PART 1: THE CRYSTAL AND MOLECULAR STRUCTURE OF DIMETHOXYPORPHINATO Ge(IV)

PART II: THREE DIMENSIONAL STUDY OF o-CHYMOTRYPSIN AT pH 8.7 and 2.7 WITH
DIFFERENCE FOURIER METHOD.

By

Aristides Mavridis

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

1975



ABSTRACT
PART I: THE CRYSTAL AND MOLECULAR STRUCTURE OF
DIMETHOXYPORPHINATO Ge (IV)

PART II: THREE DIMENSIONAL STUDY OF o-CHYMOTRYPSIN AT pH
8.7 and 2.7 WITH DIFFERENCE FOURIER METHOD

By

Aristides Mavridis

The structure of dimethoxyporphinato Ge(IV) (PGe(OMe)Z) was
determined by three dimensional crystallographic techniques. The
molecule crystallizes in space group PZ]/c with four molecules in the

> >

unit cell and cell dimensions |a] = 15.015 A, |B| = 14,441 A, |C] =
8.414 A and & = 91.85°. The structure was solved using Savre's
equation and it was refined to an R-factor of 0.043.

There are two centrosymmetric and symmetry independent pairs of
molecules in the unit cell. Small differences between the jindependent
molecules are probably due to packing effects. The porphine molecules
are stacked along the ¢ axis composing a very efficient packing. The
porphine ring is essentially planar with the methoxy groubs slightly
deviating from being perpendicular to this plane.

The structure of the hydrolytic enzyme o-CHT was studied in the
pH's 8.7 and 2.7 with the difference Fourier method. Difference electron
density maps between the electron density of the enzyme at pH 3.6 (native)
and 8.7, as well as at pH 3.6 and 2.7 (using the phases of the native
only) revealed a number of molecular changes. The main feature of the

high pH difference map is a general lack of local two fold symmetry. The
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largest changes in the high pH difference mapvcorrespond to movements
of three separate segments of the a-CHT molecule.

The low 3.6 - 2.7 changes are essentially confined on the surface
of the enzyme and they are generally small as compared with the 3.6 -

8.7 changes.
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PART I

THE CRYSTAL AND MOLECULAR STRUCTURE
OF DIMETHOXYPORPHINATO Ge(IV)



I. INTRODUCTION

1. Historical Note

Few things in nature are more perfect than a crystal, in which
immense numbers of atoms or molecules are stacked in almost perfect
alignment. Crystallography, which is a small branch of the vast field
of solid state physics, studies mainly the geometrical arrangement in
space of atoms or molecules taking advantage of their ordering.
Crystallography made its start as a science in 1669 when the Danish
physician N. Steno discovered that although quartz crystals may differ
in appearance from one another, the angles between corresponding faces
are always the same. By 1891 the complete space group theory was

1

published by A. Schoenflies and E. von Fedorovz, but yet nothing was

known about the interior of crystals. The discovery of X-rays by

W. C. Rontgen in 1895, and its subsequent use by von Laue in 19123'5
to prove that crystals are natural diffraction gratings for X-rays,

was a great impetus to solid state physics and crystallography (at the
time, centered mostly around mineralogy).

Immediately after Friedrich and Knipping's discovery of X-ray
diffraction and von Laue's mathematical ana]ysis4, W. H. Bragg and his
son W. L. Bragg approached the diffraction problem in a different way6’7
namely, as the "reflection” of X-rays by planes in crystals. Still
another approach to the diffraction problem was taken by P. P. Ewald8
who developed a more sophisticated and complete theory, called the

dynamical theory. Essentially the same mathematical theories and



2

experimental techniques were used later, after L. de Broglie's proposal
of his famous equation of matter waves in 19249, and its subsequent
verification via electron diffraction by C. J. Davisson and

L. J. Germer]O

by using thermal neutrons or electrons instead of X-rays
to probe the nature of crystalline materials.

The contribution of diffraction studies to our understanding of
nature is really profound; the history and the role in modern physical
sciences are described in a fascinating book entitled "Fifty Years of

X-ray Diffraction" edited by P. P. Ewa]d]].

2. The Geometrical Theory of X-ray Diffraction

The purpose of this section is to introduce some ideas, the
appropriate nomenclature, and to present some of the basic equations
used in X-ray crystal structure analysis. A series of excellent
books are available which describe in detail the geometrical (or
kinematical) theory of X-ray diffraction, its power and its limitations;
some of them are given in references 12-20. The term geometrical
distinguishes this theory from the dynamical by the power, depth and
ability of the latter to predict and explain diffraction phenomena
beyond those of the geometrical theory. The most complete account of
the dynamical theory in the von Laue formulation (in the English

literature) is an article written by JamesZ].

(a) The Atomic Scattering Factor

We consider a hydrogen-like atom with its nucleus located at the

origin, and the position of its electron described by a vector ?n

(Figure 1). A plane wave polarized perpendicular to the plane of the

paper, and with direction of incidence described by the unit vector So



Figure 1.

Scattering by a charge distribution described by the
vector Fn' The unit vectors So and s give the
directions of primary and scattered beams respectively;

P is the observation point.



4
is scattered from the charge distribution around the origin, and the
scattered wave is observed at a point P, along the direction g, and
at a distance |R] (§=|§|;) from the origin, with |§|>>|?n| (l?n]=1A,

|§n|=10cm). The instantaneous value of the field in the primary beam

on the electron is given by

E=E exp{i(2me-7, -ut)}=E exp(i(2mD-ut) (1)
where K=[Z|=_%3 w=2mv and Dz?n';o' At the observation point P the
magnitude and phase of the field T will be given by]7

£ e .

E = —5o— exp(2mic(D+[R-F |)-iut}, (2)

mc ]ﬁ—rnl

where e2/mc2 is the classical electron radius = 2.82x10']3cm. Due

to the fact that |§I>>|?n| equation (2) transforms to

£ et -
_gn > exp{i(ZnKlﬁl-wt)}exp{ 2nik(s-s
mcC K

)oF 3 (3)

o n

Summing over all the instantaneous fields at P given by equation (3),

an expression is obtained for the scattered wave fs due to one electron

1% .
0 . . ~ ->
= exp{i(2mc |R|-wt)}/ exp{2mik(s-s )7 } (4)
s mczlﬁl n o n

Expression (4) is completely classical, but we have to make some
concessions to the quantum mechanical nature of matter. In order to
obtain the unmodified scattering, the summation over the instantaneous

positions of ?n of the electron should be substituted by an integration
17

over a volume d?, of a quantum mechanical charge distribution ", thus
goez 3 . o > gy >
tsz v A exp{i(2mc|R|-ut)} exp{2rix(s-s )-F}o (r)dr (5).
mc

The integral quantity of equation (5) is called the "scattering factor
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per electron" and is symbolized by fe:

= exp{zm(é-;o)-?}p(?)dF (6)

or
feij;xp{Znin(;-go)-?}Iw(?)lzdF, (7)

where y(¥) is the ground state wave function of a hydrogen-like atom,
or more generally, a one electron quantum mechanical function. If
v(¥) has spherical symmetry, equation (7) transforms easily to a

simpler expression using spherical polar coordinates

ur

fei];"rZIW(r)Iz sinur dr, (8)

where  u=4nsine/i (9)

(see Figure 1 for the definition of the angle o).
For a polyelectronic atom we can infer-by analogy to equation (7),

that the "atomic scattering factor f" will be given by

> > > 42 N Gy
fﬁ/ﬂb(r],rz,...rz)l :g:exp{2n1n(s-so)-rj}dr, (10)

where Fj is the vector to the volume element dvj and the integration
is over all the 3z electron coordinates. As an approximation to the
wave function w(?l,?z,...?z) we can consider a Slater determinantal

wave function

$1(87) 04(85) ... ¢4(5,)
1 [#2(87) ¢o(E5) .. ¢5(g,)

-----------------------

(11)
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where ¢](£1),...,¢ (&Z) are monoelectronic wave functions. Using

z
equation (11), expression (10) transforms to

z z
f—gﬁwj(r)l exp{2n1n<(s-so) rj}drj— 4 fej (12)

(see also reference 14).
The atomic scattering factor f is a basic quantity in X-ray
crystallography, and an accurate structure determination requires

an accurate set of f-factors for each atom of the structure.

(b) Periodic Lattices

The basic idea of a crystal is its translational invariance of
some unit of atoms or molecules. The unit of the translational
repetition can be defined by three, in general,snonorthogonal vectors
3, B and ¢, called the crystal axes. The parallelepipedon defined
by the three axes 3, B and ¢ is the smallest volume which, if repeated,
will make up the crystal; it is called unit cell and its volume is

given by
V=a-Bx¢ . (13)

A lattice is defined using the fundamental lengths a, b, ¢ as
R=ua+vb+we, (14)

where u, v and w are integers. The position of an atom located at a

certain point in space, inside any unit cell of a crystal will be given

by the vector
ﬁn=§+rn, (15)

with the vector Fn expressed in fractional coordinates with respect
to 3, B and ¢.
According to the above ,any property of the crystal, (electron

density, conductivity, electrostatic potential,...) will be a periodic
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function with respect to the lattice translation R

8 (F+R)=0(¥). (16)

However, a periodic function can be expressed as a Fourier serieszz;

therefore

¢(?)=zizc;*eXp(-2niF-?*) (17)
?*

where the quantity ™ is a reciprocal vector and is defined by the

following expressions

Fr=ha*+kB*+18* (18)

where h, k, 1 are integers, and

> > > >
= _DXc _ _bxc
> > >
a-bxc v
oo OB _ B3
b*= rraradli | (19)
a-bxc
> o> > o
Tx= 8xb__ _axb
> > > Y
arbxc

Reciprocal vectors were first introduced into vector analysis by Gibbs23

and their usefulness to crystallography was first pointed out by Ewa]dza.
They generate a reciprocal lattice of the original direct (physical)
lattice. Some of its properties can be verified directly from the

definitions (18) and (19)

(20)

and all cyclic permutations;



8
R-¥*=(ua+ub+wc )« (ha*+kB*+1¢* )= (uh+vk+w1 )=integer. (21)

Another property of the reciprocal lattice is that the volume of a

reciprocal unit cell is the reciprocal of the physical unit cell

Va3x Bridrs —— =y,
a-Bxe

(22)

This property can be proved easily using the vector identity
Ax (BxG)=B(A-C)-C(A-B).

Expression (17) plays a prominent role in the theory of X-ray
crystallography, being connected with the electron density of a crystal,
whose exact distribution is the main problem of structural crystal-
lography. The Fourier coefficients C;* can now be found due to the
orthogonality properties of the plane waves exp(—2niF-?*) and

exp(2ni?-?'*), where ?'*=h'3*+k'3*+]'€*25.

Multiplying both sides
of equation (17) with exp(2nir-r'*) and integrating over the volume V

we obtain
jg(F)exp(2ni?-?'*)dF=;%;c(hk1)xjgxp{zni((h'-h)3*+(k'-k)B*+

+(1'-1)¢*)-r}dxdydz, (23)

where x, y, and z are the components of the Cartesian vectors éx’ éy
and éz respectively. The integration with respect to dxdydz can be
replaced by an integration with respect to dgdndg with £, n, ¢ being

components of the vector ¥ and range from zero to one,

> > > >
r=ga+nb+zcC.



