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Steadystatelaws for thechemicalpotentialandthepressureof reactionintermediatesarederivedthrougha fluctuationrelation
basedonanextensionof thelocal equilibrium hypothesisfor steadystates.Thefull characterizationof statesappearingin the
fluctuationrelation andstatelawswas madepossibleby the introductionof a “disequilibrium parameter”that measuresthe
distanceof statesfromequilibrium. Therelationof thisparameterto chemicalaffinities and inducedfluxes is discussed.Non-
equilibrium effectsareidentifiedandexplainedin termsofthesymmetryof stoichiometriccoefficients.

Many recentapproachesemployedfor the devel- modynamicvariablesas well asfluxes of extensive
opment of thermodynamicsof homogeneousand variablesthat characterizethe steadystatesof the
isothermalsystemsin nonequilibriumsteadystates system.
dependin different degreeson the results of sto- Despitethe abstractdevelopmentof the theory,
chasticanalysis[1—91.In the most directapproach therehasbeenno derivationof the pressuresteady
[1], theprobabilitydistribution,P, of thenumberof statelawsfora fluid phasein analogyto thestatelaws
intermediatespeciesof a chemical system, deter- of equilibrium. In the following, weexploit the an-
minedfromthesolutionofa Markovianbirth—death alytic resultsof stochastictheory for the caseof ho-
masterequation,hasbeenemployedto provide in- mogeneousand isothermalone-variablenonlinear
formation about generalisedpotentialsfor steady modelssuchas
states, U. Such potentialsare obtainedthrough a 3

generalizedEinsteinfluctuation relation, A+nX~ (n+1)X, (m+l)X± mX+B, (3)

P~exp(— U/k
8T) . (1) with constantA andB concentrations,in orderto in-

In turn, generalizedchemicalpotentialshavebeen fer steadystatelaws for intensivevariablessuchas
definedthrough ~t andP of the intermediateX. Although thismodel

—U/ÔX’ ‘2’ appearsto be restrictive, the following analysisis
I T,P,R, ‘ ‘ easilyextendabletootherchemicalmodelsaswell as

whereX is the numberof particlesof the interme- to moregeneralhydrodynamicsystems.
diatespeciesandR the constraintsthatkeepthe sys- The realization of chemical systemsin thermo-
ternin steadystates.In a compatibleway, steadystate dynamic terms requires suppressionof all other
thermodynamicshasbeendevelopedalsoby Keizer modesof dissipationexceptthat of the chemicalre-
[4,9] in anentropicrepresentation.Specifically,the action [6]. This is establishedby requiringfast re-
chemicalpotentialhasbeendefinedthroughtheco- laxation of concentration,momentum,and energy
variant matrix of fluctuations,a, 8u/ÔX= kBTcJ ‘, gradients comparedto chemical rates. The usual
with u T(ÔL’/8X)fi whereI is the generalizeden- chemicalmasterequationsareconsistentwith these
tropy andf representscertainextensiveclassicther- considerations.As an effect, the chemical master
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equationsdo not provide direct information about r to a final states, in analogyto equilibrium fluc-
intensivevariablesotherthan the chemical poten- tuationtheory [11],
tial, andthus an indirect procedurehasto be em-
ployed for the determinationof the pressuresteady A= J (PS/jr) dX=kBTJ ln(j/j~) dX. (6)
statelaw.

Such a procedureis provided by a generalized
Gibbs—Duhemequation[4] thatconnectsthechem- Differentapproacheshavebeenemployedin thepast
ical potential with the pressure.This treatmentre- for the extractionof a meaningfulchemicalpotential
quiresfirst an exactaccountingof the statedeter- from this availability,not alwayswith completesuc-
mining variables in steady state conditions. For cess. In one of them, the steady state condition,
reaction (3) taking placein a chamberof constant I + =J, was interpretedas “equilibrium condition”
volumeandtemperature,two additionalconstraints, of a one-stepreaction [121. Thisapproachlacksex-
like theconstancyof A andB concentrations,suffice act identificationof the steadystateof the system,
tofix the stateof thesystem.Thecontrollingof these sinceonevariablein additiontoXis neededtospec-
concentrationscan be realized with the help of ify sucha state.In thetheoryof Rossandcoworkers
chemicalbathsthatinteractvia fasttransportthrough [6], chemical potentialshave been obtained by
speciesselectivemembranes[6]. This ensurescon- treatingthe aboveequationin a local equilibrium
trol of the chemicalpotentialsof eachof speciesA approachthatdoesnotrequireexplicit specification
andB, andindirectly, assumingideal laws, of the of all steadystatedeterminingvariables.Contraryto
correspondingconcentrations.Otherchoicesofstate this,an indeterminacyappearsin statelaws thathave
determiningparametersare possibleand someare beenbasedon fluctuation theory [11 and the rela-
discussedbelow.The effect of nonequilibriumcon- tion 8u/ÔX=kBTa’. Theintegrationof sucha re-
ditionson the stateof the systembecomesapparent lation requiresthe knowledgeof the dependenceof
throughthe changesthey induceon statelaws of the aon a statedeterminingvariablein additionto X.
remainingintensivevariables,that is, ~zandPof the Thisinefficiencythough,doesnotappearin the work
intermediatespecies. of Keizer [2,9,13] in which a sufficientnumberof

