ionization of all carboxylic and phenolic protons of the acid ligands takes place. This behaviour of cafH₁ and ferH₂ resembles the complexing ability of 3,4-dihy-droxybenzoic acid which coordinates to metal ions with a catecholic type of binding³⁹.

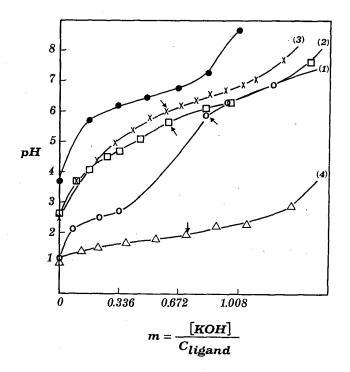


FIG.1.: Potentiometric titration curves of the caffeic acid and the metal ions in a $MeOH:H_1O$ solution (9:1).

- Complex precipitation
- L cafH;
- 1 $cafH_{i}+CuCl_{i}$ 2:1
- 2 cafH₁+ CoCl₂ 2:1
- 3 cafH₁+ NiCl₂ 2:1
- 4 cafH₃+ FeCl₃ 2:1

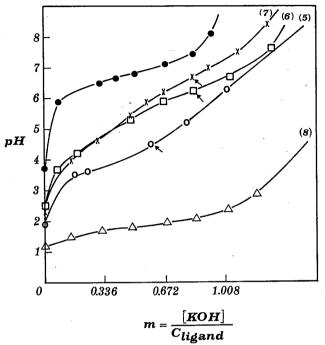
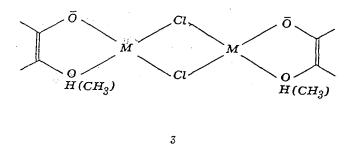



FIG.2: Potentiometric titration curves of the ferulic acid and the metal ions in a MeOH: H_2O solution (9:1).

Complex precipitation
L ferH;
ferH;
ferH; + CuCl; 2:1
ferH; + CoCl; 2:1
ferH; + NiCl; 2:1
ferH; + NiCl; 2:1
ferH; + FeCl; 2:1

Concluding remarks

From the overall study it is therefore concluded that caffeic and ferulic acids form 1:1 complexes with Cu(II), Co(II), Ni(II) and Fe(III) regardless of the ratio of the ligand to metal cation of the preparation mixture except for the case of the Co(II) complex with ferulic acid which is formed in the ratio 1:2. An analogous situation was met with the complex of hydrocaffeic acid with Co(II)⁵. In the prepared 1:1 complexes chlorine bridged structures are formed with a catechol type of coordination 3.

A pseudotetrahedral or tetrahedral microsymmetry around the metal ion seems to be in prevalence. Owing to the difficulty in obtaining convenient monocrystals of the prepared complexes, their X-rays structural investigation is at present lacking.

ПЕРІЛНФН

ΣΥΜΠΛΟΚΈΣ ΕΝΏΣΕΙΣ ΤΩΝ ΟΞΈΩΝ ΚΑΦΕΙΚΟΥ ΚΑΙ ΦΕΡΟΥΛΙΚΟΥ ΜΕ Cu(II), Ni(II), Co(II) KAI Fe (III).

Παρασκευάσθηκαν και απομονώθηκαν στην στερεά κατάσταση τα σύμπλοκα των οξέων καφεϊκού και φερουλικού με Cu(II), Ni(II), Co(II) και Fe(III) : K₂[Cu₂(cafH)₂Cl₂]. 2CH₃OH, K₁[Co₂(cafH)₂Cl₁], K₁[Ni₁(cafH)₂Cl₂]. 2CH₃OH, Fe₂(cafH) Cl₂.2HQ, K₁[Cu₂(fer)₂Cl₂], K₁(Co(fer)₂], K₁[Ni₂(fer)₂Cl₂]. 2CH₃OH, Fe₂(fer)₂Cl₂. Avεξάρτητα από το λόγο μεταλλικού ιόντος: υποκαταστάτη στο μίγμα παρασκευής τα σύμπλοκα που σχηματίζονται είναι 1:1 εκτός από την περίπτωση του συμπλόκου του Co(II) με το φερουλικό οξύ που είναι 1:2. Ανάλογη συμπεριφορά αναφέρεται στην περίπτωση του συμπλόκου του υδροκαφεϊκού οξέος με το Co(II)⁵. Από τα φασματοσκοπικά, μαγνητικά και θερμοσταθμικά αποτελέσματα συμπεραίνεται ότι στα 1:1 σύμπλοκα οι δομές είναι τετραεδρικές διπυρηνικές με γέφυρες χλωρίου και με κατεχολικού τύπου σύμπλεξη.

ACKNOWLEDGEMENTS

We wish to thank the University of Athens for financial support of this work.

