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Many-body expansion for light nuclear systems
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We extend the many-body expansion (MBE), previously applied to hydrogen bonded and molecular systems,
to the light nuclear systems 3H and 3He by considering the nucleonic degrees of freedom as fundamental in
the expansion. The analysis is based on the Pauli nucleonic dynamics (PND) model, a simple antisymmetrized
dynamical code, inspired by the sophisticated constrained molecular dynamics (CoMD) model. The total energy
of the 2H nucleus is calculated with this model at −2.312 MeV, which is within 4% of the experimental value
of −2.225 MeV. The application of the MBE yields results for the three-body term in the 3H nucleus that is
comparable with previous estimates, while it is reported for the first time for the nucleus of 3He. The energies
of 3H and 3He that include the sum of the one- and two-body terms with the model are −6.97 ± 0.21 MeV and
−6.19 ± 0.21 MeV and the three-body terms, estimated from the difference of the sum of the one- and two-body
terms from the experimentally measured energies, are −1.51 ± 0.21 MeV and −1.53 ± 0.21 MeV, respectively.
The MBE for the 3H and 3He nuclei is qualitatively similar to the one previously reported for the water trimer:
the two- and three-body terms are negative with the latter amounting to ∼3% of the former. Additionally, the
three-body terms correspond to about 16–23% of the total energy of the bound systems, a percentage that is
also comparable to the one in the water trimer (17%). In this manner, the MBE analysis can be applied to light
nuclear systems following the same protocol as the one that has been previously extensively used for hydrogen
bonded molecular systems.

DOI: 10.1103/PhysRevC.107.044004

I. INTRODUCTION

The nuclear interaction results as a residual of the strong
nuclear force between the quarks and gluons. This interaction
is nonperturbative [1] at typical “low” nuclear energies (in the
region of the pion mass, mπ ∼ 140 MeV) and the interacting
quarks are confined into the colorless nucleonic and mesonic
structures at typical nuclear distances of a few fm. Conse-
quently, most theoretical approaches effectively describe the
nuclear systems as a collection of “fundamental” nucleons in-
teracting via exchange of fundamental mesons. Furthermore,
the nuclear interaction is separated in a long range component
that involves the exchange of one virtual pion (Yukawa theory
[2]) and a short range repulsive component that involves the
exchange of heavier vector mesons. This scheme of separa-
tion of scales and ignoring the quark degrees of freedom is
the basis of the chiral effective field theory (χEFT). This
ab initio theory yields potentials that accurately describe the
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nuclear systems by considering the spontaneous and explicit
breaking of the chiral symmetry, i.e., the asymmetry of the
nucleons with different spin and isospin [3]. Notable exam-
ples are the Tucson-Melbourne and Brazil potentials used
in [4,5].

In the context of effective theories, the full nuclear in-
teraction can be considered as a series of one-body N (1),
two-body N (2), three-body N (3), four-body N (4) terms, and so
on in a manner similar to the one that has been previously
applied for hydrogen bonded systems. As is the case for the
aqueous hydrogen bonded systems, there are indications that
the higher order terms contribute significantly less than the
lower order terms. For example, while the three-body energy
is thought to have a contribution of ∼0.4 MeV/A to a nuclear
system’s interaction energy [1], the four-body energy accounts
for about ten times less at 25 keV/A [1], where A is the mass
number of the system, i.e., the total number of nucleons. The
three-body contribution results naturally from the three-quark
interactions inside the nucleons and implicitly from the simul-
taneous two-body interactions of a many-body system in a
manner similar to the one previously discussed for molecular
clusters [6].

The low energy quantum three-body physics is determined
up to a significant level from the Thomas theorem [7] and
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the Efimov effect [8]. The former states that, if a two-body
quantum system possesses at least one even slightly bound
or resonant state, then the corresponding three-body system
is strongly bound. Specifically, in the limit of zero range
interaction, the three-body state becomes infinitely bound.
The Efimov effect extends the Thomas theorem, by stating
that in the limit of zero interaction range, the three-body
system possesses an infinite series of excited levels, whose
scattering lengths and energies follow a geometric progres-
sion with the common ratio being eπ/s0 ≈ 22.694 [9]. The
effect may be thought to originate from an effective three-
body interaction that arises from circular exchanges of one
particle between the other two in a three-body system. Due
to its nature, this effective interaction has a long range
and is able to create “giant stable trimers” [10]. In that
sense, both the effective three-body interaction and its cor-
responding energy, the “Efimov attraction,” are scale invariant
and independent of the microscopic details of the quantum
system [11].