Thus the volume element dxdydz can be substituted by

dxdydz=Jdgdndz, (24)

where J is the Jacobian of the transformation

X 3X  9X > -
3f 3n 3C lal, Ib], Ic]
=3 3Y 3Y 2 B 2z
J 5t a0 Bt lal. |b|., |¢c| (25)
9Z 3z 3z 3 B z
Sz 3z 3z 3 B, R
Using (24) and (25) equation (23) becomes
1
f;(?)exp(zni?-?'*)d?=ch(hk1Z{;xp{zﬂi(h'-h)s}dg x
hk o
1 1
xfexp{Zni(k‘-k)n}dn xfexp{Zni(] '-1)z}dzg=
0 0
=V:E:C(hk])6(h-h')6(k-k')6(]-]'). (26)
hk1
Therefore equation (26) can be written as
¢ (hk1 )=v"f; (r)exp(2mir-r*)dr. (27)

Renaming the fractional coordinates £, n and ¢ along the crystal axes
as X, ¥y, and z in agreement with common crystallographic notation,

expression (27) can be rewritten as

C(hk1 )=v'1fo (F)exp{ 2ni (hx+ky+1z) }dr. (28)
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In essence expression (28) is the Fourier transform of equation (17);
much of the theory and applications of X-ray crystallography centers

around these two expressions.

(c) Phase Problem and Electron Density Representation of a Crystal

The structure factor F is another key quantity in the theory of

diffraction; it is defined as follows:

F(hk])=:§:fn(hk1)exp{2vi(hxn+kyn+1zn)}, (29)
where Xoo Yo 2, are fractional components along the axial lengths
a, band ¢ respectively defining the position of an atom in the unit
cell, and fn is the atomic scattering factor of the nth atom as
defined in the expression (12). The summation is over all the atoms
in the unit cell. The structure factor F is the only quantity in
which the positions x, y, z of the atoms in the unit cell appear;
therefore its significance is unique in the theory of structure
determination by diffraction methods. It can be seen that in general
it is a complex quantity, and can be represented as a vector in the two

dimensional Argand diagram:

F(hk1)=A(hk1)+iB(hk1) (30)
where
A(hk])=:%:fnc052n(hxn+kyn+]zn)
B(hkl)=:E:fnsin2n(hxn+kyn+1zn)
and n (31)

IF(hk1) [=(a%+B%)"

¢(hk1)=tan']—%%ﬁé}%
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In the above discussion and in what follows, the atomic scattering
factor f is considered as a real quantity which is not in general true,
but it is a good approximation. Using the last two equations of (31)

the structure factor can also be written as
F(hk1)=|F(hk1)|exp{ig (hk1)}=(AZ(hk1)+BZ(hk1)}Y%exp(is(hk1)}.

The quantity ¢(hk1) is called the phase angle and in general can
assume any value between O and 2m. However, for a centrosymmetrical
unit cell,if the centre of symmetry is taken as the origin, for each
triad of numbers (x, y, z) there is a centrosymmetric equivalent

(X, y, z2) (x=-x, y=-y, z=-z, again following common crystallographic
notation). Therefore, for a centrosymmetrical crystal the expression

(29) for the structure factor can be split into two parts

N/2 N/2
F(hk1)=;§;fn(hk1)exp{2wi(hxn+kyn+1zn)}+;§;fn(hk1)exp{Zwi(h(-x)+
N/2
+k(-y)+1(-z))}= ZZE;fn(hkl)c052n(hxn+kyn+]zn). (32)
n=

Equation (32) shows that for a centrosymmetrical crystal the structure
factor is a real quantity. From expressions (31) and (32) we deduce

that
N/2

A(hk1)=2;§;fn(hk])cost(hxn+kyn+1zn)
B(hk1)=0,
therefore tan¢(hkl)=p.
From this last equation we obtain
¢(hk1)=0

or (33)
¢ (hk1)=n.
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This severe restriction on the values of the phase angles ¢(hk1)
means that the phases expi¢(hkl) can take only two values +1 or -1, and
the structure factor can be written as F(hk1)=(t)lF(hk1)|. This
result is very helpful in crystal structure analysis.

A continuous quantity o(r) can be defined, representing the
electron density distribution of the unit cell. According to the
previous discussion the electron density o(¥) should be a three

dimensional periodic function with respect to the lattice vector R
P (_F+§)=p (_F) ’
and according to equation (17)

o(r)= ZE:C+*exp “2miverk) (34)

(r)= ZEZC hk1)exp{ -2ni (hx+ky+1z)}. (35)

However, according to equation (28)

C(hk1)= V’fff Jexp{2wi (hx+ky+1z)}dxdydz.  (36)

The structure factor F(hkl) defined in equation (29) can also be
written employing the continuous electron density o(¥), by simply
substituting the summation over all the atoms of the unit cell, by

integration of the electron distribution over the volume V. Therefore

111

F(hk1)=ffﬁ(?)exp{2ni(hx+ky+1z)}dxdydz. (37)
0Y0%0
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A comparison of equations (35), (36) and (37) leads immediately to

the fundamental result

4+
p(?)=v‘]jE::E::E:F(hk1)exp{-zni(hx+ky+1z)}. (38)
h k 1

Equation (38) is a Fourier representation of the electron distribution
of a crystal, with the structure factors being the coefficients of the
Fourier series. From the same equation it can also be seen that the
calculation of electron density requires the complete knowledge of
F(hk1)'s, that is, their magnitudes |F(hk1)| and phases expi¢(hkl).

Only the structure amplitudes |F(hk1)| can be obtained experimentally,

and this is what constitutes the "phase problem" of X-ray (or neutron)
crystallography.

The phase problem is of a very fundemental nature, and it is not
confined in the realm of diffraction phenomena but it is related to
the phase problem in quantum mechanics. Consider the time dependent
Schrodinger equation
,?Z;t)=1h§{1?1""’?z5t) (39)

‘+
Hopv(r],...

The solution of (39) in configuration space is given by

+0 +co
> > . ov_1.-32/2 > > | » Z+ X - >
W(r],...,rz,t)~h J[:...[;(p],...,pz,t)exp{ i/h - P; rj}dp]...dpZ
e e (40)
where pj is the classical momentum of particle j, and h Plank's constant.
The Fourier transform of the above equation will be a solution of

equation (39) in momentum space
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+oo +o0
> > -32/2 > > . > > > >
cp(p],...,pz;t)=h Z/f..[w(r],...,rz;t)exp{1/hzj:pj'rj dr]---drz-

Equations (40) and (41) can be written in a more compact form as follows

+oo

w(i;t)=h‘32/2f¢(3;t)exp(-i/hﬁ.st)dﬁ (42)
e
¢(ﬁ;t)=h'32/{w(i;t)exp(i/hﬁ-i)dst (43)

where the meaning of the new symbols is obvious.
In general, the wave function Y(Y;t) is complex and has a magnitude
|¥| and a phase angle ¢. However, in the treament of stationary states
with real Hamiltonians, the energy eigenfunction v can be chosen to be real,
therefore
y(N) =y (X)

44
o(B)T=4(-B) e

where the dagger means complex conjugation. If now we associate the
wave function ¥(X;t) with the electron density p(r), and the wave
function ¢(P;t) in momentum space with the structure factor F(hk1)
(which really is a quantity in momentum or f4 space) we can see

the analogy in these quantities

.4y . Fourien R .
‘l’(i’t) ‘t'uu!éo)una,téon > (b(-ﬁ,t)

“rans formation



15

We also have

R (45)
F(hk1) =F(hk1)
in complete analogy with relations (44). In order to obtain the wave
function ¥(X;t) from equation (42) we need to know both the amplitude
and the phase of the momentum function ¢(3,t). Experimentally the
only quantity measured is |¢(3,t)| in striking analogy with the
quantity |[F(hk1)| which is obtained experimentally in X-ray crystal-
lography. The phase of the wave function cannot be obtained directly
from the solution of Schrodinger equation due to the nature of equation
itself. Only a knowledge of the initial conditions W(Y;to) can provide

the complete wave function, obtained by a unitary transformation

-

¥(Xit)=u(t,t ) ¥(Xst ),

where U is an evolution operator. Of course the quantum mechanical
phase problem is of a dynamical nature, in contrast to the crystal-
lographic phase problem which is a static one; a knowledge of the
initial conditions in the latter case means a knowledge of the charge
distribution in space, that is, the structure itself (for a short

discussion of phase problem in quantum mechanics see reference 26).

(d) Bragg's Law and Intensity Relations

Consider a beam of X-ray photons impinging on a crystal; the
electromagnetic waves interact strongly with the negatively charged
electrons, and if the appropriate geometrical conditions are fulfilled,
the crystal emits light mainly of the same wavelength as that of the

incident radiation. This emission is usually called "reflection" and
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the geometrical conditions are described by Bragg's law which can be
derived as follows. If the direction of the incident and diffracted
beams are specified by the unit vectors ;0 and ; respectively
(Figure 1), the following equations give the directions and energy

of the two beams:

S
Ko o x® T
2 me=)
[%yl= %] ==
=_c

Employing the first Born approximation, we can describe a transition

with the matrix e]ement27

-> > ->
ez =)o (Flig (), (46)
where v and yr are the incident and diffracted waves respectively.
)
We can consider that they are adequately described by plane waves,

therefore

wZ=C]exp(2niZ-F)
(47)

K

> >
w»o—Czexp(2n1K0-r) .

where C], C2 are constants. Expanding the electron density p(?) in

a Fourier series according to equation (28), equation (46) becomes

M = cl*exp(-zni.}*-?)v"z F(hk])exp(2m‘?-?*)czexp(zwizo.?)d?=
0 hk1

=c]*c2v']z F(hk1 )ﬁaxp{zwi (k -k +7%) - F)dr (48)
hk1
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The integral (48) is different than zero only if
ZO—:+r*=o
or > > >
|<=|<0+r*. (49)
For fixed x we can only observe diffracted beams in directions dictated
by the right hand side of equation (49). Under those conditions we

obtain from equation (48)

to vyl

1 G F(hk1)

B {-H =C

K
or °

2. 2
IMZZO| =1¢qCpV

112 |F(hk1) |2 (50)

Equation (50) shows that the intensity of the diffracted radiation
should be proportional to |F(hk1)|2, which is more or less true for
imperfect crystals.

For a static crystal the energy of the diffracted beam is the
same as the incident beam, i.e., [ZOI=|Z|; this last condition imposes
immediately a condition on the scattering angle 9. To satisfy the
geometrical conditions of equation (49) and the isoenergetic condition
IZOI=I?| at the same time, we construct the Ewald sphere (Figure 2),
with radius CO equal to the incident wave vector. The lattice shown
is the reciprocal lattice, C is the position of the diffracting crystal
and 0 the origin. From Figure 2 and equation (49) we obtain:

|-«

J|= 1% =] (n3*+kB*412%) | =2351ne(hk1).

