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Microscopic mechanisms underlying the diffusion of particles in polymeric and other systems include ‘jumps’ that
are said to provide for a substantial contribution to the overall particle displacement. Such jumps have been
observed in molecular simulations and experimentally, leading to important qualitative conclusions. An efficient
method has been proposed for the identification and quantitative processing of jumps, and successfully employed
in simulations of gas–liquid alkane systems. In the present work, the same method is applied in equilibrium
Molecular Dynamics simulations of methane-like molecules dispersed in polymer-like alkanes, at atmospheric
pressure and temperature well above the polymer melting point. The systems studied were prepared and
equilibrated and a linear diffusion regime was confirmed by means of various criteria. The occurrence of distinct
jump events was clearly revealed and their average length and frequency were calculated. In this way,
a random-walk-type diffusion coefficient, Ds, jumps, of the penetrants, was obtained and found to be lower than
the overall diffusion coefficient Ds,MSD calculated by the mean square displacement method. This is a strong
indication that the overall diffusion is a combination of longer jumps with other microscopic mechanisms such as
smoother and more gradual displacements effected upon the diffusing particle by its surroundings.

Keywords: molecular dynamics; molecular simulation; diffusion; penetrant jumps; macromolecular systems

1. Introduction and general considerations

Jumps of diffusing microscopic particles play an

important role in diffusion theory and have been

observed in both molecular simulations and experi-

mental studies [1, 2]. Once a particle’s trajectory is

recorded and plotted, it is often easy to identify such

jumps, although their quantitative processing based on

raw numerical data would require a more elaborate

technique. A computational technique of this kind has

been proposed and its efficiency has been demon-

strated in Molecular Dynamics (MD) simulations of

gaseous hydrocarbon molecules dispersed in heavier

liquid alkanes [3]. The contribution of jumps to the

overall diffusion was shown to be rather small, thus

indicating their co-existence with other transport

mechanisms such as gradual displacement. It would

be of interest to investigate whether this conclusion

holds also for systems of larger chain molecules in the

liquid state or if the jumps actually constitute the main

mechanism of diffusion in that case. Thus, at this point

we have to mention that, in the present work, we

decided to extend previous studies in the field in order

to explore systematically the aforementioned

questions.

Indeed, several studies have implied that such

jumps might play a prominent role in the translocation

of small molecules through polymeric matrices [4–26].

While this may be true regarding ‘fixed’ systems of

polymers in the glassy state, one might expect different

behavior when studying liquid systems. The synergistic

motion of neighboring polymer segments may result in

a continuous drifting motion of the penetrants,

co-existing with more or less abrupt displacements

that can be identified as jump events. The concept of a

jump event is an idealized one; it is often employed

because of its appealing similarity with the random-

walk model. On the other hand, attempted descriptions

of diffusion jumps in amorphous liquid matrices are

rather vague. Usually, one considers a small particle to

be trapped in some form of cavity of randomly

changing shape and size due to thermal fluctuations.

When thermal motion allows a ‘tunnel’ to be tempo-

rarily formed between the host cavity and another,

nearby one, the trapped penetrant might percolate to

that neighboring empty site. This is said to be a jump

event.
At the same time, a jump is thought of as

something ‘sharp’ and fast, resulting in a displacement
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that is longer than the average. The random
inter-cavity percolation motion just described does
not necessarily resemble this picture. What is more,
there might even be instances where the penetrant
returns to the initial host cavity – if the latter still
exists. These ‘come-back’ events do not contribute
significantly to the overall diffusion motion and should
not be considered as proper jumps. Finally, cavities
themselves are neither permanent nor stable or fixed in
space. Cavities are topological rather than physical
entities and they migrate in a way slightly reminiscent
of semiconductor holes, carrying the penetrants with
them in a tide-like fashion. This is an example of the
drifting motion referred to in the previous paragraph
that blurs the beginning and end of an inter-cavity
jump.