The three-body energy is an important factor in the simula-
tion of several nuclear systems, from light nuclei like 4He,
to extended nuclear matter that is found in neutron stars
[12]. For nuclei of medium and heavy mass (A � 30, the
usual approach is the inclusion of a direct contact three-
body energy of the form δ(r1 − r2)δ(r1 − r3)δ(r2 − r3), as
is done by Skyrme [13]. In mean-field approaches, this
term is approximated by an exponential density dependent
two-body interaction, i.e., δ(r1 − r2)δ(r1 − r3)δ(r2 − r3) ≈
ρa( r1+r2

2 )δ(r1 − r2), with a being a phenomenological pa-
rameter. This approximate treatment was first employed by
Vautherin and Brink [14] and usually has a destabilizing effect
[15], in order to ensure the saturation of extended matter
systems. These bulk approaches may adequately describe the
properties of extensive systems but may be unable to properly
account for the N (3) contribution to the few nucleon systems
like 3H and 3He. These few-nucleon systems are important
as they are the next logical step in the study of the nuclear
interaction after the simulation of deuterium’s bound and scat-
tering states [16].

The above-mentioned inaccuracies associated with the
mean-field models force us to follow alternative approaches
to describe three-nucleon systems. The Faddeev theory is a
standard approach to describe a system of three interacting nu-
cleons with two-body potentials [17,18]. The theory is based
on a separation of the Schrodinger equation into three coupled
components that are solved iteratively, and it has been used
to analyze 2H(n, 2n) and 2H(p, 2p) reactions [17]. These
two-body potentials are usually based on the use of highly
accurate χ EFT models that may account up to the fourth or-
der (next-to-next-to-next-to-leading-order, i.e., N3LO). These
use complex but accurate two- and three-body interactions
that satisfy the basic symmetries of the nuclear interactions
and have been used to calculate the binding energies, phase
shifts, and nucleon coupling constants of several few nucleon
systems [1].

In the present work, we follow the antisymmetrized molec-
ular dynamics (AMD) [19] approach to calculate the total
three-body contribution to the interaction energy of 3H and
3He. The AMD model, just as the constrained molecular

dynamics (CoMD) model [15,20], simulates the nucleons
with Gaussian wave packets. Their centroids in phase space
contain full time dependence and their evolution is governed
by equations of motion that result from the application of
the time dependent variational principle (TVDP [21]) with
the centroids treated as variational parameters. The main
difference between the CoMD and AMD approaches is the
enforcement of the Pauli principle. In contrast to the ap-
proximate phase space constraint of the CoMD model, the
AMD models account for the exact antisymmetrized wave
function as a Slater determinant. Both AMD and CoMD ap-
proaches have been used to describe post-mean-field effects
such as clusterization, heavy ion reactions, fission, and collec-
tive modes of excitation [15,20].

In this work we utilize the Pauli nucleonic dynamics (PND)
[22] model, a simple dynamical model that is inspired by the
CoMD model, originally developed to study alpha clustering.
The alpha particles play a crucial role in the synthesis of
the elements in stellar conditions [23,24]. Usually, the alpha
particles are the second step in stellar nucleosynthesis, after
the formation of deuterons. Additionally, the alpha particles
are some of most usual clusters that appear in heavier nuclear
systems. Specifically, the structure of several light systems
such as carbon-12, might be considered as bound states of
alpha particles [19].

This work has multiple goals. First, we try to bridge the
gap between the chemical and nuclear many-body systems,
by employing the many-body expansion (MBE) in the analy-
sis of the three-body energy of the A = 3 systems. We aim
to extend the range of MBE applications from its previ-
ous popular usage in hydrogen bonded systems like water
[25–31] and ion-water clusters [32] to covalently bonded
molecules [33] and metallic systems [34] to light bound nu-
clei. To achieve these goals, we use a simple AMD-type
dynamical approach, which (to our knowledge) has been
rarely used for few-body nuclear structure calculations in
the past. To this end we propose a new contactlike potential
term, with few phenomenological parameters. The use of this
term may be also used in future studies of heavier nuclear
species.

In what follows, we present the basic theoretical frame-
work of the PND model in Sec. II, we analyze the method
of calculating the many-body expansion including the three-
body energy of the triton (t = p↑n↑n↓) and the helium-3
(p↑ p↓n↑) systems in Sec. III, and finally we summarize our
conclusions in Sec. IV.

