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Steady state laws for the chemical potential and the pressure of reaction intermediates are derived through a fluctuation relation
based on an extension of the local equilibrium hypothesis for steady states. The full characterization of states appearing in the
fluctuation relation and state laws was made possible by the introduction of a “disequilibrium parameter” that measures the
distance of states from equilibrium. The relation of this parameter to chemical affinities and induced fluxes is discussed. Non-

equilibrium effects are identified and explained in terms of the symmetry of stoichiometric coefficients.

Many recent approaches employed for the devel-
opment of thermodynamics of homogeneous and
isothermal systems in nonequilibrium steady states
depend in different degrees on the results of sto-
chastic analysis [1-9]. In the most direct approach
[1], the probability distribution, P, of the number of
intermediate species of a chemical system, deter-
mined from the solution of a Markovian birth—death
master equation, has been employed to provide in-
formation about generalised potentials for steady
states, U. Such potentials are obtained through a
generalized Einstein fluctuation relation,

P exp(—U/kgT) . (1)

In turn, generalized chemical potentials have been
defined through

u=0QU/dX)rpr, (2)

where X is the number of particles of the interme-
diate species and R the constraints that keep the sys-
tem in steady states. In a compatible way, steady state
thermodynamics has been developed also by Keizer
[4,9] in an entropic representation. Specifically, the
chemical potential has been defined through the co-
variant matrix of fluctuations, ¢, du/dX=kgTo "',
with u=T(32/dX), where X is the generalized en-
tropy and f represents certain extensive classic ther-

modynamic variables as well as fluxes of extensive
variables that characterize the steady states of the
system.

Despite the abstract development of the theory,
there has been no derivation of the pressure steady
state laws for a fluid phase in analogy to the state laws
of equilibrium. In the following, we exploit the an-
alytic results of stochastic theory for the case of ho-
mogenecous and isothermal one-variable nonlinear
models such as

1

3
A+nX = (n+1)X, (m+1)X=mX+B, 3)
2 4

with constant A and B concentrations, in order to in-
fer steady state laws for intensive variables such as
i and P of the intermediate X. Although this model
appears to be restrictive, the following analysis is
casily extendable to other chemical models as well as
to more general hydrodynamic systems.

The realization of chemical systems in thermo-
dynamic terms requires suppression of all other
modes of dissipation except that of the chemical re-
action [6]. This is established by requiring fast re-
laxation of concentration, momentum, and energy
gradients compared to chemical rates. The usual
chemical master equations are consistent with these
considerations. As an effect, the chemical master
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equations do not provide direct information about
intensive variables other than the chemical poten-
tial, and thus an indirect procedure has to be em-
ployed for the determination of the pressure steady
state law.

Such a procedure is provided by a generalized
Gibbs-Duhem equation [4] that connects the chem-
ical potential with the pressure. This treatment re-
quires first an exact accounting of the state deter-
mining variables in steady state conditions. For
reaction (3) taking place in a chamber of constant
volume and temperature, two additional constraints,
like the constancy of 4 and B concentrations, suffice
to fix the state of the system. The controlling of these
concentrations can be realized with the help of
chemical baths that interact via fast transport through
species selective membranes [6]. This ensures con-
trol of the chemical potentials of each of species A
and B, and indirectly, assuming ideal laws, of the
corresponding concentrations. Other choices of state
determining parameters are possible and some are
discussed below. The effect of nonequilibrium con-
ditions on the state of the system becomes apparent
through the changes they induce on state laws of the
remaining intensive variables, that is, u and P of the
intermediate species.

The chemical potential can be determined from
“generalized availabilities”, which are deduced from
probability densities, as discussed above. Specifi-
cally, for reaction scheme (3) the transition prob-
ability density from state r of a master equation in
the “continuum limit” [10] acquires the general
form

P exp(J- ln(j‘/j")dX), (4)

where j represents the forward and backward total
reaction rates of the intermediate X. The corre-
sponding reaction equation reads

x=j1+His—ja—js=j*t =i~ . (5)

By treating the fluctuation relation in a local steady
state approach, we can identify the exponent of the
transition probability as a generalized availability,
which around equilibrium is equal to the chemical
work needed to shift the system from an initial state
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r to a final state s, in analogy to equilibrium fluc-
tuation theory [11],

A= j (U5~ u7) dX=kBTJ‘1n(j‘/j+) dx.  (6)