However, |?*(hk1)|= HT%FT)’ where d(hk1) is the distance between the
"reflecting" planes (hk1); from these two equations we obtain
2d(hk1)sine(hk1)=x (51)

which is Bragg's law in its most convenient form.
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We consider now a pencil of monochromatic X-ray beams, polarized
perpendicular to the plane of the paper of intensity I0 and wavelength
X, falling on a very small crystal. The conditions are illustrated
in Figure 1; the crystal is located at the origin 0, the vector ?n
represents the location of the nth atom in a certain unit cell, and
the directions of primary and diffracted beams are described by the
unit vectors ;0 and s respectively. For simplicity it will be assumed
that the crystal has the shape of parallelopipedon with edges Nalgl,
NbIBI, NCIEI parallel to the crystal axes a, b, ¢. Assuming also that
|?n|<<|§|, which holds for a small crystal, the instantaneous electric
field at the observation point P, according to warren]z will be given by

exp{2nix(s-s )-N3}-1

2
E=E —5— expl{i(2mc|R|-ut)}F — x
% mc¢|R| exp{ZniK(s-so)-g}-l

. " => .AA ->
) exp{2n1n(f—fo)-Nbb}-1 ) exp{2ﬂ1K(f-f0)'§CC}‘]  (52)
exp{2nin(s-so)-3}-1 EXP{ZHiK(S-SO)’C}']

The diffracted intensity at the point P will be given by

2
ELS
IP 8n (63)
in terms of the intensity in the primary beam
2
I _|§0| (54)
o 8n

From equations (52)-(54) and for an unpolarized beam, we obtain for

the diffracted intensity

. 2 ~on >
I =1 ( e? )2 ] |F|2 1+cos220 5 sin“n/x(s-s )-N;a 5
p o mc2 |R]2 2 sin u/x(s-so)-3
. 2 ~on > . 2 ~on >
sin“m/x(s-s )N b sin“m/x(s-s_)N ¢
N > 0 b”_ . _ Ao *c ) (55)
sin n/A(s-so)-E sin“n/a(s-s)+C
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Expression (55) assumes significant values only if

(s-s 0) a=xih
(s-s,)-B=rk (56)
(s- so)-c =1

Equations (56) are called the Laue equations and are entirely equivalent

with Bragg's law. Under the conditions of (56) equation (55) becomes

I 2 2N2

e? 2
-)° —L NENZNE R (hk) |2 (57)

P(Max)zlo( mc lﬁf

However, for rather technical reasons, IP(Max) is not a very useful
quantity. The primary beam is never perfectly parallel, and therefore
it is never true that all of the primary beam has the correct direction
;0 to satisfy the three Laue equations exactly. In general, a crystal
is "mosaic" and an exact setting on one part of the crystal would not

17

be correct for other parts A more useful quantity which can be

measured relatively easy is the "integrated intensity", given by

Ei[];PdtdA’ (58)

where IP is given by equation (55), t is the duration of measurement

and A is the area crossed by the diffracted beam. The evaluation of

the above integral is not trivial and we quote only the result hev‘e]7
Io e2 2 A3Vx, 2 1+c0522@
E(hk])" Q ( mcz) vz IF(hk])l m——— ’ (59)

where V is the volume of the small crystal, Q@ is the angular ve]ocity

with which the crystal is rotated through the Bragg angle and _—3_—37__

2 1nZe
1+cos ™20
25in20

Polarization term). The important thing of equation (59) is that the

is a geometrical term (the quantity is called the Lorentz-
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reflected energy E(hk1) is proportional to the square of the structure
amplitude |F(hk1)|. It applies equally to very small crystals, for
which dynamical effects are almost absent, or for ideally imperfect

crystals. Equation (59) can be rewritten as

2 2
E(hk1)Q 2 v
|F(nk1)|2Lp= ElRKLA, M 3
or o e X
|F(hk1)|%LP= Q(hk1), (60)
where LP= _]io__sfﬁ
2sin20

The dimensionless quantity Q(hk1) is the measurement in a diffraction
experiment, and therefore the relative structure amplitudes can be

obtained directly from (60)

Q(hk1) }% .

FkD 1=t 17

(61)

Although equation (61) is almost always used in structure deter-
minations, care should be exercised if very accurate structure
amplitudes are required, because dynamical effects are always present

and sometimes can completely disrupt the validity of the last equation.

(e) The Patterson Function

The most severe obstacle in the investigation of a crystal structure
is that the phases of F(hk1) cannot be experimentally observed. However,

in 1934-35 A. L. Patterson28’29

approached this problem in a very
ingenious way, and showed that a structure could be solved, or that much
of the information concerning the phase problem can be obtained by a
direct use of the experimentally obtainable structure amplitudes.

The Patterson function P(Y) is defined as the self-convolution of

the electron density o(F)
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P(X)=V]o (F)o (r+X)dr. (62)

The electron density p(?) can be written in an integral form as
p(F)=v‘]fF(?'*)exp(-zniF-F'*)dF'*. (63)
A density o(r+X) at a point v+X will be given by
o(r+X)=v" [ F(¥*)expl -2n1 (F+X) - 7% }dr*. (64)
Substituting (63) and (64) into (62) we obtain

P(Y)=v‘]f[F(F'*)exp(-2niF-F'*)dF'*ﬁ(?*)exp{-zni(?+i)-?}d?*d?=

=v'][fF(?'*)F(F*)exp(-znii-F*)d?'*d?*/;xp{-zni(F*+F'*)-F}d?

P(Y)zv—]f[F(?'*)F(F*)exp(-ZniY-?*)s(F*J.'*)d?'*d?*. (65)

or

Expression (65) is other than zero only if ?'*+?*=o, or ?'*=-?*,
therefore
P(X)=v"! F(?*)F(-?*)exp(-znix’-F*)thv‘]ﬁF(?*)|2exp(-2nﬁ-F*)d?*

(66)
because F(-?*)=F(?*)*.

If the fractional components of vector X are u, v and w along the

crystallographic axes, equation (66) can also be written as

4w
P(uvw)=V']Z ZZI F(hk])|2exp{-2wi(hu+kv+1w)}=
Vo ZZZIF(hk])I cos2mi(hu+kv+iw). (67)

From equation (67) it can be seen that the Patterson function is a
cosine Fourier series, hence centrosymmetric, whose coefficients can

be directly determined from experiment. As a crystal may be regarded
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as a built up from N atoms, each of which is repeated on an infinite

2

lattice, the Patterson fuction consists of N "Patterson Peaks"

repeated in the same way]5. However, peaks in the Patterson function
do not represent the position of atoms; they are the terminal points
of a set of vectors, each vector representing the displacement of
some atom from some other atom. The deconvolution of a Patterson
synthesis is not a simple task and special techniques have been

developed for this purpose30.

(f) The Temperature Factor

It was tacitly assumed up to now that all the atoms in a crystal
occupy definite positions. However, these positions are only average
positions about which atoms oscillate. The experimentally obtained
structure amplitudes correspond to a double average; one over the whole
crystal and another over the time of the measurement, the latter being
very large with respect to the period of vibration of an atom.

! that if an atom vibrates at any

It has been proven by B]och3
temperature T in a harmonic potential, the probability density of its

displacement is given by the Gaussian

2 2 2
_ 1 1, X X2 X3
™) UylpUs 1 2 3

where X1s Xps Xg are displacements along orthogonal axes coincident

with the principal axes of the family of ellipsoids

2 2 2

—TX] sz —2_x3 2r (r>o) (69)
+ + = 2T >0),

U Us us

which represent surfaces of constant probability in direct space.
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uf, ug, ug are the mean square displacements in the X1s X595 X3 directions

respectively; the mean square displacement is defined by

2. 2 ‘o
<ui>-jﬁ/i7;16(x]x2x3)dx]dxzdx3, i=1,2,3.

-0

Due to the convolution theorem which says that "the Fourier inverse
transform of a product of Fourier transforms is the convolution of
the original functions,” the atomic scattering factor at temperature T

will be given by

2

2 2 2
fT(hk])=f(hk1)exp{-2n (u]h]+u2h2+u3h )

}s (70)

where the exponential factor is the Fourier transform of expression (68),

and h], h2, h3 are the projections of the reciprocal lattice vector o

on axes parallel to the principal axes of the e]]ipsoidls. If u$=u§=
=u§=<u2>, expression (70) transforms to

£ (hk1)=F(hk1)exp{-2n<u®>| | %},
where e %—= —EE;EEL-; therefore,

£ (hk1)=F (hk1)exp(-B(sine/2)?} (71)

where B=8n2<u2> is the Debye-Waller factor. If it is considered the

same for all atoms and all directions in a crystal, it is given by
e/T

2
B=%(T/°)j;e_§%:—l_ + (9/4T)}:

mke

where k is Boltzmann's constant, m an average mass, and e is the
"characteristic temperature" defined as ke=th, with vp the Debye

frequency. It should be noticed that the exponential factor of
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equation (71) is wavelength independent.

When referred to the reciprocal axes of the crystal, the
anisotropic temperature factor takes the 1"or'm]5

2 2 2
exp{-(B]]h 8,0k #8351 +3]2hk+323k]+3]3h1)}, (72)

where the g's are constants to be determined by the method of least

squares in a refinement procedure. Expression (72) can also be
written as]5

exp{-27° Uy (h[3* )24 (K [B%] )24, (118% ) 2420, (k| 3% | [B*]) >+

+2u]3(h113*||E*|)2+2u23(k1|3*l|E*|)2)}. (73)
‘L
The Uij are the elements of a symmetric tensor U and form a matrix

Uy Uy U

12 713

U =t Upp Upp Ups (74)

Uyz Upz Usz

11

8
By comparison of (72) and (73) we obtain U ———711———- etc.

3% |2
The problem now reduces to finding an orthogonal set of coordinates
in which the matrix (74) has zero for all off-diagonal elements,

hence reducing the expression (73) to the form which appears in

equation (70). The rules for this are given by Cruickshank et. a1.32,

15

and outlined by Lipson and Cochran The final result is that of

the values of u?, ug, ug, the mean square displacements along the

directions of the principal axes.



IT. PORPHYRINS

Porphyrins are macrocyclic tetrapyrrolic structures; they are
derived formally from porphine (Figure 3) by substitution of some or
all of the hydrogen atoms 1-8 by various side chains. The number of
substitutions which can be obtained, and the names which have been
assigned to the resultant porphyrins are bewildering, and many times
serious errors creep into the porphyrin 1iterature33. The name
porphyrin will be used in this general discussion indiscriminately,
either for porphyrins or porphines (for the porphyrin nomenclature
see reference 34).

The biological importance of the porphyrin ring system is obvious
from the fact that it is a basic constituent of the blood, and of
the plant pigments, chlorophyll and bacteriochlorophyll. Porphyrins
have a remarkable ability to form complexes with a variety of metal
ions acting as tetradentates, to produce "metalloporphyrins", which
have the most diverse biological abilities ever encountered in chemical
systems (reference 35, p. 7).

Many porphyrin-riddles have been answered since 1912 when Kuster

36, but

first suggested the tetrapyrrolic structure of these molecules
as usual, nature plays its asymptotic game with knowledge, and much
experimental and theoretical work has yet to be carried out in this
field.

The question of the existence of different -NH tautomers of

porphyrins was long argued, and much of the early work aimed at

26
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Figure 3. Free base porphine.
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isolating separate tautomeric forms has been conveniently summarized
A definite answer to this problem (at least in the solid state) was
given with the determination of the crystal structures of tetraphenyl-

38 and

porphine and of the free base porphine by Silvers and Tulinsky

by Chen and Tuh‘nsky39 respectively. They found two well-defined

imino hydrogen atoms located on pyrroles opposite to each other;

the same imino hydrogen localization was also found by Codding and

Tulinsky in the crystal structure of tetra-n—propy]porphine40.
Porphyrins and metalloporphyrins are in general planar molecules

showing D4h symmetry. It can also be said that they are aromatic,

because they can exhibit a strong diamagnetic ring current caused by

the "circulation" of the r-electrons (the two imino hydrogens of

porphyrins are magnetically shielded and they show NMR shifts comparable

to those of 18 annu]enes4]'44).