Diffusion jumps may be identified with thin ‘fila-
ments’ connecting densely populated areas in three-
dimensional graphs of penetrant positions or with
sharp changes in a plot of displacement versus time.
The former method is merely a visualization technique
that does not allow for quantitative treatment. Then
one is tempted to employ the latter, i.e. use plots of
displacement versus time to allow for quantitative
processing [5–9, 16–19, 24]. The drawback of the
method is its inability to provide for the correct size of
a jump. The apparent jump length in such a plot would
range from its real value to zero depending on whether
the jump took place along the line connecting the
original and final penetrant position or at a direction
perpendicular to it. To express the displacement as a
function of x, y, or z instead of distance from the origin
would be too complicated due to the noisy nature of
such data sets, requiring additional processing and
filtering before further statistical treatment.

More rigorous attempts to study jumps in a
quantitative manner include some form of parameter-
izing an assumed model, relying on a comparison with
mean square displacement data, except in Ref. [14]
where local orientation correlation functions lead to a
spectrum of characteristic length scales. However, the
mean square displacement is a measure of the overall
diffusion. Using such data to parameterize the jump
models assumes implicitly that no diffusion micro-
scopic mechanism other than jumps exist, which is, in
general, incorrect as, for instance, suggested by Hahn
et al. [16]. There, the diffusion of phenol molecules in
bisphenol-A-polycarbonate is studied, and a certain
coupling of penetrant and local polymer motion is
observed, leading to a continuous rather than
jump-like displacement.

These methods do provide a picture of penetrant
jumps that take place, although they do not, in most
cases, provide a rigorous definition of what is a jump.

An efficient definition of diffusive jumps through an
amorphous liquid matrix should retain the basic
characteristics of ‘sharpness’ and ‘unusually long’
displacement, and at the same time be capable of
clearly and unambiguously identifying all events of
interest, i.e. the ones that contribute substantially
to the overall diffusion. Therefore, instead of trying to
rely on ill-defined spatio-temporal characteristics of
the trajectory and the penetrant’s environment, one
should focus instead on the outcome and devise a
descriptor based on the relation of distance travelled
within a short period of time. The particle’s velocity
averaged over a certain time interval that is to be
somehow determined could be such a descriptor. The
average velocity would be higher during a jump event,
close to zero when the penetrant fluctuates back and
forth inside a cavity and have an intermediate value
when drifting motion takes place. The occurrence of
jump events would then be identified with the location
of peaks (local maxima) of the velocity with time curve.
However, in the original publication of the method [3]
it is mentioned that use of velocity results in a very
noisy signal that is impractical to process. A measure
of the extent to which successive particle positions are
spread in space might provide an easier to handle time
series. These positions should occupy a larger and
probably elongated volume element during a jump,
resulting in a maximum clearly distinct from the
background noise.

This is indeed the case for the radius of gyration,
RG, calculated over a set of successive particle
positions within an arbitrary time interval. Use of RG

provides an alternative for a precise identification of
the diffusion jumps. It is based on tracking the size of
the region occupied by a specific number of successive
penetrant positions, throughout the simulation. In this
way, one can identify all isolated jumps and determine
the respective jump lengths. This kind of data can be
further processed statistically, leading to information
concerning both the average jump length and the
frequency of hopping events, provided that a large
enough sample has been obtained. With the aid of this
information, one can clarify the extent of the contri-
bution of jumps to the overall diffusion and thus
elucidate the possible microscopic mechanisms under-
lying the behavior of diffusion processes in such
systems. Finally, it should be noted that the proposed
approach is capable of detecting jump events regardless
of their origin, i.e. whether the penetrant escaped from
a cavity and moved to another one or it was suddenly
drawn away due to the matrix’s structural rearrange-
ment or other collective motion.

The present work is organized as follows.
In Section 2, the system studied is described, along
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with the simulation methodology and the principles
and details of the jumps’ detection method are
provided. In Section 3, the simulation results are
presented and discussed. In particular, the simulation
trajectory data are processed and information on the
jump statistics is obtained and analysed via the method
adopted herein. A summary of the main results of our
treatment is given in Section 4.