Different approaches have been employed in the past
for the extraction of a meaningful chemical potential
from this availability, not always with complete suc-
cess. In one of them, the steady state condition,
j*=j~, was interpreted as “‘equilibrium condition”
of a one-step reaction [12]. This approach lacks ex-
act identification of the steady state of the system,
since one variable in addition to X is needed to spec-
ify such a state. In the theory of Ross and coworkers
[6], chemical potentials have been obtained by
treating the above equation in a local equilibrium
approach that does not require explicit specification
of all steady state determining variables. Contrary to
this, an indeterminacy appears in state laws that have
been based on fluctuation theory [1] and the rela-
tion du/dX=kgTo~!. The integration of such a re-
lation requires the knowledge of the dependence of
o on a state determining variable in addition to X.
This inefficiency though, does not appear in the work
of Keizer [2,9,13] in which a sufficient number of
state determining variables has been considered.
Here, we determine chemical potentials, using an al-
ternative procedure through eq. (6), and proceed
further to calculate pressure laws in a pure fluid
phase.

The difficulty in the implementation of eq. (6)
arises because the term on the r.h.s. of eq. (6) de-
pends on A" and B® parameters of the initial state
and only on one variable, X®, of the final state. It is
thus required to specify one more variable, in order
to fix the final state of the system. In general, as was
mentioned above, the knowledge of 4° and B*® would
serve the purpose. However, there are many other
choices, such as X*® and B® or 4% and X*® or X® and
any other general variable that is related monoton-
ically to A® and B®. In the following, we use the latter
choice, in order to make vivid the characterization
of the state, while we are working with 4 and X vari-
ables. The second needed variabile is selected in such
a way as allows the construction of a chemical po-
tential scale independent of the state chosen to be
the reference one. In addition, the scale should re-
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duce to the equilibrium scale close to equilibrium. It
1s easily verified, as it will be shown below through
a specific example that the above requirements are
met whenever the parameters A* and B* of the final
state are taken proportional to A" and B’, that is
A®/Bs=A"/B*. The ratio n=A%/B* provides the sec-
ond variable needed to characterize the final state of
the system. The value of 7 in equilibrium states de-
pends only on reaction rate constants and is deter-
mined through the microscopic reversibility condi-
tions of equilibrium, j, =/, and j;=j,. However, in
the case of nonequilibrium steady states, this vari-
able attains a range of values since it is not fixed from
a single steady state condition, j,+j,=j,+j;. Ac-
cording to the above assertion, states that appear in
fluctuation relation (1) with a probability density
derived from a usual master equation [101], are char-
acterized by the same value of #. This consideration
could also be seen as a supplement to the local steady
state hypothesis employed in deriving eq. (6). Since
this analysis is restricted to states of any but the same
value of n, we can identify such a variable with a pa-
rameter. We term it “disequilibrium parameter” be-
cause it provides a measure of the distance of steady
states from equilibrium. This parameter is also re-
lated to other variables that measure the distance of
states from equilibrium. Specifically, since
Inn=In(4/B)x u'—u® the parameter 5 relates
monotonically to the total chemical affinity. Further,
in the case where a linear relation between the gen-
eralized force, #*—u?, and the induced flux through
the reactive system, f, is legitimate, we obtain In nocf.
This relation brings the current approach into con-
formity with Keizer’s considerations, where the fluxes
are treated as state variables.

We can now define the chemical potential of steady
state s through

w=p+kgTIn(G~/j*) (7)

having in mind that states s and r are characterized
by the same parameter #. Further, an activity coef-
ficient, «, that measures nonidealities relative to the
reference state is also introduced through

aX=j=/j*. (8)

It is easily verified that o=1 when equilibrium states
are considered. Similarly, ideality holds also for lin-
ear and isoautocatalytic models in steady states [7].

PHYSICS LETTERS A

30 August 1993

However, in the case of nonlinear models in steady
states, this coefficient reflects the effect of non-
Poissonian deformations of probability distributions
on the chemical potential [14]. These deformations
depend on the exact mechanism of the chemical re-
actions and are due to the nonsymmetric stoichi-
ometry of the forward and backward reaction steps.
The nonidealities are also present in the pressure
steady state laws, which we determine in the
following.

For a certain value of the irreversibility parameter
the pressure is determined through the integration of
a generalized Gibbs-Duhem equation [1,4],

deP:deu. (9)

By substituting the chemical potential from eq. (7)
in the above equation we obtain

s Py K AT
(P —P)V_kBTJ‘XaXln(j /ity dx

kT [ XG1j==*1j%) 4X, (10)

where the primes indicate differentiation with re-
spect to X.