The "path" of this electron movement
is not well defined and at least two structures are compatible with
some of the experimental facts, both of which are appealing to the
chemical intuition of the experimental organic chemist. These two
possibilities are illustrated in Figure 4; in Figure 4b,16 atoms form

a closed ring (wavy line) in which 6 double bonds and 18 electrons
participate. This ring cannot be a conjugate cyclic polyene since a
16-membered polyene has only 16r electrons. The 6 double bonds contain
124 electrons and the addition of both the lone-electron pairs would
only bring the total electron count to 16. To arrive at an 18-electron
count it is necessary to interrupt the conjugation, placing two
positive charges on the nitrogens bonded to hydrogens, and assigning
the two balancing countercharges to the remaining 14 central ring

atoms (reference 35, p. 201). On the other hand ,the model on Figure 4a

is an 18-atom system with 9 double bonds and thus 18 electrons and it



Figure 4. Two different "electron paths" for the porphyrin
system.
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possesses Kekule” type resonance. The feature of this model is that
Huckel's 4n+2 rule imposes the requirement that the lone electron
pairs must be different from the n-electrons of the system {reference
35, p. 201). If the two nitrogen atoms involved are regarded to a
first approximation as equivalent to methine groups, the 18 annulene
could be taken as a model to describe porphyrins. However, both of
the described models cannot account in a consistent way for the
crystallographically obtained bond distances or absorption and emission
spectra. A linear mixing of both forms would be more realistic but
such an approach is poor from a model point of view.

The absorption spectra of porphyrins have a very typical pattern.
Almost all of them have four bands between 500 and 700nm, generally
increasing in intensity from red to green, and a very strong band in

the blue-violet region (~400nm) called the Soret band45. Gouterman

46'68, both

and his coworkers have published a long series of papers
theoretical and experimental trying to explain the origin and the
intensity of the forementioned bands, and the changes to these bands
accompanied by metal complexation. However, their efforts have been
hampered by the great complexity of the porphyrin system which leads
inevitably to the use of highly approximate semiempirical methods
(extended Huckel calculations) and therefore unreliable results. A
very simple model based on the "particle in a circle" idea proposed
as early as 1949 by S1'mpson69 can explain in a qualitative manner the
porphin spectrum; it seems that it is better in this case to use a
very simple model whenever possible, than a complicated one based on
various approximations and assumptions.

Although the crystal structures of more than forty metallo-

porphyrins have been solved in the past fifteen years, it has only
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been recently that some interest was shown to the Group IV metal-
loporphyrins. Thus, independent X-ray crystallographic structure
determinations have been reported for dichloridetetraphenylpor-

)70 7 and extended

phineSn(IV)'~, and dichlorideoctaethylporphineSn(IV)
Huckel calculations have also been carried out with Si, Ge, Sn and Pb
metalloporphyrins by Gouterman and his coworkerssz.

We undertook the investigation of an octahedrally germanium-
substituted porphine for a number of reasons. A relatively accurate
structure could be obtained because the electron content of the
germanium is sufficiently small. The radius of the germanium atom
in oxidation state IV is small enough to be accomodated in the central
hole of the porphine core with minimal perturbation. Coordinates
from this structure could then be used in theoretical calculations.
This would also be the first metallo-porphyrin without a substitution
in the porphine frame (Figure 3), and therefore a direct comparison
could be made with the free base porphine39. In addition, interest
is centered about the metallic character of germanium, which is not
very pronounced. For instance,it can easily form tetrahedral compounds

with sp3 hybridization in a manner similar to silicon or carbon72, or

it can be octahedral, as in the present system with a possible dzsp3

hybridization.



[IT. EXPERIMENTAL

1. Crystals

Dihydroxyporphinato Ge(IV) (PGe(OH)z) used in the X-ray crystallo-
graphic structure determination was purchased from the M and J Chemical
Co.73. Well formed purple crystals exhibiting a rectangular-prismatic
morphology were obtained by diffusing methanol into a nearly saturated
solution of the compound in chloroform. At the time, we were unaware
that the hydroxyl groups of PGe(OH)2 are quite reactive and can easily

74. Indeed,

be replaced with methoxy groups by treatment with methanol
the structure determination of crystals grown this way showed that the
PGe(OH)2 had been converted to dimethoxyporphinato Ge(IV) (PGe(OMe)z)

during the crystallization procedure.

2. Intensity Data Collection

Preliminary X-ray studies of a single crystal of PGe(OMe)2 by

75,76 77 techniques showed the crystal

photographic and diffractometric
system to be monoclinic and systematic absences fixed the space group
to be P2]/c. A suitable crystal fragment with approximate dimensions

6cm3) was used for recording

of 0.08x0.10x0.35mm (crystal volume Vx=2x10'
diffracted intensities. The crystal was much smaller than the cross
section of X-ray beam, and although small, of sufficient size and
quality to produce a strong diffraction pattern. The lattice

parameters were obtained from diffractometer measurements by the

least squares fit of the angular coordinates of twelve reflections

32
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well distributed in the reciprocal space in the range 52°<20<90°. The
density of the crystal was measured in a mixture of carbon tetrachloride
and methylene iodide. The crystal and unit cell data are summarized
in Table I.

The intensity data collection was carried out with CuKa radiation
(A=1.5418A) using a Picker four circle diffractometer controlled by
a Digital Equipment Corporation (DEC) 4K PDP-8 computer (FACS I system)
coupled to a DEK 32K Disc File and an Ampex TMZ 7-Track Tape Transport.
Intensities of reflections were measured by a wandering w-step-scan

78

procedure using balanced Ni/Co filters The purpose of Ni/Co

balanced filters is to supress the unwanted components of the X-ray

79. The step scan was performed in 0.03° increments of the w-angle

beam
of the diffractometer and extended +0.075° on either side of the
calculated peak position. Each step was measured for a duration of
four seconds and the four largest measurements were summed to give

the integrated intensity of the ref]ectiongo. When the observed peak
position did not coincide with the calculated w-value, one or two
additional steps were taken to assure centering of the scan. The
background was measured with a Co filter at the w-value of the maximum
intensity for a time interval of four seconds and this count was
multiplied by four to give the total background intensity. Since the
step scan procedure is essentially a stationary crystal-stationary
counter measurement, in order to avoid Ka splitting effects, the
intensity data collection was confined within the range 20<110°.

Therefore the minimum interplanar spacing dm given by Bragg's law

will be

4 = _1.5418

m Zsingg “0-94 A
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TABLE I. Crystal and Unit Cell Data of PGe(OMe)2

|al = 15.015(5) A
5] = 14.441(5) A
Ic] = 8.414(4) A
B = 91.85(2)°
z = 4
MW = 443.0 a.u.
D, = 1.61 gmcm'3
D, = 1.60 gmcm-3
w o= 27.33cm’)
“]mx = 0.96 (longest direction)

F(000) = 904 electrons

F(000) - g.495 en”3
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so that details on scale smaller than

r=0.61xdm=0.61x0.94=0.57A

cannot be resolved (reference 14, p. 400). In this, it is assumed,
of course, that a complete series of reflections will be measured to
the Timiting value dm.

During the intensity data collection, the alignment of the crystal
was monitored with the use of an automatic realignment sub-routine by
measuring the intensities of three standard reflections: (006) at
x=90° and two ¢-values 100° apart, and the (842) ref]ection78. The
monitored reflections also served to monitor X-ray damage to the crystal;
no decrease in their intensities was observed. Before the onset of
intensity data collection, the mosaic spreads of two reflections were
measured to ensure crystal quality and to help select the quadrant to
be used for data collection.

The intensities of the reflections were corrected for absorption

78

and lack of balance For the absorption correction, an empirical

method was used based on the variance of the relative transmission (T)

with the azimuthal angle 881

(the problem of absorption is discussed
more completely in the next section). The intensities of a total of
2396 independent reflections were recorded, of which 598 were taken
to be unobserved; 120 reflections were systematically absent. The
observable 1imit was fixed from the average value of the measured
intensities of the systematically absent reflections and this gave
1798 reflections for the structure analysis; this number corresponds
to a data/parameter ratio of 6.7 if hydrogen atoms are not included

(9 parameters for each non-hydrogen atom). Finally, the corrected

intensities were converted to relative structure amplitudes using

equation (61).
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3. Absorption

X-rays are absorbed when passed through matter mainly due to the
photoelectric effect, and absorption is one of the main sources of
error in structural X-ray crystallographic work. If we denote by
A(hk1) the amount by which the intensity of a reflection is reduced
due to absorption, the reciprocal of A(hkl) is the transmission factor,
T(hk1), by which the observed intensity is to be multiplied to obtain
the correct intensity. T is given by

L 'x (75)
A 9

J[exp{-u(t]+t2)}dv
v
X

where u is the linear absorption coefficient of the crystal, VX its
volume, t] the path of the incident beam inside the crystal and t2
the path of the diffracted beam inside the crystal. The linear

absorption coefficient can be computed by the following expression:
= ZE: A=) 5 76
urir{.,(D)J (76)

where D is the density of the crystal, Pj the fraction by the weight
of element j in the crystal and (“/D)j its mass absorption coefficient.
Values of mass absorption coefficients for all the elements are
tabulated in the International Tables for X-ray Crystallography

82, 1 (x=1.5418A).

Volume III For PGe(OMe)2 wis 27.33 cm~

For a nonspherical crystal the integral of equation (75) can only

83’84. However, these methods

be evaluated using numerical methods
require the precise measurement of the crystal dimensions, which may
be difficult if not impossible to achieve, especially if the crystal

morphology is unfavourable or ill-defined. An empirical method for
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the correction of absorption was suggested by Furnas85

by modification by North et. a].,8].

and was improved

Suppose that a crystal is aligned at X=90° in the four-circle
diffractometer; as the crystal rotates around the ¢ axis (at X=90°) the
intensity of a reflection varies as a function of the azimuthal angular
setting ¢ for the corresponding reciprocal lattice level. Such a
variation in intensity provides a measure of the relative absorption
suffered by X-rays passing through the crystal in mean directions
perpendicular to the rotation axis. According to Furnas, the relative

absorption correction for a general (hk1) reflection is given by

I
1 (77)
A(hk])= max(¢) = ’
I(@hklj‘ T(hkT1)
where Imax is the maximum intensity observed for an axial reflection

at x=90° as ¢ is varied over 360°, and kT is the angle at which
the hkl reflecting planes are parallel to the incident X-ray beam.

81 the mean of the absorption

In the Phillips absorption correction
corrections is used for beams passing through the crystal in the
directions of the incident and reflected rays. Hence, in terms of
the transmission factor

T(e. 4T
T(hk1)= (Q‘"C;+ Cref) , (78)

where ¢inc and L define the orientations of the crystal in which the

incident and reflected beams for the (hk1) reflection coincide with

or lie in the same plane as the incident X-ray beam. ®inc and ref

can be expressed in terms of % k1?

%inc™ (Phk1ehky)
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®ref™(Phk1*ohk1)

where 181 =s i {sina(hk1)cosx (hk1)3

for the equi-inclination geometry of the four-circle diffractometer.
The T(¢) curves were constructed for PGe(OMe)2 by measuring the

variation of the absorption of reflections at x=90°. Since the ¢*

axis occurred at x=90°, the (001) reflections were used to correct

the general reflections in terms of &, 26 and reciprocal lattice

level (1-index). The absorption of three reflections was measured:

(002), (004), and (006), with 20=21.13°, 43.02° and 66.73° respectively.