The chemicalpotentialcan be determinedfrom state determining variableshas been considered.
“generalizedavailabilities”,which arededucedfrom Here,we determinechemicalpotentials,usingan al-
probability densities,as discussedabove. Specifi- ternativeprocedurethrough eq. (6), andproceed
cally, for reactionscheme(3) the transitionprob- further to calculate pressurelaws in a pure fluid
ability densityfrom stater of a masterequationin phase.
the “continuum limit” [10] acquiresthe general The difficulty in the implementationof eq. (6)
form arisesbecausethe termon the r.h.s. of eq. (6) de-

pendson A’ and B~parametersof the initial state
/ r andonly on onevariable,X~,of the final state.It isPccex~~jlnU — Li ~) dX)~ (4) thusrequiredto specifyonemorevariable,in order

to fix the final stateof the system.In general,aswas

mentionedabove theknowledgeofA S andB5 would
wherej representsthe forward andbackwardtotal
reaction rates of the intermediateX. The corre- serve the purpose.However,thereare many other

choices suchasX~and B5 or A5andXS or X5 andspondingreactionequationreads
any othergeneralvariablethat is relatedmonoton-

X=JI +J~—j
2 —j3 =j~~_j— ~ ically to A

5andB5. In thefollowing, we usethe latter
choice,in orderto makevivid the characterization

By treatingthe fluctuation relation in a local steady of thestate,while we are workingwith u andX van-
stateapproach,wecanidentify the exponentof the ables.Thesecondneededvariableis selectedin such
transition probability as a generalizedavailability, a way as allows the constructionof a chemicalpo-
which aroundequilibrium is equal to the chemical tential scaleindependentof the statechosento be
work neededto shiftthe systemfrom an initial state the referenceone. In addition, the scaleshouldre-
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duceto theequilibrium scalecloseto equilibrium.It However,in the caseof nonlinearmodelsin steady
is easily verified, as it will be shownbelowthrough states,this coefficient reflects the effect of non-
a specific examplethat the aboverequirementsare Poissoniandeformationsofprobabilitydistributions
met wheneverthe parametersA5 andB5 of the final on the chemicalpotential [14]. Thesedeformations
state are takenproportional to ~ andBT, that is dependon the exactmechanismof the chemicalne-
AS/BS=A~7Br.The ratio ,1=A5/B5providesthe see- actionsand are due to the nonsymmetricstoichi-
ond variableneededto characterizethefinal stateof ometryof the forward andbackwardreaction steps.
the system.Thevalue of ‘i in equilibrium statesde- The nonidealitiesare also presentin the pressure
pendsonly on reaction rateconstantsandis deter- steady state laws, which we determine in the
mined throughthe microscopicreversibility condi- following.
tions of equilibrium, j~=12 and13=14. However,in Fora certainvalueof theirreversibilityparameter
the caseof nonequilibriumsteadystates,this van- thepressureis determinedthroughtheintegrationof
ableattainsa rangeofvaluessinceit isnotfixed from a generalizedGibbs—Duhemequation [1,4],
a single steady statecondition, j~+14=12+13. Ac-
cordingto the aboveassertion,statesthat appearin I vdp— I Xd (9)
fluctuation relation (1) with a probability density .1 — .1 ~
derivedfrom a usualmasterequation[10], arechar-
acterizedby the samevalueof ,j. Thisconsideration By substitutingthe chemicalpotential from eq. (7)
couldalsobeseenasa supplementtothelocal steady in the aboveequationwe obtain
statehypothesisemployedin derivingeq.(6). Since ~. ~

