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embedded in modern physiologically-based pharma-
cokinetic (PBPK) models by giving a physiological time 
frame for each segment of the intestine [8]. Undoubt-
edly, PBPK modeling is a powerful tool for the analysis 
of complex absorption data; the interested reader can 
find detailed PBPK models for digoxin pharmacokinet-
ics incorporating P-glycoprotein-mediated efflux in the 
literature [9, 10].

All above findings prompted us to re-examine 
digoxin bioavailability data [11] published prior to the 
definition of bioavailability [4] vis a vis a bioequivalence 
digoxin study [12] carried out under the FDA guide-
lines and analyzed in FDA in 2002, Fig. 1.

Figure 1A shows the concentration–time profile in 
three subjects upon administration of a digoxin tablet 
under fasting or fed conditions [11]. According to the 
authors “… when measured by peak serum digoxin con-
centration as well as by area under the serum digoxin 
concentration–time curve, the bioavailability of digoxin 
appeared to be higher in the fasting state than in the 
fed state. However, when measured by cumulative five-
day urinary excretion of digoxin bioavailability was 
identical in both conditions”. We find the same result 
by looking at the ratio of pertinent AUCs; in fact, by 
applying the trapezoidal rule we get (AUC)0–1(fasted)/
(AUC)0–3(fed) = 0.76/0.8345 = 0.90. This means that 
digoxin absorption has ceased at 1 and 3 h in fasted and 
fed state, respectively, which is in agreement with the 
finite time absorption concept [6, 7]. In other words, 
this observation reveals that the AUCs calculated up 
to the termination of drug absorption can be used as 
indicators of digoxin extent of absorption.

The same exercise was repeated with the 2002 bio-
equivalence data [12], Fig. 1B. Here, again the absorp-
tion is more rapid in fasted conditions (tmax = 1 h), 

In the late 1960s, it was realized that a variable or poor 
response to a therapeutic agent may not have its origin 
in the patient; it may be due to a formulation defect 
in the drug product administered [1]. The fact that 
difficulties of this type were occurring with certain lots 
of digoxin tablets on the market was discovered by the 
FDA through a systematic testing program inaugu-
rated in April 1970. These observations coupled with 
several similar ones, e.g., the 1968 Australian outbreak 
of diphenylhydantoin (phenytoin) intoxication [2], the 
tremendous differences found in plasma levels of oral 
generic formulations in the USA market [3] prompted 
FDA to introduce and establish the concept of bioavail-
ability [4] on January 7, 1977; “Bioavailability is the 
rate and extent to which the active ingredient or active 
moiety is absorbed from a drug product and becomes 
available at the site of drug action”.

Recently, the finite time absorption concept was 
developed and successfully applied to the analysis of 
gastrointestinal drug absorption data [5-7]. Besides, 
it was shown that the absolute bioavailability of highly 
soluble, highly permeable drugs, e.g., theophylline, can 
be estimated using oral data exclusively [7]. It should 
be noted that the finite time absorption concept is 
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while the tmax is observed at 1.5 h under fed conditions. 
Clearly, tmax for the fed state is different in this study 
compared to the 1973 work [11] which was prior to 
establishment of strict guidelines concerning the feed-
ing conditions for such studies. Analysis of the data 
using the finite time models [6] assuming zero- (z) 
or first-order  (1st) absorption and one-compartment 
model disposition gave the following estimates for the 
finite absorption time τ: (fasted, test): 0.94 ± 0.076 h 
(z), 0.96 ± 0.17 h  (1st), (fasted, ref): 0.94 ± 0.073 h (z), 
0.96 ± 0.16 h  (1st), (fed, mean1): 1.42 ± 0.11 h (z), 
1.43 ± 0.17 h  (1st), (fed, mean2): 1.33 ± 0.10 h (z), 
1.33 ± 0.14 h  (1st). These values are very close to the 
experimental tmax values 1 and 1.5 h, respectively. The 
corresponding ratios of areas under the curve, calcu-
lated from zero up to the experimental tmax observed 
are as follows, [AUC 0–1 h, fasted, test]/ [AUC 0–1 h, 
fasted, ref] = 1.01 and [AUC 0–1.5 h, fed, test] /[AUC 
0–1.5 h, fed, ref] = 0.954. These results are quite similar 
with the classical comparison of AUCs calculated up 
to the very end of the sampling scheme (144 h) and 
infinity, namely, (AUC)0–144 and (AUC)0-∞, reported in 
the FDA document [12]. Indeed, the arithmetic mean 
of the test/ref ratios for (AUC)0–144 were 1.10 ± 0.49 
and for (AUC)0-∞ 1.05 ± 0.36 for the single dose fasting 
bioequivalence study, while the arithmetic mean of the 
test/ref ratios for (AUC)0–144 were 1.04 ± 0.37 and for 

(AUC)0-∞ 1.03 ± 0.28 for the single dose post-prandial 
bioequivalence study [12].