2. Introduction and general considerations

2.1. Simulation details

In the present treatment, a united atom model was
employed to study a molecular system of methane-like
penetrants dispersed in linear chain molecules of the
type C100H202, hereafter referred to as ‘heavy sub-
stance’, ‘liquid’ or ‘polymer’. The last term is justified
by the fact that the chain molecule’s weight exceeds the
polyethylene entanglement molecular weight (�1200)
[27]. The system under study was simulated by means
of the equilibrium MD simulation technique three
times independently, starting each time from a differ-
ent initial system configuration properly constructed.
These simulations are a preliminary step of wider
research, currently under way, that will entail the
investigation of microscopic mechanisms underlying
diffusion through linear and branched macromolecules
of various molecular weights. The penetrant gases are
chemically similar to the heavier substances, and
therefore interference by other factors such as molec-
ular architecture and chemical composition is almost
eliminated. The force-field was based on the
well-known NERD [28] and UA-TraPPE [29] models,
in which both CH2 and CH3 groups are represented as
single interaction sites. Details about the model and the
parameters employed are the same as in Ref. [3].

As mentioned above, three initial configurations
were constructed at a density equal to 0.73 g cm–3,
i.e. somewhat lower than that of amorphous polyeth-
ylene at its melting point and atmospheric pressure
[30]. All such structures contained 1000 united atoms
of the heavy substance, i.e. 10 polymeric liquid
molecules, and 20 penetrant molecules of the diffusing
substance (methane). The gas molecules were uni-
formly dispersed in the systems, thanks to the sample
construction method, as explained in the next para-
graph, a fact that was confirmed by visual inspection of
the initial configurations.

The method of creating the initial samples is the
same as in the original publication of the method [3]
and has been described in detail therein. In brief, cubic
periodic boundary conditions were imposed, all gas-
eous molecules and the first atom of each polymer were

randomly placed in the simulation box, and then the
polymer molecules were built in a step-wise fashion, by
adding one new bond to each molecule at every step.
Bond orientations were chosen, among a discrete set of
trial directions, using a Metropolis energetic criterion
and configurations with strongly overlapping
non-bonded atom pairs were excluded. A diameter of
2.5 Å was employed for all united atoms. This stage
allowed for a reasonable distribution of torsion angles,
which is essential for constructing realistic amorphous
samples. Then, energy optimization followed by
slightly displacing randomly chosen atoms in a
Monte Carlo like fashion. The process consisted of
consecutive MC cycles with gradually increasing
atomic diameters up to their normal values given by
the force-field. The structure relaxed during each cycle
was used as input to the next calculation with larger
atomic diameters. Sufficient relaxation was ensured
when smooth and diffuse bond angles and dihedral
angles’ distributions were obtained, instead of the
discrete ones imposed during the first stage. The
density was held constant throughout the construction
and optimization stages.

MD simulations were performed in the isothermal,
NVT, statistical mechanical ensemble at a temperature
of 450K, well above the melting point of polyethylene,
to ensure that the sample was in the liquid amorphous
state. The computations lasted 7 ns; the first nanosec-
ond was considered to be an equilibration stage and
was not taken into account in the post-processing
computations. In all MD simulations of pure heavy
substance and gas mixtures, we utilized the leap-frog
Verlet algorithm with a multiple time step of 1 fs for
the fast modes and 5 fs for the slow ones. A cutoff
distance of 12.5 Å was adopted for the calculation of
Lennard–Jones interactions. All simulations were per-
formed with the Nosé–Hoover method for the NVT
ensemble.

Sufficient equilibration of the systems was ensured
by certain criteria such as change of potential energy
with time, running average of the density and torsion
angles’ distribution and decorrelation with respect to
the original structure. In particular, the total and
Lennard–Jones potential energy were observed to
decrease during the first 100 ps and then to keep
fluctuating about a constant value. This is an indica-
tion that residual overlaps among the various interac-
tion sites, which escaped the equilibration stage during
the initial structure generation process, were easily
removed during the MD simulation. The other com-
ponents also exhibited the same fluctuating behavior
from the very beginning. The running average of the
systems density reached an asymptotic value within the
first 1 ns of the simulations. Furthermore, by dividing
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the simulation cell into eight equal sub-boxes recording
the number density running average in each of them, it
was observed that the corresponding values differed by
less than 1% within the first 1 ns equilibration period.
The dihedral angles’ distribution recorded during each
one of the first five nanoseconds (ns) of the simulations
was virtually identical to the one obtained by the
building procedure which ensures generation of amor-
phous structures. The dihedrals time autocorrelation
function, as described in Ref. [3], was also computed
and revealed loss of structural memory within the first
nanosecond. It was thus ensured that the systems were
not frozen in their initial state but were actually liquid.