Another way to derive approximate state laws for
small deviations from equilibrium, useful in the case
of complex systems, is through an iterative solution
of the Gibbs-Duhem equation in differential form
for the density,

V/X=du/dP. (11)

By substituting in the expression for the chemical
potential the number of species X from the ideal state
law, X=PV/RT, we obtain a first approximation for
the pressure,

VIX=kg TG~ /i~ =i /[J* Y x=pviier - (12)

Further iterations, by using the derived expression
as input in eq. (11), can provide more accurate lim-
iting laws. Other forms of limiting laws can be de-
rived directly from eq. (10) by expanding the
expression of the chemical potential around X", or
equilibrium where j—/j %

As an example, we consider the nonlinear model
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(3) with n=1 and m=0, where the forward and
backward reaction rates are given by

j+=k1AX+k4B, j—=k2X2+k3X. (13)

The chemical potential of state (X®, n*=A4°%/B*) with
respect to a reference state (X', #°) is given by eq.
(7) with "= It is easily checked that the scale of
u for states of the same parameter 7 is independent
of the reference state. Alternatively, it can be tested
that the relation p— puP= (1@ — )+ (u°— u®) be-
comes an identity, when the chemical potential dif-
ferences are substituted from eq. (7). In general, this
property holds for nonlinear reaction schemes, only
when compared states are characterized by the same
parameter 7.

By introducing these rates in eq. (10) we obtain
a state law for the pressure,

(P*— PV keB*. kyATX*+k,B*
A T I xs_ YT 1
RT X=Xt P Atk B
ky | ko Xo+ks
B pd T 14
k2 ACZ:E 1:3 ( )

where hereafter X, 4 and B are measured in moles
and the k’s are considered consistently modified.
When 7 takes its equilibrium value (n=*k,k,/kk3),
or the model is assumed linear (n=m=0), the re-
lation turns into the ideal gas law. This ensures the
legitimacy of the procedure in providing pressure
steady state laws.

An approximate law for small deviations from
equilibrium is also derived from eq. (12),

Py Ps(k k3 AT —kyky BT)
XRT =~ (kyPi+ks) (kyA'Ps+kyBT)

(15)

By expanding the denominator of the r.h.s. of the
above equation, the law takes the form of a virial
equation,

PV/X=RT—-B,0+B,0*— B0+ ..., (16)

106

PHYSICS LETTERS A

30 August 1993

with “dynamic virial coefficients” given by

k3k4 ( P )n+l (17)
P \ky(ky P+ k3) ’

B,=RT

where w=k kin—k,k, is a measure of the distance
of the compared states from equilibrium (w=0).
We thus conclude that steady state laws for ho-
mogeneous and isothermal nonlinear systems can be
derived in analogy to equilibrium thermodynamics,
provided that supplementary relations of steady state
thermodynamics, like the Gibbs—-Duhem equation,
are employed. The crucial step is the identification
of steady state determining variables, such as the
concentration of intermediate species X and the
disequilibrium parameter 5. Although the employed
chemical model has a single steady state in the pa-
rameter space of 4 and B, the above analysis can be
extended easily to systems of multiple stable states.

References

[1] F. Jahnig and P.H. Richter, J. Chem. Phys. 64 (1976) 4645.
{2]1]. Keizer, J. Chem. Phys. 65 (1976) 4431.
{3]1]. Keizer, J. Chem. Phys. 69 (1978) 2609.
[4] ). Keizer, J. Chem. Phys. 82 (1985) 2751.
[511. Ross, K.L. Hunt and P.M. Hunt, J. Chem. Phys. 88 (1988)
2719.
[6]J. Ross, K.L. Hunt and P.M. Hunt, J. Chem. Phys. 92 (1990)
2572.
[71J.Ross, K.L. Hunt and P.M. Hunt, J. Chem. Phys. 96 (1992)
618.
[8] C.Y. Mou, J.-Luo and G. Nicolis, J. Chem. Phys. 84 (1986)
7011.
[9]1J. Keizer, Nonequilibrium thermodynamics (Springer,
Berlin, 1987).
[10] C.W. Gardiner, Handbook of stochastic methods (Springer,
Berlin, 1985) p. 2447.
[11]L.D. Landau and E.M. Lifshitz, Statistical physics
(Pergamon, Oxford, 1980).
[12] G. Nicolis and R. Lefever, Phys. Lett. A 62 (1977) 469.
[13]J. Keizer, J. Phys. Chem. 93 (1989) 6939.
[14] N.G. van Kampen, Stochastic processes in physics and
chemistry (North-Holland, Amsterdam, 1981 ) p. 255.