II. PND MODEL: DESCRIPTION OF LIGHT NUCLEI

The total wave function of the nuclear system (�) in the
PND model is taken as the Slater determinant of the one-body
wave functions for each nucleon (ψi), i.e.,

�(x) = |ψ1(x1)ψ2(x2) . . . ψA(xA)|. (1)

The vectors xi = xi(t ) are the parametrical vectors of
the centroids for the ith nucleon, i.e., xi = (Ri, Pi), where
Ri and Pi are the (time-dependent) centroid parameters of
the ith nucleon and the total parametrical vector is x =
{x1, x2, . . . , xA}. As in the case with the CoMD model [35],
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the equations of motion according to the TVDP [21] are writ-
ten in the familiar form resembling the classical Hamilton’s
equations:

Ṗi = − ∂H

∂Ri
, (2)

Ṙi = ∂H

∂Pi
. (3)

The one-body wave functions ψi are a direct product of
three components, the space component φi, the spin compo-
nent χσ , and the isospin component ξτ , i.e.,

ψi = φi ⊗ χσ ⊗ ξτ . (4)

The σ and τ are the quantum numbers of the third projec-
tions of spin and isospin, respectively. Here, we account for
both spin and isospin degrees of freedom into the total wave
function, as described in [14]. In both the PND and CoMD
models, spin and isospin mixing is not allowed, thus χσ = | ↑
〉(σ = +1/2) or | ↓〉(σ = −1/2) and ξτ = |n〉(τ = +1/2) or
|p〉(τ = −1/2). The space component is given by the same
formula as in the CoMD model,

φi(r) = 1(
2πσ 2

r

)3/4 e−(r−Ri )2/4σ 2
r e−i(r·Pi/h̄), (5)

where σr and σp = h̄
2σr

are the configuration and momentum
space widths, respectively, connected via a minimum uncer-
tainty relation.

By close inspection of Eq. (5), we observe that the spa-
tial components of the one-body wave functions are not
orthogonal, i.e., 〈φi|φ j〉 	= 0. This “orthogonality problem”
is common in AMD models [19] and is usually solved by
calculating all the A4−6 nonorthogonal terms in the Slater
determinant. This issue is apparent when the system contains
nucleons with the same spin and isospin and thus is not im-
portant for our study of the low energy states of 2H, 3H, and
3He systems.

The Hamiltonian of the PND model has the general form

Ĥ = T̂ + V̂NN + V̂coul =
A∑

i=1

t̂i +
A∑

i=1< j

v̂NN
i j +

A∑
i=1< j

v̂coul
i j ,

(6)

where the t̂i is the one-body kinetic energy operator and v̂NN
i j ,

v̂coul
i j are the two-body nuclear and Coulomb interactions re-

spectively. The aforementioned one- and two-body operators
are given by the following formulas:

t̂i = − h̄2

2m
∇2, (7)

v̂NN
i j = v̂vol

i j + v̂sur
i j + v̂ts

i j, (8)

v̂coul
i j = e2

4πε0

1

|ri − rj| , (9)

with v̂vol
i j , v̂sur

i j , and v̂ts
i j being the volume, surface, and the so-

called tensor-symmetry terms, respectively. These terms are

given by the formulas [22]

v̂vol
i j = T0

ρ0
δ(ri − rj), (9a)

v̂sur
i j = Ts

ρ0
∇2

Ri
δ(ri − rj), (9b)

v̂ts
i j = Tts

ρ0
δ(ri − rj)�̂, (9c)

where �̂ is the tensor-symmetry operator, ρ0 is the density
of nuclear matter, and T0, Ts, and Tts are phenomenological
constants of the nuclear interaction. Furthermore, the terms of
the NN force are characterized as “contact terms,” i.e., they
are proportional to δ(ri − rj). The delta function is used to
simulate the finite range of the NN interaction [12] and is
the standard approach used in all Skyrme-type potentials [13].
The volume and surface terms are the same form as used in the
CoMD model [35].

The volume term corresponds to the bulk attractive
nucleon-nucleon force. The surface term simulates the “sur-
face tension effect” of nuclear systems, where the nucleons
near the surface are less stabilized that those in the nuclear
core [16]. As for the tensor-symmetry term introduced in our
recent developments [22], it combines both the effects of the
isospin symmetry and tensor (i.e., spin dependent) interac-
tions. Its effect is based on the action of the �̂ operator, which
is given by [22]

�̂ = aP̂τ + bP̂σ + ω, (9d)

where a, b, and ω are free parameters and P̂τ , P̂σ are the
isospin and spin exchange operators, respectively.