Thanks to the insightful suggestion of an anonymous 
reviewer, we were reminded that Lovering et al. [13] 
analyzed in 1975 comparative bioavailability studies 
using truncated blood level curves. Their conclusions 
[13] based on ten drugs including digoxin analyses are 
in full agreement with the finite time of absorption con-
cept. This work [13] also contains a simple pharmacoki-
netic method for the estimation of the termination of 
the absorption process.

All above results demonstrate that the extent of 
digoxin absorption can be equally well estimated rely-
ing on the calculation of the area (AUC)�

0
 , where τ 

denotes the end of drug absorption process. In fact, one 
can write a mass balance equation for the absorption of 
drug terminated at time, τ assuming one-compartment 
model disposition for any type of absorption kinetics, 
Fig. 2:

where Qτ is the amount of drug in the body at time 
τ, F is the bioavailable fraction of the drug dose D and 
Qel(0-τ) is the amount of drug eliminated from the body 
between time zero and τ. The corresponding equation 
for the areas depicted in Fig. 2 assuming one-compart-
ment model disposition of volume Vd and elimination 
rate constant kel is as follows:

Equation 2 reveals that (AUC)�
0
 is proportional to FD 

corrected in terms of the amount of drug in the body 
at time τ, Qτ; the latter quantity is not only related to 
absorption characteristics of the formulation, but also 
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Fig. 1  Concentration–time data from a bioavailability study (A) and 
a bioequivalence study (B) (11, 12). Insert in (B) shows an expanded 
view of the first 6 h of the data

Fig. 2  A schematic for a drug absorbed in finite time, τ. The areas 
(AUC)

�

0
(on the left, yellow area) and (AUC)∞

�
 (on the right, green area) 

are depicted. The Cb, t profile was generated based on a drug following 
one compartment model disposition and two successive constant input 
rates [7]. The following parameter values were used in the simulation: 
F1D/Vd = 2 μg/mL, F2D/Vd = 2 μg/mL, τ1 = 4 h, τ2 = 20 h, kel = 0.05  h−1
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to drug elimination characteristics, Eq. 1. Thus, the 
area (AUC)�

0
 can be used as an indicator of the extent of 

drug’s absorption. In the same vein, Eqs. 3 and 4 were 
derived for two-compartment model drugs following 
zero- and first-order absorption, respectively.

where α and β are the distribution and elimination 
hybrid rate constants, ka is the first-order absorption 
rate constant, τ is the duration of drug absorption and 
k21 the rate constant of drug transfer from the periph-
eral to the central compartment. Again, (AUC)�

0
 is pro-

portional to FD; in this case, the amount of drug, in 
the body at time τ, Qτ will be present in the central and 
peripheral compartment too. Lovering et al. [13] also 
discussed ways to avoid prolonged sampling times and 
to ensure reduced risk comparing areas from different 
times.

All above lead to several interesting observations. 
First, they show the paramount importance of τ in both 
the absorption process and the associated estimation of 
drug bioavailability. Moreover, they demonstrate that 
for such drugs a sampling scheme for the determina-
tion of bioavailability can be kept quite brief causing 
less inconvenience to volunteers and expediting deriva-
tion of results, by avoiding prolonged sample collection.

Drug absorption time is finite because absorption 
takes place mainly in the upper part of the gastroin-
testinal tract [6, 7, 14]; in some cases, drug can be also 
absorbed in the colon in finite time [6, 7, 14]; Fig. 2 
shows such an example where drug absorption has 
ceased in the colon after τ = 24 h. Consequently, τ is 
determined by human physiology (transit time in the 
lumen) and biopharmaceutical drug properties (e.g., 
solubility, permeability). Plausibly, the digoxin observa-
tions can be extended to other drugs too.

It is worthy to mention that the use of the maximum 
drug concentration in blood, Cmax as a sole regulatory 
indicator of a drug’s rate of absorption, has been criti-
cized extensively and repeatedly [15-19]. Although Cmax 
is always being used as a rate parameter in all bioequiva-
lence guidelines, its numerical value is more important 
since it provides the maximum concentration of the 
drug in blood. A detailed discussion for the relative 
magnitude of Cmax and the drug concentration at the 
end of the absorption process Cb(τ), is discussed in [7]. 
Accordingly, implications associated with the potential 
use of the finite absorption time, τ, in bioavailability/
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bioequivalence studies or even the potential replace-
ment of the “rate” concept with the “duration” concept 
in the definition of bioavailability [4] can be considered 
by regulatory Agencies. The analysis of digoxin data 
coupled with our previous results [6, 7] demonstrate 
that the extent of absorption and the duration of the 
absorption process are inextricably linked. Undoubt-
edly, these considerations are of extreme importance 
and further research is required before any changes are 
implemented. Only time can tell.
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