REFERENCES AND NOTES

- Bate-Smith, E. C., Chem. and Ind., 1457 (1954) 1. 2.
- Stevenson, F., Humus Chemistry, Genesis, Composition, Reactions. Wiley-Interscience N. Y. 1982.
- 3. Jackson, D. E., and Dewick, D. M., Phytochemistry, 23(5), 1029 (1984)
- 4.a.Grodzinska-Zachiwieja, Z., Zgorniak-Nowosielska, I., Marcisjewska, M., and Gatkienicz, A., Acta Biol. Cra-
- *cov.*, (*ser-Bot.*) <u>19(1)</u>, 29 (1976)
 4.b.Olsen, R. A., Brown, J. C., Bennett, J. H., and Bloom, D., J. Plant Nutr. <u>5</u>,433, 1982.
 4.c.Kiss, T., Nagy, G., Pecsi, M., Kozlowski, H., Micera, M., Kozlowski, M., Kozlowski, M., Micera, M., Kozlowski, M., Kozlowski, M., Kozlowski, M., Kozlowski, M., Kozlowski, M., Micera, M., Kozlowski, M., Koz
- G., and Erre, L. S., Polyhedron 8, 2345(1989)
- 5.a.Petrou, A.L., Koromantzou, M. V., and Tsangaris, J.
- M., Trans. Met. Chem., <u>16</u>, 48 (1991)
 5.b.Gerega, K., Kozlowski, H., Kiss, T., Micera, G., Erre, L. S., Inorganica Chimica Acta, <u>138</u>, 31-34 (1987)
 5.c.Schnitzer, M. and Khan, S. U., "Humic Substances in the Environment", Dekker, N. Y., 1972
 First V. Concert M. Law, T. and Scharff, J. P.
- 6. Bizri, Y., Cromer, M., Lamy, I., and Scharff, J. P., Analusis 13, 128 (1985)
- 7.
- Linder, P. W., and Vaye, A. *Polyhedron*, <u>6</u>,53 (1987) Kiss, T., Nagy, G., Pecsi, M., Kozlowski, H., Micera, 8. G., and Erre, L.S., *Polyhedron*, 8, 2345 (1989) Cariati, F., Erre, L., Micera, G., Panzanelli, A., Gia-
- 9. ni, G., and Sironi, A., Inorg. Chim. Acta, 80, 57 (1983)
- 10. Gerega, K., Kozlowski, H., Kiss, T., Micera, G., Erre, L.S., and Cariati, F., Inorg. Chim. Acta, <u>138</u>, 31 (1987)
- 11. Kiss, T., Koslowski, H., Micera, G., and Erre, L.S., Polyhedron 8, 647 (1989) 12. Kabanos, T. A., and Tsangaris, J. M., J. Coord. Chem.,
- <u>13</u>, 89 (1984)
- Rahman, A.A., Nichols, D., and Tsangaris, J. M., J. Coord. Chem., <u>14</u>, 327 (1986)
 Kovala-Demertzi, D., and Tsangaris, J. M., Inorg. Chim.
- Acta, 125, L31 (1986)
- 15. Geary, W. J., Coord. Chem. Rev., 7, 81 (1971) 16. Sacconi, L., and Ciampolini, M., J. Chem. Soc., 276 (1964)
- 17. Gaura, R. M., Stein, P., Willett, R. D., and West, D. X., Inorg. Chim. Acta, 60, 213 (1982)
- 18. Lever, A. B. P. Inorganic Electronic Spectroscopy. p. 203. Elsevier Scien. Publ. 1984.
- 19. Furlani, C. and Morpurgo, G. Theor. Chim. Acta I, 102 (1963)

- Ferguson, J., J. Chem. Phys., 40, 3406 (1964)
 Figgis, B. N., Introduction to Ligand Fields. p. 29, Intern. Publ. N. Y., 1967
- 22. Earnshaw, A., Introduction to Magnetochemistry, Acad. Press. N. Y. 1968
- 23. Figgis, B. N., and Lewis, J. M. Progr. Inorg. Chem., 6, 429 (1964)
- 24. Barefield, E. K., Bush, D. H., and Nelson, S. M., Quart. Rev., 22, 457 (1969)
- 25. Rowley, D. A., and Drago, R. S., Inorg. Chem., 7, 795 (1968)
- 26. Gerloch, M., Lewis, J., Mabbs, F. E., and Richards, A., J. Chem. Soc., (A), 112 (1968) 27. Elizabathe, J. M., and Zacharias, P. S. Polyhedron. <u>6</u>,
- 969 (1987)
- Carlin, R. L., Science, <u>227</u>, 4692 (1985)
 Dose, E. V., Murphy, K. M. M., and Wilson, L. J.,
- Inorg. Chem., <u>15</u>, 2622 (1976) 30. Tweedle, M. F., and Wilson, L. J., J. Am. Chem. Soc., <u>98, 4824 (1976)</u>
- 31. Maeda, Y., Tsutsumi, N., and Takashima, Y., *Inorg. Chem.*, <u>23</u>, 2440 (1984)
- 32. Xu, J., and Jordan, R. B., Inorg. Chem., 27, 4563 (1988)
- 33. Mikulski, C. M., Mattucci, L., Smith, Y., Tran, T. B., and Karayannis, N.M. Inorg. Chim. Acta, <u>80</u>, 127 (1983)
- 34. Gelfand, L. S., Iaconianni, F. J., Pytlewski, L. L., Speca, A. N., Mikulski, C. M., and Karayannis, N. M., J. Inorg. Nucl. Chem., 42, 377 (1980)
- 35. Deacon, G. B., and Phillips, R. J., Coord. Chem. Rev., 33, 227 (1980)
- 36. Deacon, G. B., Huber, F., and Phillips, R. J., Inorg. Chim. Acta, 104, 41 (1985) 37. Nakamoto, K., Infra Red Spectra of Inorganic and Coor-
- dination Compounds, p. 216 Wiley-Intern. N. Y. 1970
- 38. Adams, D. M., Metal-Ligand and Related Vibrations. p. 248. St. Martin's Press. N.Y. 1968.
- 39. Kiss, T., Kozlowski, H., Micera, G., and Erre, L. S., J. Coord. Chem., 20, 49 (1989)

Abbrevia	ations		
Caffeic		abbr.	$cafH_{3}$
Ferulic	Acid	abbr.	FerH ₂