As previously discussed, [36] the symmetry energy comes
mainly from the experimental observation that a neutron-
proton pair interacts more strongly than a neutron-neutron pair
and even more strongly than a proton-proton pair, i.e., np >

nn > pp. Additionally, the existence of only one bound triplet
state of the deuterium (np) nucleus [16] implies that a triplet
interaction is stronger than a singlet, i.e., E (↑↑) > E (↑↓).
Combining the aforementioned facts, the (negative) potential
energy of a nucleon-nucleon pair follows the trend

E (n↑ p↑) < E (n↑ p↓) < E (n↑n↓) < E (n↑n↑) < E (p↑ p↓)

< E (p↑ p↑). (10)

The energy of the proton-proton pairs is inherently greater
due to the presence of the Coulomb interaction. Note that
generally, the interaction of the same-particle pairs nn and pp
is weaker, as they are correlated by the Pauli principle.

In Fig. 1 we show the expectation value of the nucleon-
nucleon effective interaction, for the triplet (green) and singlet
(red) states. The interaction is plotted as a function of the in-
ternucleon distance r12 per 2σr , which is taken to be 2σr ≈ 1.6
fm. The vertical lines at r12 ≈ 0.8 fm correspond to the mini-
mum distance that is allowed due to the saturation condition.
This is modeled as a sharp infinite barrier in the potential.
The total expectation value of the nucleon-nucleon potential
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FIG. 1. The nucleon-nucleon effective interaction of the PND
model for the triplet (green) and singlet (red) spin combinations.
The interaction is plotted as a function of the reduced internucleon
distance, where r12 is the internucleon distance and σr is the r-space
uncertainty.

component of the Hamiltonian is given by the formula [22]

Vnp =
{−0.2379e−r̄2

[
42.822

(
r̄2− 3

2

)
+250.414

]
, spin triplet

−0.2379e−r̄2
[

42.822
(

r̄2− 3
2

)
+206.414

]
, spin singlet

. (11)

The Coulomb interaction, in contrast to the nucleon-
nucleon force, does not contain a contact-delta function and
therefore its matrix elements are separated into direct and
exchange terms that are respectively given by

〈
ψiψ j

∣∣v̂coul
i j

∣∣ψiψ j
〉 =

〈
ψiψ j

∣∣∣∣ e2

4πε0

1

|ri − rj|
∣∣∣∣ψiψ j

〉
, (12)

〈
ψiψ j

∣∣v̂coul
i j

∣∣ψ jψi
〉 =

〈
ψiψ j

∣∣∣∣ e2

4πε0

1

|ri − rj|
∣∣∣∣ψ jψi

〉
. (13)

The exchange Coulomb term [Eq. (13)] is quite compli-
cated and has a smaller contribution than the direct term.
Generally, the Coulomb interaction is weaker than the nuclear
force. In many cases in the literature the exchange Coulomb
term is dropped entirely, as in the work by Vautherin and
Brink [14]. In the PND model, we follow a different ap-
proach. We assume that the exchange term is proportional
to the direct term and thus its effect can be simulated via a
phenomenological parameter. The combination of the direct
and the exchange terms is thus expressed via the use of a
parameter acoul:〈

ψiψ j

∣∣v̂coul
i j

∣∣(|ψiψ j〉−|ψ jψi〉)

= acoul

〈
ψiψ j

∣∣∣∣ e2

4πε0

1

|ri − rj|
∣∣∣∣ψiψ j

〉
. (14a)

The phenomenological constants previously described
have been tuned in order to reproduce the binding energies
of the deuterium and the alpha particle and their values

are given for ρ0 = 0.165 fm−3 as T0 = −156.9 MeV, Ts =
−29.50 MeV fm2, Tts = 11 MeV, a−b = 4, ω = −4.5, and
acoul ≈ 3.