2.2. Jumps detection method – Diffusion mechanisms

Details of the identification of jumps and processing
procedure can be found in Ref. [3]. Here, the basic
principles are briefly reviewed and then the practical-
ities of the implementation are discussed. To devise the
method, it was assumed that the penetrant particle
spends its ‘life’ inside various free volume cavities
formed by the heavy substance matrix, interrupted by
small time intervals when thermal fluctuations allow
the molecule to jump from one cavity to another. Thus,
by recording its centre-of-mass position N times within
a time interval Dt, we collect a swarm of points that is
usually concentrated inside a particular area but
becomes elongated when a jump occurs. Of course,
a similar effect is to be expected in the case of a
penetrant moving from one end of an elongated cavity
to the other. It should be stressed that the present
approach is not about the polymeric environment but
rather about the penetrant trajectory itself. Therefore,
it is not restricted to such systems but it is actually
more generic and applicable whenever jump-like
behavior occurs. Indeed, Zheng et al. [2] relied on the
approach employed here to study the Brownian-like
motion of gold nanoparticles dispersed in thin
water–glycerol films, based on experimental data
obtained by Transmission Electron Microscopy.

The swarm size as a function of time is given by the
radius of gyration, RG, taken over all swarm points

RGðt;DtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðRiðt;DtÞ � RCMðt;DtÞÞ
2

vuut , ð1Þ

where time t denotes the middle of the observation
time interval Dt, Riðt;DtÞ is the position of every
observation point and RCM is the swarm center-
of-mass. The jump length is then defined in
two ways. The unweighted jump length �0ðt;DtÞ is

given by

�0ðt;DtÞ ¼ 2RGðt;DtÞ, ð2Þ

which is actually the width of a three-dimensional

normal distribution of the swarm points centered at

RCM, with a variance equal to the radius of gyration

(Equation (1)). This is justified by the fact that

diffusion jumps are complicated events that themselves

constitute a random walk [3].
The weighted jump length is given by the relation:

�ðtÞ ¼ 2RGðt;DtÞ
R1ðt;DtÞ � RNðt;DtÞ
�� ��

PN�1
i¼1 Riðt;DtÞ � Riþ1ðt;DtÞ

�� ��

¼ �0ðt;DtÞ
R1ðt;DtÞ � RNðt;DtÞ
�� ��

PN�1
i¼1 Riðt;DtÞ � Riþ1ðt;DtÞ

�� �� : ð3Þ

The numerator is the distance r1N or the

‘end-to-end’ vector of the swarm, and the denominator

is the contour length of the path defined by the N

recorded positions. Their ratio accounts for the fact

that certain jumps might be ‘unsuccessful’, i.e. the

penetrant might return to its original position. For an

‘ideal’ jump, this ratio would approach unity, other-

wise it would be smaller.
Interestingly, it was pointed out [3] that the

weighted jump tends to a constant value with increas-

ing Dt, thus solving the problem of using an arbitrary

parameter. One then has to perform calculations for

increasing time intervals and retain the weighted jump

size obtained at long enough Dt, usually no more than

150 ps. Then, by considering the series of jumps

observed as a random walk, one can define a corre-

sponding diffusion coefficient, Ds, jumps, via the

well-known formula [31]