Plots of Imax/I as a function of ¢ are shown in Figure 5.
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IV. STRUCTURE ANALYSIS

The unitary structure factor U is defined by

U(hk1)= i,“’k” (79)
ij(hkl)
J
and the normalized structure factor by
£ (nk1)=—2nk1) (80)
<'Ul >2
From (79) and (80) we obtain
/Z (hk1)
<|F(hk1)] >/ <|F(hk1)]>%
fj(hkl)

J
From the definition of the structure factor we also obtain

N,
2=zzz Lo ) ]
|F(hk1)] : fj+ J.uf‘].fuexp{th(xJ. xu)+k(yj yu)+1(zj Zu)} .

If the average of the above expression is taken over a reasonable
number of F(hk1)'s with no greatly different values of sina(hk1)/A, so

that the f's can be treated as constants, the exponential terms will

18

largely cancel ~, so that

N/e
<|F(hk1)|2>=622f§ ) (82)
J

AN
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where € is a symmetry factor depending on the space glr'oup]8 (for the
validity of equation (82) see also reference 86). Substituting
expression (82) into (81) we obtain an approximate normalized structure
factor given by

E(hk)= LUKL)
€ :Eff% :
or J
E(hk1)|= —LECKT)] (83)

e( - fj)
J
Equation (83) was used to convert the structure amplitudes to normalized
values employing an approximate absolute scale (~1.3) and an average
isotropic temperature B factor (m2.8A2) determined by Wilson's method87.
Since the crystal density corresponds to four molecules per unit cell
and the space group requires four equivalent positions, two related by
centers of symmetry, it was assumed that the germanium atoms were located
in general positions. At the time, we were also considering the compound
to be PGe(OH)2 and the discrepancy between the calculated and observed
density (1.51 gmcm'3 and 1.61 gmcm-3, respectively, or 60 a.u. per unit
cell) was attributed to localized solvent of crystallization.

A sharpened, origin removed, three dimensional Patterson (|E|2-1)

88 .t v=1/2.

map was synthesized. Figure 6 illustrates the Harker section
Harker sections are simply planes of the three dimensional Patterson map,
which take advantage of the symmetry of the space group, and many times
carry useful information concerning the location of certain atoms
(usually heavy) in the unit cell.

The Harker section in this case is obtained from equation (66)

by simply substituting v=1/2;
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Q22

Q20
©s 1

(b)
&=

Figure 6. Schematic representation of the Harker section of
PGe(ONe)2 at v = 1/2.
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4+
P(u,1/2 .w)=v']hz ZkZI F(hk1) l2c0521r(hu+k/2+1w)=
1

-0

4+
=v']Z Z Z(-nle(hk] )% coszn(hu+Tn)=

h k 1
+o
=V'iE::E:C cos2m(hu+lw) (84)
h h1

where

4
Cm:kz('”k'”““ )2

The Harker line is based on the same idea, the difference being that
higher symmetry is employed for its synthesis. For the group P2]/c
the Harker line is obtained by substituting u=0, w=1/2 in the

expression (66)

+x +
P(O,v,1/2)=:E:Bkc052nky with Bk=:E::§:(—1)]IF(hk1)l2 . (85)
k=-x h 1

For space group PZ]/c, there are four equivalent positionsaz:

(£)  x,¥,
(L) x,Y,
(ihL) X410
(4v) x,1

Subtracting (4il) from (L) we obtain

/2+y,1/2-2
/2-y,1/2+z .

2x 2x
-1/2  or +1/2 (86)
2z-1/2 22+1/2 .
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The above set of difference coordinates correspond to the Harker section
at v=1/2 (see equation (83)). Subtracting ({v) from (<), the Harker

line u=Q, w=1/2 coordinates are obtained (see equation (84))

0 0
-1/2+2y  or 2y+1/2 (87)
-1/2 1/2.

By equating the coordinates of peak (a) in Harker section with the
difference coordinates (86), the x,z coordinates of the germanium atom
can be deduced:
u=2x=Q —— x=0
or 2x=1 —— x=1/2
w=2z+1/2=1/2 — z=0
or 2z-1/2=1/2 — z=1/2 .

From the difference coordinates (87) and a peak at v=1/2 in the Harker

line the y coordinate of the germanium is deduced:

v=-2y+1/2=1/2 —— y=0
or -2y-1/2=1/2 —— y=1/2 .

Combining the above results the coordinates of the germanium atom
obtained from peak (a) of Harker section and the Harker line are as
follows:
x=0 x=0 |x=1/2 x=1/2 x=0 x=0 | x=1/2 x=1/2
y=0 y=1/2 y=0 y=1/2 y=1/2 y=0 y=1/2 y=0
z=(Q z=1/2 z=0 z=1/2 z=0 z=1/2 z=0 z=1/2
(a)
The coordinates (a) correspond to the eight centers of symmetry in

space group P2]/c and are four, symmetry independent pairs. Any pair
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can be chosen for the location of two germanium atoms, but then the
second pair should be selected in such a way as to give the position
of the peak (b) in the Harker section. For instance if the first
choice is (0,0,0), then the second should be (1/2,1/2,0).

Following exactly the same procedure, but now using the coordinates
of peak (b) in the Harker section, another set of coordinates is deduced
for the germanium atom

u=2x=1/2 — x=1/4
or 2x=-1/2 — x=3/4
w=2z-1/2=0 —— 12z=1/4

or 2z+1/2=0 —— 2z=3/4 ,

and y=0 or y=1/2 from the Harker line. Thus
x=1/4 x=3/4 x=3/4 x=1/4
y=0 y=0 y=1/2 y=1/2
z=1/2 z=3/4 z=1/4 z=3/4
(b1)

x=3/4 x=1/4 x=1/4 x=3/4

y=0 y=0 y=1/2 y=1/2

z=1/4 z=3/4 z=1/4 z=3/4
(b2)

From both sets of coordinates found for the heavy atom, the
coordinates of the two Harker peaks can be deduced by taking the
appropriate differences. In addition a non-Harker peak of the same
size with peaks (a) and (b) located at (1/2,0,1/2) can be explained
by using either coordinates (a) or coordinates (bl) or (b2). There-

fore, there is ambiguity for the position of the metal in the unit cell.
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Structure factor calculations based on positions (a) and (b) for the
germanium atom gave exactly the same residual (R) factor
(R=:E:|IFOI'IFCII/EEZIFOI, where IFOI, ]FC] are the observed and
calculated structure amplitudes respectively) of 0.55. This included
only 590 reflections since the Ge atom contributes only to those
reflections with all indices even or all indices odd. Because the
first set of coordinates (a) corresponds to two independent centers

of symmetry, at first, it was considered unreasonable and although the
second set of coordinates (b) is also special, they do not coincide
with a symmetry element as the first. Hence the second set was selected
as the positions of the germanium atoms.

A Fourier map based on the phase_angles (simpiy signs in this
case because the space group is centrosymmetric) obtained from the set
(b1) for the germanium atom revealed some new and additional peaks and
although structure factors with R-values as low as 0.33 were obtained
with the inclusion of these as atoms of the structure, subsequent
Fourier maps based on these cocrdinates and those of the meta],’did
not converge to any reasonable structure. The same results were
obtained from the set (b2). Since the coordinates (a) were considered
unreasonable , a Fourier map based on these coordinates for the metal
was never synthesized; instead it was decided to proceed with direct
methods of phase determination.

The Patterson synthesis can be characterized as a direct method,
because it uses the observed structure amplitudes directly to obtain
information about the phases. However, for each crystal structure a
new interpretation is required in which the ingenuity and imagination

of the crystallographer play a very prominent role. Therefore, the
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adjective "direct" has come to be reserved for those methods which
attempt to derive the phases of the structure factors directly by

mathematical means from X-ray diffraction data89.

They are usually
cast in the form of a mathematical problem which, once formulated,
may be solved by a routine sequence of steps in which decisions are

90 derived

of a purely mathematical nature. As early as 1928, Ott
relations among the structure factors and atomic positions by means of
algebraic manipulations on the structure factor equations. His results

9], obtained

were mainly of academic interest. In 1948, Harker and Kasper
inequality relationships from the application of Schwarz's and Cauchy's
inequalities to equations (29) and (37). However, the real breakthrough
in direct methods started with the probabilistic approach of Hauptman

92

and Karle, whose work up to 1953 is summarized in a monograph®“, and

with Sayre's equation published in 195293. Since then the progress

has been enormous and now most structures of moderate complexity, say
40-50 independent non-hydrogen atoms, are solved via direct methods in
an almost routine way. The most recent and complete reference to the

subject is the book by Hauptman94.

The basic idea of the direct method is the "structure invariant"
and "seminvariant", which are the tools for clarifying the nature of
the relationship between the values of the individual phases and the
choice of origin. Assume that the position of the nth atom in a unit
cell is described by the vector ?n; if the origin is moved at a
different point described by the vector ?0 with respect to the first
origin, the position vector of the nth atom with respect to the new

origin will be

Fl=p -7 . (88)
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Then the structure factor F(hk1) will be transformed to

N
F'(hk1)=:E:fn(hk1)exp(zni?'-?*) or
n n

N
F'(hk1)=ZE:fn(hk1)exp{zni?*-(?n-? )}=
n

0
N
=exp(-2n1?*-?o):E:fn(hk1)exp(zni?*~Fn)
n
F'(hk1)=exp(-2mir*.r o JF(hK1). (89)

Equation (89) shows that the structure amplitude is an origin independent
quantity, hence a structure invariant. However, the phase angle ¢%, with

respect to the new origin will be given by
4’:;*:‘1";*'2“_;*'_;0’ (90)

and it is clearly origin dependent. If now a linear combination of
both sides of equation (90) is taken with integer coefficients D;*

which depend upon ?*94, we obtain

Z*D;*¢%*=Z*DF*¢?*'2"?0' (Z*D';*?‘*) . (91)
r r r
Clearly if ZE:D+ r*~o, then

*D"*‘#';f* ZD"*Cbr* s (92)
=

no matter what the vector ;o may be, and the linear combination of the

phases is a structure invariant (sometimes called "universal" structure
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invariant), since it is entirely origin independent (for the definition
of seminvariants see reference 94, p. 29)

Depending on the space group, an origin can be defined by specifying
the signs (for centrosymmetrical cases) to certain reflections in such
a way as to avoid a conflict with the "boundary conditions" of the
invariance property of certain linear combinations. The origin fixes
the geometrical part of structure factor and then provided that the
normalized structure amplitudes are known, an appropriate technique is
employed for the generation of phases.

In the present case, Sayre's equation93 was used, which also results

from the :EZZ equation of Hauptman and Kar]egz; this equation states that

Sign(EK)=Sign(:E: EgEg) (93)
R=B+C
where R, E, € are the vectors (hk1) for the reflections A, B and C and
EK’ Eg, and Eg are the normalized structure factors for these reflections.