Furthermore, from the binding energy of the deuteron as
calculated from the model (−2.312 MeV ≡ γ 2h̄2/2µ, where
γ is the binding energy wave number and µ is the reduced
mass of the system) and by considering that the np triplet
effective range is approximately equal to the range of the
Gaussian term of the potential (r0 ≡ 2σr ≈ 1.6 fm), we can
obtain the np triplet scattering length (a), using the formula
[37]

a = 2

γ

1

1 − r0γ
. (14b)

Using the values of the parameters reported above, we ob-
tain a value of a = 4.09 fm, which is in qualitative agreement
with the corresponding experimental value 5.42 fm [38].

The kinetic component of the expectation value of the
Hamiltonian is calculated to be

〈�∣∣T̂ ∣∣�〉 =
A∑

i=1

〈ψi|t̂i|ψi〉 =
A∑

i=1

P2
i

2m
+ 3σ 2

p

2m
A. (15)

As is the case with the CoMD model [35], the constant term
corresponds to the minimum kinetic energy of the nucleons
due to the uncertainty principle and is not considered in the
calculations. Instead, it is considered as a constraint in the
minimization algorithm, as explained below.

The time evolution of the system is governed by Eqs. (2)
and (3), which are coupled first-order differential equations.
In order to solve these equations, there is a need for ini-
tial conditions. These are termed as initial configurations.
They correspond to the parametric vector (the phase-space
centroid) at time t0 = 0, i.e., x(0) = {Ri(0), Pi(0)}, ∀i =
1, . . . , A. These are calculated via a modified Metropolis
Monte Carlo statistical algorithm [22], where we select the
minimum energy configuration that represents the ground
state of the system. As is the case of a typical Metropolis
Monte Carlo procedure (see, for instance, [39]), a random
initial configuration is chosen and randomly perturbed. If the
new configuration has a lower energy than the previous one,
it is accepted. If its energy is greater, it is accepted accord-
ing to a Boltzmann probability density function. Here the
“temperature” of the Boltzmann distribution (kT ) is of the
order of MeV. The ground state energy results from com-
bining runs with different initial conditions and considering
the statistical average and error of the model, respectively.
This error in energy is around ∼3%. During a single cal-
culation, the energy converges to a global minimum. In
addition to the usual Monte Carlo steps, the initialization algo-
rithm includes additional disentanglement and thermalization
constraints.

The disentanglement procedure constrains the minimum
distance of two nucleons to ∼σr . This simulates the well-
known experimental fact that the nuclear interaction is
repulsive at short distances and the correlations due to
the Heisenberg principle. The thermalization procedure con-

strains the minimum kinetic energy to
3σ 2

p

2m A and also
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TABLE I. Various one- and two-body terms computed with the PND model and many-body decomposition of the total energy E in the
MBE. Energies are in MeV. Experimental values and previously published data are also indicated.

Term Term in MBE 2H(p ↑ n ↑) (p ↑ n ↑ n ↓) (p ↑ p ↓ n ↑)∑
Ti E(1-B) 33.55 53.20 52.00∑
Vi j E(2-B) −35.86 −60.17 −58.19

EModel E(1-B) + E(2-B) −2.31 −6.97 −6.19
E 3 E(3-B) −1.51 −1.53

(−1.706)a

E(3-B)/E 17.9 ± 2.4% 19.9 ± 2.7%
E −2.31 −8.482 −7.718

E (Expt.) E [−2.225]b −8.482b −7.718b

[−8.22]c

[−8.35(4)]d [−7.63(4)]d

[−8.1 ± 0.1]e [−7.4 ± 0.1]e

[−8.475, −8.478]f

[−8.473(4)]g [−7.727(4)]g

aReference [4].
bExperimental values, Ref. [36].
cReference [17].
dReference [40].
eReference [41].
fReference [42].
gReference [43].

corresponds to the enforcement of the Heisenberg principle
[35].

III. MANY-BODY EXPANSION FOR LIGHT BOUND
NUCLEAR SYSTEMS

As already stated, the presence of a three-body interac-
tion is usual in a many-body system. The smallest bound
nuclear systems in which a three-body energy is present are
the tritium (3H) and helium-3 (3He), with 1/2+ spin-parity
and τ3 = +1/2, −1/2 isospins, respectively.