Ds, jumps ¼
1

6
��2, ð4Þ

where � denotes the frequency of successful jumps and

� the average jump length. In terms of simulation

results, the frequency � is calculated as the number of

all successful jumps performed by all the penetrants

divided by the total simulation time. The diffusion

coefficient, Ds, provides a measure of the contribution

of jumps to the overall diffusive motion. We may state

that the contribution of jumps to the diffusive motion

is important if the respective random-walk diffusivity is

close to the mean square displacement one. If, on the

other hand, the former is, for example, an order of

magnitude lower than the latter, additional diffusion

mechanisms such as smooth translation of the repta-

tion kind should be present.
At this point, it should be noted that the above

definitions, Equations (2) and (3), do not measure the
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real translation during a specific time interval. That
translation is given by the end-to-end vector r1N of the
observation points swarm and that is the ‘real’ measure
of jump lengths. However, that measure suffers from
two drawbacks: it provides very noisy signals that are
hard to process and it is also an increasing function of
Dt, just like �0 in Equation (2). One then has to
determine the ‘critical’ Dt where the asymptotic � value
is reached and use that value or the corresponding r1N.
It is the authors’ opinion that all measures, �0, � and
r1N, may be used when the critical time window is
known, as representative of a lower and an upper
bound as well as an intermediate estimate of jump
length, to account for various complicated forms of
molecular motion that may arise in the course of
simulations or experiments.

As regards the implementation of the method, the
two definitions in Equations (2) and (3) are combined
in the following way. First, the curve of unweighted
jumps with time is employed to obtain the time of jump
occurrences. This is a smooth enough curve so that one
can easily use it to identify the jumps as local maxima
(elongated swarms), not only visually but also numer-
ically. Then, the corresponding points of the curve of
weighted jumps with time are sought in order to obtain
the size of the jumps observed. The weighted size curve
constitutes a rather noisy signal, due to the numerator
in the weighting factor (Equation (3)), but thanks to its
combined use with the unweighted one, this is not a
problem. The r1N curve can be used in the same way,
i.e. once the time of jump occurrence is known, the
corresponding end-to-end vector size is chosen.

3. Results and discussion

3.1. Macroscopic mass transport properties

In order to assess the results concerning the contribu-
tion of jumps to the overall diffusion, the methane
self-diffusion coefficient, Ds,MSD, was calculated. The
well-known Einstein formula, connecting the mean
square displacement with time scales, was employed:

Ds,MSD ¼ lim
�!1

1

6�
Riðt0 þ �Þ � Riðt0Þ
�� ��2D E

i,t0
: ð5Þ

In the above equation, � denotes the time scale and
Ri(t) the position vector for the centre-of-mass of
molecule i at time t. The brackets hii,t0 denote averaging
with respect to all penetrant molecules i, and all initial
times t0 of every time interval equal to �. Therefore, the
quantity hjRiðt0 þ �Þ � Riðt0Þj

2ii,t0 corresponds to the
penetrant’s mean square displacement (MSD). Results
for each of the three structures simulated are shown in
Figure 2. The linear part of the curves is easily

observed and allows one to define self-diffusivity

according to Equation (5). Table 1 summarizes

self-diffusion coefficient values of the gas–liquid mix-

tures obtained from the present simulations, along with

those based on the jumps’ contribution, as will be

explained in the subsequent paragraphs. The average

coefficient is found to be equal to

(1.10� 0.16)� 10�4 cm2 s–1, an order of magnitude

higher than the experimental value reported under

similar conditions [32]. The overestimation can be

attributed to the relatively small size of the polymer

chains as compared with the molecular weights

encountered in the real material, to the slightly lower

density than that measured experimentally, and to the

coarse-grained character of the united atom force-field

employed, i.e. the absence of hydrogen atoms that

would add a hindering or ‘friction’ effect to the

molecular motion. However, given the approximations

inherent in the analysis of the experimental data, the

aforementioned value constitutes a fairly good result.
Following the original publication of the

method [3], we have also estimated the anisotropy of

the penetrants’ motion by means of the values of the

displacement correlation matrix elements, normalized

by the MSD. These are defined by

C��ð�Þ ¼
D�iD�i
� �

i,t0

DR2
i

� �
i,t0

�
���
3

, ð6Þ

where DRi is the ith penetrant’s displacement averaged

over all time scales �,D�i is the corresponding dis-

placement along the axis �¼x, y, z, and ��� is

Kronecker’ s symbol. Values of the above elements

close to zero for large time scales � indicate isotropic

Table 1. Average size of diffusive jumps and their contribu-
tion to the total diffusivity. Results refer to independent
simulations of the system studied, starting from three
different initial configurations.

Initial system configuration: 1 2 3 Average
St.
dev.