The probability that Ex is positive, P+(EK), is given by95

P+(EK)=1/2+(1/2)tanh(o3/og/2)IEKIZE: Epke (94)
R=B+C

where °m=:§22?’ with zj the atomic number of atom j and N the total
number of atoms in the unit cell. In order to define the origin in

the space group P2]/c, three signs may be arbitrarily assigned. If

the values of (hk1) for these three reflections are called (hk])],
(hk])z, and (hk1)3, then these three origin-determining reflections
must be chosen such that the following six vectors are not (even, even,
even): (hkl)

(hk])z, (hk1) (hk])]+(hk1)2}, {(hkl)]+(hk1)3},

'I’ 3,{
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{(hk1)2+(hk1)3}. This may be accomplished by choosing the three reflec-
tions as follows: none may have the parity (even, even, even), the
parity of the second reflection chosen must be different from the parity
of the first reflection, the parity of the third must be different
from the parities of the first, the second, and the sum of the first
two. Then the general procedure for sign-determination can be outlined
as follows. A starting set of reflections is selected. This set includes
the origin-determining reflections and n other reflections, usually
four or five, which are not structure invariants. The origin-determining
signs are arbitrarily assigned, and the other n signs may be + or -;
therefore 2" possible starting sign sets are considered. Sayre's
equation is reiteratively applied to each of these starting sign sets,
yielding 2" solutions. When Sayre's equation is applied to a starting
sign set, additional signs are determined, and these are used to deter-
mine more signs, and to redetermine those already predicted. This
process is reiterated until there are no new additions or no changes in
the list. The signs in the starting set are predicted {during each
reiteration) from the other signs which have been predicted, but the
signs in the staring set are not allowed to change.

Once all the possible sets of phases are calculated only one or
the true solution must be determined. A method used is to calculate
all 2" electron density maps, and to select the one which is chemically
most reasonable. A more efficient method is to use a "consistency"
index as a test for the correct structure. The consistency index C,

is defined as

<|E Z ExEx|>
LY =L -
degl ). IeglEel>
=

+
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where the sums are overall pairs of B and € for which B+C=R. If C is
equal to one, the particular solution is said to be completely consistent.
The true solution will usually be the most consistent one, i.e., it

will have the highest consistency index.

A basic difficulty which we encountered with the PGe(OMe)2 structure
was that almost all of the largest normalized structure amplitudes were
of the type (hkl1) = (even, even, even) or (odd, odd, odd), and therefore
it was not possible to find three appropriate origin determining
reflections with which to initiate the direct method of sign determina-
tion. In an effort to circumvent the problem, the E-distribution was
changed to correspond approximately to that of the free base macrocycle.
This was approximated by subtracting the amplitude of the germanium
atom contribution from the 590 germanium atom-affected observed structure
amp1i tudes [Fo(hkl)l (the amplitude of the contribution is the same for
both sets of coordinates (a) or (b)). These new structure amplitudes,
]Fp(hkl)l, where

|F (hk1

(hk1)| =] [F (hk1)|-[F (96)

P Ge )ca]'l’

and IFGe(hk])ca1| is the calculated structure amplitude of the germanium
atom, were then converted to normalized values (IEPI).

If we call F the structure factor of the PGe(OMe),, then the

P+Ge 2’°
following four combinations are possible for Fp,the structure factor

of the free macrocycle:

(a) FP+Ge=(+)IFP|+(+)IFGel
(8)  Fpyge=(-)IFpl+(-)[Fg,l
() Fpuger () Fpl+(-) [Py

(8) FP+Ge=(-)lFP]+(+)|FGeI
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For the cases (a), (8), the structure amplitude of the free macrocycle
will be given by

Feolls

IFol=] Fpygel-
which is equation (96). For the cases (y), (§) the structure amplitude
IFGe[ will be given by

Fpugel =l Fpl-IFgal | - (97)
Now if ]FP|<|FGe|——+|FGe|-|Fp|>0, hence

IFpsgel =IFgel-1Fpl » or

'lel I P+Ge| IF l’ or

|F

IFP! 1 P+Gel GeII

which again is equation (96). However, if IFP]>]FGel (which is not very
probable for most of the reflections), !FPI-]FGe|>0 and therefore
equation (97) becomes

IF Fol-IFgel  or

p+gel=IFp

| +[F

IFpl=l1Fpigel+IFgel I

and in this last case the approximation (96) fails.

The statistical distributions of the normalized structure amplitudes,
both with and without the metal, along with the theoretical distributions
for centric and acentric cases are given in Table II, where the normalized
structure factors were scaled such that <E%>=1.0. A set of 200 lEPI's
with values greater than 1.5 were used in a sign determination program

96. A starting set of seven signs was used; these

written by Long
corresponded to the three origin-defining reflections, (524), (212),

(423) and the four general reflections, (411), (323), (312) and (735).



TABLE II.

<[E[>
<E2>
<€2-1>
%51.0
%52.0

%>3.0

Statistical Distribution of |E]

PGefOMe}2

0.80
1.00
1.04
30.65
4.71
0.11

PGe (OMe)

2
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-Ge

0.85
1.00
0.85
32.95
3.49
0.22

Centric

0.80
1.00
0.97
32.00
5.00
0.30

Acentric

0.89
1.00
0.74
37.00
1.80
0.01
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In each of the sixteen possible solutions (24) all 200 signs were
determined. The solution with the highest consistency index was
selected (C=0.72), and an EP Fourier map revealed the positions of all
the non-hydrogen atoms of the porphyrin except that of the metal,
which was conspicuously absent. The solution proved to be that of the

two independent molecules centered around the independent centers of

symnetry and subsequent refinement verified the correctness of the
structure. Such unusual behavior has been observed in other structures
as wel177 799,

The coordinates of 26 non-hydrogen atoms corresponding to PGe(OH)2
were determined from the EP map. A structure factor calculation based
on these with an average isotropic thermal parameter for all atoms
gave an R-value of 0.21. At this stage, full-matrix, unit weight

least squares refinement was initiated. The function most commonly

minimized is
R=Zw(hk1 N lFo(hkl )-|Fc(hk1 ) 12,

where the sum is over the set of crystallographically independent planes
and the W(hk1) are weights.

Three cycles of refinement, one varying the coordinates and the
scale factor, another varying all isotropic thermal parameters and the
last varying the coordinates again along with the scale factor, reduced
R to 0.15. An observed electron density map was synthesized employing
all but about 100 coefficients which did not satisfy a rejection test,
(IFolxr.r.-lFCl), where r.r.=0.5; whenever the foregoing expression was
negative the corresponding reflection was not used in the Fourier

synthesis. This map revealed additional electron density near that of
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each of the independent oxygen atoms. From the peak height and the
distance to the oxygen atom (~1.4A), it became clear that the hydroxyl
groups had been replaced by methoxy groups of methanol during crystal-
lization, and that the additional density was due to a carbon atom
corresponding to a methyl group. An infrared spectrum of the compound
did not show an absorption in the -OH stretching region but it did
show a very strong absorption band at 1200 cm'], which is close to the
region of the O-CH3 stretch.

A structure factor calculation including the coordinates of the
assumed methyl carbon atoms reduced R significantly to 0.108 and a
difference electron density map was synthesized. A1l the expected
hydrogen atoms appeared including those of the methyl group thus con-
firming the correctness of the original assumption. The hydrogen atoms
were assigned isotropic temperature factors which were 1.25 greater
than the isotropic temperature factors of the carbon atoms to which
they were bonded and the resulting structure factor calculation had an
R of 0.094.

A correction for anomalous dispersion’was introduced at this point
for the germanium atom in the zero jonization state (f'=-1.3 for CuKa).
Anisotropic thermal parameters were introduced for all the non-hydrogen
atoms and the refinement was continued. The thermal parameters were
varied separately for the inside atoms of molecules 1 and 2 followed
by the outside atoms. According to the notation of Figure 7, the
"inside" atoms were taken to be:

1Ge, 1INA, 1A1, 1A4, 1AB, 1NB, 1B1, 1B4, 1BC,
2Ge, 2NA, 2A1, 2A4, 2AB, 2NB, 2B1, 2B4, 2BC,

with the remainder of the atoms being taken as the outside atoms.
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Figure 7. Labelling of PGe(OMe)Z.
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Three cycles of refinement, one varying the coordinates of the
non-hydrogen atoms and the scale factor, another varying the anisotropic
thermal parameters, first for the eighteen inside atoms and then for
the twelve outside atoms, and the last varying the coordinates of all
the non-hydrogen atoms and the scale factor, reduced R to 0.059. At
this stage, it was clear that 6 of the largest low order reflections
were affected by extinction: (111), (111), (020), (200), (202) and
(040); the average percent discrepancy, 100x <I|F0|—IFC|]>/[F0|, for
these reflections was 12.5. Consequently, they were removed from the
structure factor calculation and the R-value decreased to 0.056. Two
more cycles of refinement without these reflections, first on anisotropic
thermal parameters of the eighteeen and then on the twelve non-hydrogen
atom sets, and then on coordinates of all non-hydrogen atoms, reduced
the R-value to 0.052. Relocation of the hydrogen atoms form a new
difference electron density map improved the R value to 0.048. Three
more cycles of refinement , first on anisotropic thermal parameters in
the way described above, then on coordinates of all non-hydrogen atoms
and finally on thermal parameters again, gave an R-value of 0.043. A
cycle of refinement in the coordinates of hydrogen atoms, followed by
a cycle of refinement on the coordinates of non-hydrogen atoms did not
change the R-factor; furthermore, the parameter shifts were insignificant
compared to estimated standard deviations. Therefore, the refinement

of the structure was terminated.



V. RESULTS

Tables III and IV Tist the final atomic coordinates, anisotropic
temperature factors, and peak heights of all the non-hydrogen atoms of
the two independent centrosymmetrical molecules of the asymmetric unit
of the unit cell. Table V lists the final coordinates, isotropic
thermal parameters and peak heights of hydrogen atoms. The atom
notation is according to Figure 7. The standard deviations of the
atomic coordinates are in parentheses and are those of the final cycle
of the least squares refinement; the errors in the hydrogen atom
coordinates are about ten times greater than those of the atom to which
they are bonded. A least squares plane was calculated for the atoms
of the porphine of each molecule. The deviations of the atoms from
these least squares planes are listed in Table VI. Best least squares
planes were also computed for the atoms of each pyrrole ring separately
and the deviations from these planes are listed in Table VII. From
Table VII, it can be seen that the individual pyrrole rings are planar
within the error of their determination (+ 0.01A). Table VIII Tists
the equivalents of the principal mean-square displacements from equili-
brium positions of the non-hydrogen atoms. In addition, an average
isotropic temperature factor is listed for each atom based on the
principal mean-square displacements. From Table VIII it can be seen
that molecule 1 is considerably more disordered than molecule 2 of the

asymmetric unit. This can also be seen from the peak heights Tisted in
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Tables III and IV and it is also the reason for the generally larger
standard deviations of the atomic coordinates of molecule 1. The bond
distances and angles of the two independent molecules are presented

in Figures 8 and 9, and Figures 10 and 11 show distances between non-
bonded atoms. Figure 12 shows the PGe(OMe)2 molecule drawn in per-
spective in terms of its vibration ellipsoids (ORTEP, reference 100).
Finally, Figure 13 illustrates in perspective the manner in which the
four molecules are packed in the unit cell (ORTEP, reference 100).

The molecules (0,0,0) and (0,1/2,1/2), as well as (1/2,1/2,0) and
(1/2,0,1/2) are related with the symmetry operations of the space
group P2y/c while the molecules (0,0,0) and (1/2,1/2,0) or (0,1/2,1/2)
and (1/2,0,1/2) are symmetry independent. The dihedral angle between
the two symmetry dependent molecules (0,0,0), (0,1/2,1/2) is 33.34°,
while the dihedral angle between the other two symmetry related molecules
(1/2,1/2,0), (1/2,0,1/2) is 25.55°. The angle between the independent
molecules is 75.31° and the angle between molecules (1/2,1/2,0),

(0,1/2,1/2) or (0,0,0), (1/2,0,1/2) is 67.64°.
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TABLE IV. Final Atomic Coordinates, Thermal Parameters and Peak Heights. Molecule 2.