this analysisis restrictedto statesof anybutthesame (P5— P~)V= kBTj X ~ ln (I — /J~)dX
valueof ~, wecanidentify sucha variablewith apa-
rameter.We term it “disequilibriumparameter”be-
causeit providesa measureof thedistanceof steady =kBT$ XU—’/j— _J~7J~)dX, (10)
statesfrom equilibrium. This parameteris also re-
latedto othervariablesthatmeasurethe distanceof
states from equilibrium. Specifically, since where the primes indicate differentiation with re-
ln~=ln(A/B)x pA_pB, the parameter~ relates spectto X.
monotonicallytothetotalchemicalaffinity. Further, Anotherwayto deriveapproximatestatelaws for
in the casewherea linear relationbetweenthe gen- smalldeviationsfrom equilibrium, usefulin thecase
eralizedforce,pA _pB andthe inducedflux through of complexsystems,is throughan iterative solution
thereactivesystem,Jislegitimate,weobtainln i~xf of the Gibbs—Duhemequationin differential form
Thisrelationbrings the currentapproachinto con- for the density,
formity with Keizer’sconsiderations,wherethefluxes

V/X=du/dP. (11)aretreatedas statevariables.
Wecannow definethechemicalpotentialof steady By substitutingin the expressionfor the chemical

states through potentialthenumberof speciesX from the idealstate

tLS~~,LLr+kTln(J_/j+) (7) law,X=PV/RT, we obtain a first approximationfor
the pressure,

havingin mind thatstatess andr are characterized ., ._

V/X=kBT(J Li —J Ii )x=Pv,/~T. (12)
by the sameparameter,~. Further,an activity coef-
ficient, a,thatmeasuresnonidealitiesrelativeto the Furtheriterations,by usingthe derivedexpression
referencestateis alsointroducedthrough asinput in eq. (11), canprovidemoreaccuratelim-

— / + ‘8’ iting laws. Otherforms of limiting laws can be de-a —J ~ ‘ ‘ rived directly from eq. (10) by expanding the

It is easilyverifiedthata= 1 whenequilibrium states expressionof the chemicalpotential aroundXr, or
areconsidered.Similarly, ideality holdsalsofor lin- equilibrium wherej/j~ 1.

earandisoautocatalyticmodelsin steadystates[7]. As an example,we considerthe nonlinearmodel
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(3) with n = 1 and m = 0, where the forward and with “dynamicvirial coefficients” givenby
backwardreactionratesare givenby k k / D \fl+ I

B~=RT—3----~1 1 (17)
j~=k

1AX+k4B, j=k2X
2+k

3X. (13) P \~k4(k2P+k3)J

Thechemicalpotentialof state(X
5, i~=A 5/B5)with where w= k~k

3~’— k2k~is a measureof the distance
respectto a referencestate (Xc, ~ is givenby eq. of the comparedstatesfrom equilibrium (w 0).
(7) with ~r ~ It is easily checkedthat the scaleof We thusconcludethat steadystate laws for ho-
p for statesof the sameparameter,~ is independent mogeneousand isothermalnonlinearsystemscanbe
of the referencestate.Alternatively,it canbe tested derivedin analogyto equilibriumthermodynamics,
that the relation pa_pb= (pa_pC)+ (pC — pb) be- providedthat supplementaryrelationsof steadystate
comesan identity, whenthe chemicalpotentialdif- thermodynamics,like the Gibbs—Duhemequation,
ferencesaresubstitutedfromeq. (7). In general,this are employed.The crucial step is the identification
propertyholdsfor nonlinearreactionschemes,only of steady statedeterminingvariables,such as the
whencomparedstatesarecharacterizedby the same concentrationof intermediatespeciesX and the
parameter~. disequilibriumparameter~. Although the employed

By introducingtheseratesin eq. (10) we obtain chemical model hasa singlesteadystate in the pa-
a state law for the pressure, rameterspaceof A and B, theaboveanalysiscanbe

fl5 r T7 I Dr I 41 s i r extendedeasily to systemsof multiple stablestates.—P) _X5_Xr+~~±~~_ln

RT — k1Ar k~A
1x’~+k

4B’~

k k x
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