Jump length (Å)
Equation (2) 5.08 4.82 5.18 5.03 0.19
Equation (3) 1.22 1.14 1.26 1.21 0.06
r1N 2.25 2.11 2.26 2.21 0.08
Structure: 1 2 3 Average St.

dev.

Diffusivity (cm2 s–1 (�105))
Equation (2) 6.53 5.94 6.80 6.42 0.44
Equation (3) 0.64 0.56 0.67 0.62 0.06
r1N 2.45 2.15 2.45 2.35 0.17

Total (MSD) 10.19 9.84 12.86 10.96 1.65
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motion. The correlation matrix elements have been
averaged over time scales that were employed in the
calculation of diffusivity, i.e. excluding short ones that
exhibit subdiffusing behavior as well as long ones,
which are subject to larger statistical error as the
respective time intervals become fewer. Neither signif-
icant anisotropy nor any strong correlation in the
penetrants’ motion along the x, y or z axis in any of the
systems studied is inferred by the values computed,
which hardly exceed 10% of the MSD in the time
scales considered. The linearity of the curves shown in
Figure 1 combined with the aforementioned lack of
correlation corroborate that the normal diffusion
regime has been attained within the space and time-
scales studied.

As mentioned in Section 1, the obtained Einstein or
MSD coefficients are a measure of the overall diffusive
motion which is due to various microscopic mecha-
nisms, either of jump-like nature or others. The
contribution of a jump or hopping mechanism is
analysed in the next subsection.

3.2. Microscopic diffusion mechanisms

Although visual representations of the penetrants’
motion are not suitable for quantitative processing,
they are helpful in clarifying the notions and assump-
tions made in the analysis of our results. Figure 2
shows a three-dimensional plot of a typical trajectory
of a single methane molecule when periodic boundary
conditions are removed. Three typical scenarios are
clearly depicted in the figure. The part of the trajectory

indexed ‘1’ corresponds to the motion of the particle
when it is trapped in a cavity formed by the surround-
ing polymer molecules. Then, a kind of tunnel seems to
be formed and the molecule travels rather fast to
another region (index ‘2’). This can be considered a
‘jump’ event. Then the molecule settles in another
cavity, but it does not stay there indefinitely. Rather, it
follows a very complex path (index ‘3’), probably due
to drifting motion caused by the polymer matrix,
combined with the temporary formation of other
cavities, small jumps therein, etc. It is obvious that
jumps are not the sole contribution to the overall
diffusive motion; however, they may constitute an
important part thereof. Their quantitative treatment
may help us better understand the way and the extent
to which various heavy molecular weight materials
allow lighter species to penetrate through them.

In search of the jump effect in our simulations,
both unweighted and weighted jump lengths were
calculated, according to the definitions given in
Equations (2) and (3). Such curves are depicted in
Figure 3 for two given time intervals Dt. As explained
in the previous section, the unweighted curves serve the
purpose of identifying the time when a jump takes
place, namely the time a local maximum is encoun-
tered. Then, the corresponding value of the weighted
curve is obtained as a measure of the real jump size.
However, for the purpose of comparison, the corre-
sponding length of the end-to-end vector of the points
swarm was also calculated. Usually, the unweighted
curves are smooth enough so that determination of

Figure 2. Three-dimensional plot of a single penetrant
trajectory (periodic boundary conditions removed). 1¼A
‘blob’ of points due to the penetrant being trapped in a rather
stable cavity. 2¼A rather fast displacement that may be
identified as an inter-cavity ‘jump’. 3¼A more complicated
displacement, possibly combining smooth penetrant translo-
cation, the drifting effect of the polymer upon the penetrant,
small jumps and intra-cavity motion.

1 10 100 1000 10000 100000
1

10

100

1000

10000

100000
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, A

^2

Figure 1. Mean square displacement (Å2) of methane
dispersed in n-C100H202.
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local maxima is quite easy and can be done by tracking
the change in slope in the form of the difference
between two successive values. In some exceptional
‘noisy’ cases, moving averages of over 10 to 20 succes-
sive points had to be employed instead of the original
curves.