Anisotropic Thermal Peak
Atom Fractional Coordinates Parameters(x]04)7 Heightng—%)
X y Z 81 Baz B3z Bz Bz B3
2Ge 0 .5 .5 34 34 88 ] 5 0 58.0
2NA -.0948(2) .5888(2) .4181(4) 38 36 111 3 4 0 7.4
2A1 -.1022(3) .6807(3) .4589(5) 40 44 125 6 13 14 5.9
2A2 -.1809(3) .7185(3) .3796(6) 47 48 171 11 17 16 5.9
2A3 -.2109(3) .6512(4) .2956(6) 44 57 159 10 7 20 5.7
2A4 -.1664(3) .5685(3) .3171(6) 40 52 113 3 8 11 5.7
2AB -.1847(3) .4832(4) .2516(6) 42 61 134 -2 -4 1 6.1
2NB -.0592(2) .3976(2) .3738(4) 40 34 102 0 1 -4 7.2
2B1 -.1350(3) .4046 (3) .2775(6) 45 47 121 -2 3 6 6.0
2B2 -.1537(3) .3161(4) .2056(6) 54 56 146 -9 -4 -15 5.6
2B3 -.0891(3) .2577(4) .2563(6) 56 52 134 -15 20 -13 5.8
2B4 -.0306(3) .3081(3) .3631(5) 48 43 109 -5 15 -6 5.6
2BC .0450(3) .2720(3) .4398(6) 55 40 131 3 22 -3 6.3
20 .0732(2) .5330(2) .3410(3) 38 45 83 -3 16 4 9.0
2Me .0594(4) .5067(4) .1814(6) 57 78 99 -11 18 -1 4.7

L9
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TABLE V. Final Atomic Coordinates, Isotropic Temperature Factors,
and Peak Heights of the Hydrogen Atoms.

Atom X y z B(A2) Peak Height
(en™3)
Molecule 1
H1A2 .4312 .8502 L0911 5.2 .50
H1A3 .3143 .7824 .0874 5.7 .41
HTAB .2670 .6249 .2135 5.3 .38
H1B2 .2311 .4838 .3599 5.3 .45
H1B3 .3234 .3076 .3694 5.7 .36
H1BC .4513 .2327 .2210 5.0 .39
H11Me .6064 .5304 .3744 4.4 .40
H21Me .5203 .4940 .3536 4.4 .51
H31Me .5974 .4427 .3002 4.4 .48
Molecule 2
H2A2 -.1947 .7766 . 3966 4.6 .54
H2A3 -.2727 .6488 .2292 4.6 .44
H2AB -.2407 .4754 .1930 4.4 .41
H2B2 -.1987 .2978 .1359 4.8 .43
H2B3 -.1024 .2072 .2435 4.7 .44
H2BC .0594 .2093 .4162 4.5 .49
H12Me .1010 .5368 L1131 4.4 51
H22Me .0009 .5155 L1515 4.4 .44
H32Me .0734 .4384 .1690 4.4 51
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TABLE VI. Deviations of Porphine Skeleton From Least Squares Plane

Molecule 1 Molecule 2

Atom d(A) Atom d(A)
1Ge 0 2Ge 0

TNA -.05 2NA -.03
1A1 .03 2A1 -.01
1A2 .09 2A2 .01
1A3 .01 2A3 .01
1A4 -.06 2A4 -.01
1AB -.07 2AB .00
1NB -.02 2NB .02
1B1 -.03 2B1 .01
1B2 .03 2B2 .00
1B3 .07 2B3 -.02
184 .03 2B4 .01
1BC -.01 2BC -.01
10 1.81 20 1.81
1Me 2.67 2Me 2.68

g =% ,05A o = +.02A



TABLE VII.

Atom

TNA
1A1
1A2
1A3
1A4

Atom

2NA
2A1
2A2
2A3
2A4

Pyrrole A

.003
-.008
.009
.008
.003

+.007A

Pyrrole A

d(A)

-.002
.002
-.002
.001
.000

= +.002A

64

Molecule 1

Molecule 2

Aton

INB
1B1
1B2
1B3
1B4

o)

Aton

2NB
2B1
2B2
2B3
2B4

Deviations of Pyrroles From Least Squares Planes

= +.003A

Pyrrole B

o = +.006A

a

.001
.003
.007
.008
.006



TABLE VIII. Principal Mean-Square Displacements (A2) in 'Isotropic B' Notation

Molecule 1 Molecule 2
Atom 870 sdldy  Bxlils B> Atom &GS 815 8nlul <B>
1Ge  2.53 3.08 4.13 3.24 26e  2.43 2.77 3.20 2.80
N 3.04 4.07 4.93 4.01 ONA  2.93 3.13 3.56 3.20
A1 2.73 4.79 6.89 4.80 241 2.89 3.15 4.76 3.60
A2 2.97 4.3 9.44 5.58 202 3.15 3.92 6.00 4.36
A3 3.53 4.98 9.75 6.09 203 3.30 4.02 5.88 4.40
1A 2.90 4.10 6.89 4.63 204 2.94 3.48 4.70 3.71
A8 3.64 4.20 7.17 5.00 208 3.48 4.10 5.11 4.23
N 3.13 3.37 5.86 4.12 N8 2.66 3.05 3.64 3.12
181 2.50 3.91 8.23 4.88 281 3.26 3.90 4.20 3.79
B2 2.97 3.54 9.97 5.49 282 3.28 4.83 5,55 4.55
183 3.27 4.44 9.55 5.75 283 3.28 3.40 6.37 4.35
184 2.9 3.47 7.21 4.56 284 2.80 3.34 4.72 3.62
1BC  3.07 4.53 7.07 4.89 2BC  2.96 3.49 5.47 3.97
10 2.00 3.72 5.99 3.90 20 1.90 3.65 3.89 3.15
Me  2.85 4.46 7.20 4.84 Me  2.52 4.89 7.01 4.81

§9
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Figure 8. Bond distances (in A) and angles (in degrees);
broken lines indicate C-H distances; molecule 1.



67

Figure 9. Bond distances (in A) and angles (in degrees);
broken lines indicate C-H distances; molecule 2.
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Figure 10. Intramolecular distances and angles of the
central core region; molecule 1.



69

Figure 11. Intramolecular distances and angles of the
central core region; molecule 2.
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Figure 12. Computer plot of the PGe(OMe)2 molecule
(ORTEP, reference 100).
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molecule 2
(O010)

molecule |
(/2150)

Figure 13. Molecular packing of PGe(OMe)2 (ORTEP, reference 100).



VI. DISCUSSION

It is unusual and also interesting that there are two molecules of
PGe(OMe)2 located on independent centers of symmetry in the unit cell.
Although the reason for such a phenomenon remains uncertain, one thing

that is clear is the independence of the two molecules, in this case,

can lead to more efficient molecular packing. Four molecules in general
positions in space group P2]/c are related to each other by the sym-
metry elements of the space group. However, in the present case, the
orientation of the one pair of molecules is not dependent on the orienta-
tion of the other pair and the only restrictions between the two pairs

are "chemical and/or physical" in nature. Thus, the plane of molecule

2 is tilted about 75° with respect to the plane of molecule 1 (Figure 13).
In view of the large metal-normalized density of PGe(OMe)2 (see below),
this angle is probably close to an optimum with respect to molecular
packing.

The packing of PGe(OMe)2 is exceptionally efficient compared to
other porphyrin systems. The density of PGe(OMe)2 is the highest among
all porphines and porphyrins for which a structure has been determined
or unit cell dimensions have been measured. Due to the rather special
geometry of porphines and porphyrins (planar with a central hole),
macroscopic mass density is not the best quantity to compare for
relative effectiveness of packing. A better quantity is {F(000)-M}/V,
where F(000) is the number of electrons per unit cell, M is the contri-

bution to F(000) from a metal which might be located in the central hole,
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and V is the volume of the unit cell. The values of this "normalized"
electron density term for about 35 porphines and porphyrins are given

in Table IX. From Table IX, it can be seen that these fall conspicuously
into two groups (a) one with an average normalized density of (0.382+

-3

0.006)eA ~ and (b) the other with an average normalized density of

3

(0.402t0.003)eA'3. The corresponding value for PGe(OMe), is 0.425 eA™~,

2
which differs significantly from the averages of the respective groups
by many standard deviations. The compact packing of PGe(OMe)2 is
achieved with no unusually close intermolecular contacts and is probably
related to the location of the molecules on independent centers of
symmetry in the crystal and the concomitant freedom derived thereof.
The closest van der Waal's approach is about 3.49A (1Me-2Me), so that
the efficiency of the molecular packing is probably accomplished in a
cooperative way.

The recently determined crystal structure of dipyridinateocta-

99

ethy]porphyrinRu(II)(Ru(Py)ZOEP) , which also has two independent

molecules per unit cell located on independent centers of symmetry
(space group P2]/c), does not show a high normalized density (O.380eA-3).
The very high normalized density observed in PGe(OMe)2 might be due to
the more appropriate geometry of the ligands around the metal, combined
with the independence of the molecules in the unit cell.

The PGe(OMe)2 metalloporphine can be considered as a centrosymmetric
distorted octahedral complex with the oxygen atoms located at apical
positions. As was expected from the metal radius and its coordinationlzo,
the germanium atom is located on the plane of the macrocycle (Table VI).

The macrocycles of both 1 and 2 are essentially planar, although molecule

2 shows a higher degree of planarity than molecule 1; in molecule 2 the
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TABLE 1X(a). Comparison of Intrinsic Packing-Density of Porphyrins

Compound Space Group egeA-3)*
Tpp38 PT 0.4071
Ag(11)TPp10] PT 0.399
cd(1v)Tpp! Y] P1 (or PT) 0.399
a-ChTorohemin 92 PT 0.409
Porphine>? P2, /c 0.403
Tprp?0 P2, /c 0.400
cu(11)TPrp'03 P2, /c 0.398
Mn(111)c1TPP! O] P2, /c 0.398
Bis-imidazole

Fe(111)TPpC1 104 P2, /c 0.401
vo-ppEp! 0 P2, /c 0.397
pyzn(11)TPyp 106 c2/c 0.404
PP/ 1424 0.404
cu(11)Tep'08 1324 0.403
pd(11)TPp!08 1424 0.405
Ni(11)TPP108 1324 0.405

<(F(000)-M)/V>=(0.402 + 0.003)eA™
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TABLE IX(b). Comparison of Intrinsic Packing-Density of Porphyrins

Compound Space Group ggeA'3!*
Bis-piperidine-

Fe(11)TPp'0? 3] 0.381
ogp' 10 3 0.390
Ni(11)oEp 1] 3] 0.388
Etio 1112 P2, /c 0.384
Co(11)OEP-

Me-imidazole! '3 P2,/c 0.376
H,OMg(11)Tpp! 1 14/m 0.377
H,0zn(11)TPP! 13 I4/m 0.377
H,OFe(I11)(0H)TPP 16 14/m 0.374
sn(1v)c1,7pp’O I4/m 0.380
vorpp !0 14/m 0.375
Ni (11)oep! 14, /m 0.373
MeOFe(III)-Porphyrin

IXester! 18 12/m 0.383
Ni-etio I'19 14, /m 0.387

<(F(000)-M)/V>=(0.380 + 0.006)eA™>

*p=(F(000)-M)/V
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angle between the planes of adjacent pyrrole rings is 1.2° while in
molecule 1 the corresponding angle is 6.2°.