The total energy of the system can be partitioned via the
many-body expansion (MBE) in a manner similar to the one
followed previously by Xantheas [6]. In this formalism, the
total energy (Etot ) of a general three-body system ABC is
given by

Etot = EA + EB + EC + δ(2)EAB + δ(2)EAC + δ(2)EBC

+ δ(3)EABC, (16)

where Ei is the monomer (one-body), δ(2)Ei j ≡ Ei j − Ei −
Ej the two-body, and δ(3)Ei jk ≡ Ei jk − δ(2)Ei j − δ(2)Eik −
δ(2)Ejk − Ei − Ej − Ek the three-body energies, with Ei j and
Ei jk being the dimer and trimer energies, respectively, and
i, j, k = A, B,C. In our case, the one-body terms, i.e., the
monomer energies, are the kinetic energies of the nucleons,
the two-body terms are the two-body potential energy interac-
tions, while the three-body term is the difference between total
energy (Etot ) and the sum of one-body and two-body terms.
Assuming that the total energy is the experimentally measured
energy of the corresponding nuclear system (Eexp), while the
sum of the one-body and two-body terms are calculated by
the PND model (EModel ), the three-body term can be extracted

from Eq. (16) according to

E3= δ(3)EABC = Eexp − EModel,

Eexp= Etot,

EModel= EA + EB + EC + δ(2)EAB + δ(2)EAC + δ(2)EBC ;
(17)

the quantity EModel is obtained as explained below, after an
optimization of the model’s effective interaction in such a way
as to reproduce the experimental data for deuteron. Rewriting
these equations for triton (t = n↑n↓ p↑),

Et
3= δ(3)En↑n↓ p↑ ,

Et
exp= Et

tot = −8.482 MeV,

Et
Model= En↑ + En↓ + Ep↑ + δ(2)En↑n↓ + δ(2)En↑ p↑ + δ(2)Ep↑n↓ .

(18)

First, the model’s effective interaction is optimized in such
a way as to accurately reproduce some of the experimental
characteristics of the two-body interaction. Specifically, the
experimental interaction energy of the (only) bound dinucleon
state, i.e., the deuteron, with the value of −2.225 MeV, is
very well reproduced by the PND model [22] which predicts
Etot = −2.31 MeV. This calculated total energy is higher than
the experimental one by 0.09 MeV (4%). Due to the presence
of a single proton, the Coulomb parameter is not present in
this step. Additionally, the effective interaction must give the
singlet state of deuterium as unbound. The MBE energies are
given in Table I.

The PND optimized energy of triton (Et
Model) which in-

cludes one-body and two-body terms is calculated at −6.97 ±
0.21 MeV, see Table I, with the experimental value being
−8.482 MeV [36]. Thus the difference of these energies is the
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FIG. 2. Many-body decomposition of the energy for the light nu-
clei 2H(p ↑ n ↑) : E = Tp + Tn + Vpn, 3H(p ↑ n ↑ n ↓) : E = Tp +
Tn + T ′

n + Vpn + V ′
pn + Vnn + E 3

pnn and 3He(p ↑ p ↓ n ↑) : E =
Tp + T ′

p + Tn + Vpn + V ′
pn + Vpp + E 3

ppn. Dotted lines indicate the
experimental E values [36].

contribution of the three-body interaction, namely, −1.51 ±
0.21 MeV. It should be noted that accurate calculations with
an EFT-based N3LO potential yield −1.706 MeV [36], which
is in good agreement with our calculations with a far simpler
potential.

After the calculation of triton’s three-body energy, the
Coulomb parameter is constrained to calculate the three-body
contribution of the 3He system. It is expected that the three-
body energy of the 3H and 3He is similar. This additional
condition is enforced, in parallel to the approximate charge
symmetry of the nuclear interaction and because the effective
three-body interaction comes mostly from the short-range
two-body nuclear force [11]. That is, the exchange transfor-
mation n ↔ p, that connects the mirror nuclei 3H and 3He,
must leave the interaction energy component that comes from
the nuclear interaction almost invariant. The optimization
procedure yields a Coulomb parameter with an appropriate
value that is given above and a three-body energy of −1.53 ±
0.21 MeV. As far as we know, the three-body term in 3He has
not been reported in the literature before. These energies of the
aforementioned nuclei and their corresponding experimental
values are given in Table I and they are plotted in Fig. 2.

The sum of one-body terms, i.e., the kinetic energies of
the involved p and n species, is positive, the sum of two-body
terms, i.e., the potential energy, is negative, while their sum
is negative and the calculated nuclear systems are bound;
see Fig. 2. As already mentioned, for 2H the PND total
energy is calculated at −2.31 MeV, in excellent agreement
with the experimental value of −2.225 MeV. For the 3H and
3He, the sum EModel = �Ti + �Vi is −6.97 ± 0.21 MeV and
−6.19 ± 0.21 MeV and we found that the three-body term
further stabilizes the nuclear systems by 1.51 ± 0.21 MeV
and 1.53 ± 0.21 MeV, respectively. Naturally, the three-body
terms are smaller than two-body terms in the MBE, but they
are about 16–23% of the total energy, i.e., they contribute a
significant percentage.