As mentioned above, the weighting scheme allows
one to remove the arbitrariness inherent in the intro-
duction of an indeterminate time window Dt. Figure 4
shows the average weighted jump length with respect
to time intervals Dt. The jump size reaches an

asymptotic value at small values of Dt, namely at Dt
approximately equal to 10 ps, which is an indication
that a random-walk character sets in at longer time
intervals – for a detailed explanation, the reader is
referred to the original publication of the method [3].
Table 1 summarizes the average jump lengths observed
in all three systems for Dt¼ 10 ps, along with the
respective diffusivities calculated on the basis of a
random-walk model (Equation (4)). As already men-
tioned, three definitions of jump length are employed,
namely those given by Equations (2) and (3)
(unweighted and weighted lengths) and the size of the
end-to-end vector of the observation points ‘swarm’
for the reasons explained in the theoretical section.

In agreement with what one would expect by
visually inspecting the three-dimensional unfolded
penetrant trajectories, such as that depicted in
Figure 2, mechanisms other than jumps constitute the
main contribution to the overall diffusion. Two of
the measures employed provide a small value for the
jumps’ contribution, amounting to more than 6% and
probably around 14% of the total diffusivity, whereas
a value close to 59%, based on the unweighted lengths,
should be considered as an overestimation. However,
the simplicity of our model does not allow one to draw
conclusive results concerning the importance of such
hopping mechanisms in heavy molecular weight sys-
tems. Therefore, a detailed investigation of larger
systems of higher molecular weight and various archi-
tectures will be attempted in a subsequent work.

4. Conclusions

In this work, a method for the quantitative identifica-
tion of individual penetrant jumps was applied to study
the dynamics of a methane–C100H202 system via MD
simulations. The method is based on the calculation of
certain ‘size measures’ to identify individual jump
events and quantify their contribution to the total
diffusive motion observed. Data such as average jump
lengths, frequency of their occurrence, etc. can easily
be collected and help describe in detail the character-
istics of the system’s behavior. By calculating a jump-
induced diffusion coefficient and comparing it with the
total diffusivity, e.g. that computed by the Einstein
relation, one can determine to what extent diffusion is
mainly due to such jump events or other microscopic
mechanisms that are also active.

As in the original publication of the method [3]
concerning systems of smaller molecular weight, in the
present work it was also found that diffusive jumps are
not the only mechanism present. Actually,
other mechanisms, probably including drift by the
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Figure 4. Weighted methane jump length, �, averaged over
all jumps observed in the three n-C100H202 structures studied,
versus time interval Dt, clearly attains an asymptotic value
for Dt larger than 10 ps.
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Figure 3. Identification of jumps of a single methane
molecule diffusing through n-C100H202 via the ‘unweighted’
version of the jump detection method for different time
windows Dt (5 and 10 ps).
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macromolecules upon the penetrant and gradual
translation of the gas molecules themselves are more
important. Two of the three measures employed,
weighted jump size (Equation (3)) and the end-to-end
vector of a set of observation points ‘sliding’ over the
penetrant trajectory, suggest that the jumps’ contribu-
tion amounts to about 6 to 14% of the total diffusivity.
An estimate of 59% provided by the other measure,
unweighted jump size (Equation (2)), should be con-
sidered as an upper bound and is clearly an over-
estimation for the reasons explained in the theoretical
section of this article.

It would be of great interest to identify the other
microscopic mechanisms underlying diffusion in the
systems studied. One way to do this would be by
investigating what changes take place when specific
factors are eliminated. For instance, by decreasing the
temperature, the polymer approaches its glassy state
and the polymer matrix tends to be immobilized with
only local vibrational modes being present. Therefore,
no drifting due to polymer translational modes takes
place and the jumps would be expected to contribute to
a larger extent. On the other hand, such jumps would be
less frequent as the polymer’s thermal motion would
only rarely allow for inter-cavity translocations, thus
resulting in significantly reduced overall diffusivity.
Computations at lower temperatures are underway in
order to address the temperature dependence question
in a forthcoming article. This and the present study will
constitute the preliminary steps of a wider research
program that will investigate systems of light substances
dispersed in matrices of higher molecular weight and
various architectures. Quantitative measures for the
classification and characterization of other mass trans-
port microscopic mechanisms will also be attempted.
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