From Figures 8 and 9 it can be seen that the distances and angles
of the two independent molecules are not exactly the same, and in
general molecule 2 shows better internal consistency than molecule 1.
It can also be seen from Tables III and IV that the peak heights for the
atoms of molecule 2 are in general higher than the corresponding peak
heights of molecule 1, as well as from Table VIII which lists the mean
square displacements of the atoms along the principal axes of the
ellipsoid. The thermal parameters of the molecule 1 are higher than
those of molecule 2. Those differences could be due to packing effects
which can more easily influence the more flexible peripheral part of
the molecule but not the dimensions of the central hole. Indeed the
germanium-nitrogen distances are exactly the same in both molecules, as
well as the germanium-oxygen distances. The Tlatter agree fairly well
with the distance obtained from GeO2 (space group P42/mnm) which is
1.85A(reference 25, p. 321) and with the distance obtained by simply
adding the atomic radii of germanium and oxygen (1.85A, reference 25,
p. 321). The carbon-oxygen bond of the methoxy group is short, parti-
cularly in molecule 1; the corresponding distance in simple alcohols
and ethers is 1.43A, as compared with an average of 1.391A in the
PGe(OMe)2 structure.

The geometry of sthe germanium-methoxy group with respect to the
macrocycle is different in the two independent molecules (Figure 14);
the different interactions of the methoxy group with the atoms of the
porphine is probably another reason why the molecules are on independent

centers of symmetry and are not exactly alike.



2Me

Figure 14.

2NA 2NB

Geometry of the Ge-OMe group with respect to the pyrollic nitrogens of the porphine macrocycle.
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Figure 15. Average bond distances and angles of PGe(OMe)z.
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13 L387

Figure 16. Average bond distances and angles of the free
base porphine (from reference 39).



80

For a comparison of the PGe(OMe)2 structure with similar systems,
an average of the bond distances and angles over the two molecules has
been taken. This average structure is shown in Figure 15, and an

average structure of the free base porphine39

is illustrated in Figure 16.
By a direct comparison of the two average structures it can be seen that
the angles of the pyrrole ring of the PGe(OMe)2 structure are the same
(within the experimental error) with the aza pyrrole of the porphine.

In addition the average distances of the aza pyrrole of the porphine,

with the exception of the Ca-C bond, are the same with the corresponding

B
bond distances of the PGe(OMe)2 porphine. The slight decrease of about
0.02A in the Ca-CB bond in the latter might be an indication that the
"electron path" a in Figure 4 is enhanced when the germanium atom
substitutes the two pyrrolic hydrogens. In general the substitution of
the two inner pyrrole hydrogens with a relatively non heavy metal tends
to make all the pyrrole rings of the porphine equivalent and equivalent
to the aza pyrroles of the free base as far as their bond distances and
especially their angles are concerned. This phenomenon was also observed

in the structures of n-propy]porphineCu(II)]03

117

and octaethylporphine-
Ni(II) , despite the fact that the metals Ge, Cu, and Ni are of entirely
different nature. The complexation process of a metal by a porphine or
porphyrin can be naively described by a two step process; firsf the

two pyrrole hydrogens are removed and the two electrons are delocalized
all over the macrocycle making all four pyrroles equivalent, and then,

the positively charged metal simply neutralizes the negatively charged
molecule. The geometrical constraints of the porphyrin systems are so

overwhelming, that metals with a relative low electron content do not

disturb the system and show the same effect of increasing the symmetry
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of the macrocycle. The effects due to internal electronic distributions
are very difficult to detect in the crystal structure. On the other
hand, the size of the metal severely effects the geometry of the core.
Metals with large radii which are forced due to symmetry reasons (for
instance octahedral geometry) to remain on the plane of the macrocycle,
can cause large changes in bond distances and angles. This was shown
in the two recently determined structures of dichloridetetraphenyl-
porphineSn(IV)70 and dich]orideocthaethy]porphineSn(IV)7]. Because of
the large tin-nitrogen distance (~2.1A), the CaNCa angle is forced to
increase by approximately 3° and the Cbe bond distance to increase by
0.02-0.03A in order to minimize the reduction of the already strained
NCaCb angle. Thus the D4h approximate symmetry is retained but the
pyrroles have been changed from their free base state because of the

inherent strain of the porphine macrocycle.



PART II

THREE DIMENSIONAL STUDY OF o-CHYMOTRYPSIN AT pH 8.7
AND 2.7 WITH DIFFERENCE FOURIER METHOD



PROLEGOMENA

Myoglobin and hemoglobin were the first globular proteins to
have their three-dimensional structures solved by means of X-ray
diffraction. J. C. Kendrew and M. F. Perutz received the Nobel Prize
in chemistry in 1962 for this achievement]Z].

Fifteen years later, the field of protein crystallography has
grown to such an extent, that at least forty other protein structures

have been solved to near-atomic reso]utionlzz.

Electron density maps
at lower resolution have been calculated for numerous other proteins;
even a conservative estimate of these would be unwise to give here,

because the number changes so rapidly with time]22’]23.

The exponential
growth is primarily due to the two following reasons: first the number
of scientists involved in protein crystallography has been increased
dramatically the last ten years, and second, the increased availability
of very fast digital computers and automatic, almost self-controlled
diffractometers has made the routine examination of such problems practical.
The three dimensional structure determination of a molecule of small
molecular weight can still be difficult and tedious today due to the
"phase problem" which is discussed in part I of this work. The deter-
mination of the phase angles for a protein crystal is much more difficult
and time consuming because essentially none of the methods which have
been developed for small molecules are applicable to protein structure

124

determination In addition to the technical difficulties of the
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interpretation of the Fourier image of a "solved protein structure"]24,

the chemist-crystallographer also attempts to answer questions relating
to the function of the protein molecule in living systems. He tries

to unambiguously locate the "active site" within the molecule, that is,
those parts of the protein which are mainly responsible for its specific
action, and with the aid of the three-dimensional arrangement and
additional experiments to propose a "mechanism" for that action. More-
over, he attempts to rationalize the overall topological features of

tnhe molecule, and if possible explain the evolutionary changes that have
taken place in various species, by a careful comparison of the structural
and chemical characteristicé in a series of similar functioning proteins
originating from different biological species, and by locating "invari-
ances" around sensitive and critical parts of protein molecules. Trying
to unfold even one of the forementioned "protein mysteries" is not an
easy task so that pure empiricism is interwoven with sophisticated

]25’]26. However,

theory in an effort to achieve a reasonable answer
one thing is certainly clear. Protein molecules are composed of the
same fundamental constituents as other molecules and they should obey
the basic principles that we already know. Therefore it should be a
question of time, patience and a little luck before some of the current
major problems are solved.

This work has been conducted in the spirit of providing missing
pieces in the experimental picture of the proteolytic enzyme a-chymo-

trypsin, whose three-dimensional structure has been determined in our

laboratory.



VII. INTRODUCTION

1. Enzymes: Historical

Enzymes are substances of large molecular weight that direct
numerous chemical reactions that occur in all living organisms. We
can envisage that the living organism functions through a matrix of
chemical reactions of extraordinary complexity, which are controlled
and catalyzed by many enzymes. The results of the action of enzymes
were observed Tong before the nature of the responsible agents was
recognized. Lazzaro Spallanzani noted in 1765 that gastric juice

]27, but it was only after 68 years that the

dissolved chunks of meat
first clear recognition of an enzyme was made, when in 1833 A. Payen
and J. F. Persoz conducted a more detailed study of the process of
starch solubilization and showed that the responsible agent was something
which they called "diastase". The name enzyme was introduced 45 years
later by the physiologist W. Kuhne, and is derived from the Greek
preposition en (ev), meaning in, and the Greek word zyme (,Jun), meaning
yeast]zg. In 1907 the German chemist Eduard Buchner was awarded the
Nobel Prize in chemistry for his work on enzymes.

The first pure enzyme, which was named urease because it causes the
hydrolysis of urea to ammonia and carbon dioxide, was obtained in 1926
by J. B. Summer. He also showed that urease was a protein, something

of tremendous significance at that time. After this cornerstone

discovery things proceeded at a faster rate. J. H. Northrop and M. Kinitz
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isolated pure crystalline pepsin and trypsin and showed that these
enzymes are also proteins. By 1946, hundreds of enzymes had been puri-
fied and it had been shown beyond a doubt that all enzymes are of
proteinic nature. For their work on enzymes, in 1949 Summer and Northrop
shared the Nobel Prize in chemistry. In the following years, the study
of enzymes became more systematic and thorough. In 1963, the primary
structure of the enzyme bovine pancreatic ribonuclease had been estab-

1ished]29; in 1965 and 1967, the three-dimensional structures of

130 131

lysozyme and pancreatic ribonuclease were reported respectively,

and finally in 1969, the laboratory synthesis of bovine pancreatic ribo-
nuclease was announced]32.

A1l enzymes are proteins, ranging in molecular weight from about
10,000 to several million amu. They are very sensitive to changes in
temperature and chemical environment and particularly sensitive to
changes in pH: their action can be completely inhibited with relatively
small changes in pH. They show a remarkable degree of specificity for
the reactions which catalyze. Their action is usually attributed to a
small portion of their total content, the so called "active site".

It seems that the rest of the molecule is inactive, that is, it does

not participate directly in chemical catalysis, but rather, it helps in
maintaining the geometry of the active site and its immediate environment
in a manner appropriate for binding substrate for reaction; this inactive
part is also connected with regulatory and protective properties.

The exact manner in which an enzyme acts has not yet been elucidated.
It is well known that the specific action of enzymes is related to
certain chemical groups which are "catalytically active" (from a com-

pletely empirical point of view), such as hydroxyl (-OH), carboxyl (-COQOH)
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or amino (-NH2) groups. For instance, an aliphatic group has never
been classified as necessary for the activity of an enzyme. It seems
that the mobility and the special properties of the hydrogen ion (the

H" has an exceptionally small radius 10713

cm and due to this property
it can cause very large polarizations in the nearby groups, and it can
also act as a wave packet rather than as a particle) play a fundamental
role in the mechanism of enzymatic action. It is also known that the
geometrical structure or the charge distribution in space (commonly
called three-dimensional structure) of an enzyme is very critical for
its function. A1l else concerning mechanisms of enzymatic action is
speculative. For this problem to be approached more effectively, it
probably should be examined in a less traditional way. As Baron Francis
Bacon said: "It would be an unsound fancy and self-contradictory to

expect that things which have never yet been done, can be done except

by means which have never yet been tried".

2. Alpha Chymotrypsin: A General Discussion

Alpha Chymotrypsin (hereafter denoted as «-CHT) is a proteolytic
enzyme of chemical composition C]]]3N3000349H]752512, consisting of
three peptide chains A, B, C of 13, 131 and 97 residues, respectively.

It has a molecular weight of 25,305 amu and its sequence was determined

133,134 135

in 1964 by Hartley and Meloun, et. al., and it was revised by

]36. Figure 17 shows the sequence of a-CHT.

Blow, et. al., in 1969
It belongs to a more general class of proteins which are called "Serine
Proteinases" where a reactive serine plays an important role in activity;
this residue reacts with diisopropylfluorophosphate {((CH3)2CHO)2-E—F}

0
leading to complete loss of enzymatic activity. o-CHT is formed from an
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Figure 17. The sequence of a-CHT.
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