The MBE for the hydrogen bonded water clusters is
monotonic in sign [25] with the two-body and higher or-
der terms being attractive (negative sign) and decreasing in
magnitude, whereas it oscillates in sign between the two-
and the three-body terms for ion water (in some instances)
[32], the covalently bonded XHn, n = 1–4, X = C, Si, Ge,
Sn molecules [33], and the alkaline earth metals [34]. For the

light nuclear systems studied here, the one-body term is large
and positive while the two-body term is of equal magnitude
and negative. The three-body term is much smaller, amounting
to ∼3% of the two-body term, while the total interaction
is negative and <15% of the two-body term. To this end,
the MBE for light nuclei rather resembles the one for water
clusters with the notable exception of the very large one-body
term, that almost cancels the equally large two-body term, and
the much-smaller-than-two-body negative three-body term.
This is to be expected, as the one-body term comes from
kinetic contributions and the nucleon velocities in the nuclear
Fermi gas is of the order of ∼0.2c. The 16–23% three-body
term in the 3H and 3He species is reminiscent of the large
three-body term in the water trimer, which amounts to ∼18%
of the total binding energy of that cluster [6,25].

This scale invariance of the energy percentage, from the
hydrogen bonded systems (water clusters) to light nuclear
systems, is a characteristic of Efimov-type physics [10]. It is
already proposed in [9] that the tritium nucleus may contain
Efimov excited levels which have not been yet seen experi-
mentally. As is also stated in [11], an element of an Efimov
state, is the “Efimov attraction,” i.e., the three-body energy
that is responsible for the high binding energy of a three-
body system when compared to the two-body system and it
is thought to come from the role of the third particle as a
carrier for the effective three-body interaction. In the context
of the MBE [Eq. (16)], this attraction is the three-body energy
δ(3)EABC . This could suggest a possible connection with the
Efimov effect in both nuclear and molecular clusters and po-
tentially open a new theoretical discussion on Efimov physics
with the MBE as the basic analytical tool, but this is outside
the scope of the current work.

IV. CONCLUSIONS AND OUTLOOK

We have shown that the MBE can be effectively extended
to light nuclear systems, in the same manner as it has been
previously extensively used for hydrogen bonded systems
such as water and ion-water interactions, and to break covalent
bonds in molecules and metallic systems. For the 3H and 3He
nuclei we have shown that it exhibits a similar pattern with the
one previously reported for hydrogen bonded water clusters,
where the three-body term also amounts to ∼20% of the
total interaction. The MBE for five different types of bound
trimers, i.e., water trimer [26], Cl−(H2O)2 [44], Na3 [45], CH2

[33], and the present calculated light nuclei (3H and 3He),
are shown in Fig. 3. All trimer species are bound together
with different type of bonds, i.e., H bonds between water
molecules, anion-water hydrogen bonds, metallic bonds, co-
valent bonds, and nuclear bonds with different interaction
energies ranging from ceV to MeV. We note the resemblance
of the MBE analysis for all systems where the 2-B term has a
significant stabilizing effect.

The aforementioned analysis was performed using a simple
dynamical code, namely the PND model. In order to properly
simulate the interaction of the two- and three-nucleon sys-
tems, we introduced a new potential term with spin-isospin
dependence and we fitted the limited number of free pa-
rameters to the properties of the deuteron. This work is an
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FIG. 3. Many-body decomposition of the energy of different type
of trimers over the range of eight orders of magnitude in eV.

initial study on the MBE extension to light nuclear systems
and the full extent of the spin dependence of the interaction

has not been considered yet. We plan to further develop the
PND model by adding a spin-orbit force for a more accurate
description of nuclear systems and options to extract other
ground state properties such as neutron skins and radii, that
are of interest to nuclear structure research. Nevertheless, it
would be interesting to apply the MBE analysis to larger
nuclei, where more protons and neutrons exist, and examine
its convergence and the magnitude of the higher order terms in
the future. Finally, we plan to use the MBE as a basic tool for
the investigation of possible Efimov physics in both molecular
and nuclear species.
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