Impedance spectroscopy study of nickel electrodeposits

H.S. Karayianni a,*, G.S. Paternaraki a, J.C. Papaioannou b

a Section of Materials Science and Engineering, Department of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, Zografou 157 80, Athens, Greece

b Laboratory of Physical Chemistry, Department of Chemistry, University of Athens, Panepistimioupolis 157 71, Athens, Greece

Received 28 August 2000; received in revised form 19 June 2001; accepted 21 June 2001

Abstract

Nickel electrodeposits prepared in NiSO 4 and NiCl 2 electrolytes with thicknesses of 43–49.4 μm were examined by the impedance spectroscopy (IS) method for a–c frequencies 1 Hz–100 kHz. The Nyquist diagrams were single, almost perfect semicircles, suggesting the applicability of the in parallel combination of the \(R-C \) elements characterised by a single relaxation time, \(8.27 \times 10^6 \) s, combined in series with another \(R \) element, \(R < R_c \). This relaxation time predicted that the incorporated hydrogen atoms are involved in the process of conduction by a hopping/diffusion mechanism, which is differentiated in the cases of NiSO 4 –Ni and NiCl 2 –Ni deposits. The diffusion coefficient of hydrogen, \(1.25 \times 10^{-11} \) cm 2 s -1 , was determined. The microstructure of Ni electrodeposits was also studied and characterised by electron microscopy. Finally, a general model for the microstructure of Ni electrodeposits, consistent with the results of impedance spectroscopy, was formulated. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Nickel electrodeposits; Impedance spectroscopy; Hydrogen hopping/diffusion conduction mechanism; Microstructure model

1. Introduction

The selective orientation or the texture axis of nickel electrodeposits [1–4] and their secondary structure and morphology [4–6] were previously investigated. These samples prepared in pure NiCl 2 and NiSO 4 were examined in detail by the XRD, electron microscopy and optical microscopy methods [4]. From the mechanism of Ni deposition [4] and earlier results [7–13], the \(\text{SO}_4^{2-} \) [4,7], H and \(\text{H}_2 \) [8,9] and most probably \(\text{H}_2\text{O} \) (as molecular \(\text{H}_2\text{O} \) or as \(\text{H}^+ \) and \(\text{OH}^- \)) species are embodied in the NiSO 4 –Ni deposits, while the \(\text{Cl}^- \) and \(\text{Cl}_2 \) [10,11], \(\text{H} \), \(\text{H}_2 \) as well as \(\text{OH}^- \) (as \(\text{Ni(OH)}_2 \), \(\text{Ni(OH)}^+ \) and \(\text{NiOH} \)) and \(\text{H}_2\text{O} \) (as molecular \(\text{H}_2\text{O} \) or as \(\text{H}^+ \) and \(\text{OH}^- \)) [9–13] species are embodied in the NiCl 2 –Ni deposits. The grain sizes and the amount of the incorporated species are affected by pH and especially by the current density [4]. The behaviour of Ni deposits in different corrosive environments [14,15], their sorptive properties [16,17], hardness [18] and protective properties [19] were also investigated.

The revealed nature/composition and structure of Ni deposits [1–6] could explain only partially their peculiar properties and further investigation appeared to be necessary. The most suitable method for that was judged to be impedance spectroscopy (IS) which,
alone or together with other methods, has been applied for investigating complex microstructures of solid materials [20] since it is sensitive to separate effects of the bulk material, grain boundaries and electrode interfaces. Ni deposits were examined by an impedance spectroscopy Q-meter method at a–c frequencies 8–22 MHz [21]. Although the results were significant, they failed to reveal the structural characteristics responsible for their behaviour. In the present work, Ni deposits were examined by an improved IS method in a region of lower frequencies, 1 Hz–100 kHz, where suitable information could be obtained. The microstructure of Ni electrodeposits was examined by electron microscopy. Then, a general model for their microstructure, consistent with the results of IS, was formulated, which may apply to explain the peculiar properties of Ni electrodeposits.

2. Experimental

The experimental configuration, materials, procedure, bath temperature of 50 °C, stirring rate of 1200 rpm and charge density of 146.3 C cm⁻² employed for the preparation of Ni deposits on brass circular plates, 32 mm in diameter and 3.5 mm in height, in 1.22 M NiSO₄ and 1.22 M NiCl₂ baths, were the same as previously done [4]. Different pH values, 2–4.5, and current densities, 0.2–10 A dm⁻², were employed. With an electrochemical efficiency of 100%, the above charge density produces a 50-μm thick compact Ni deposit. The real thickness of the NiSO₄–Ni deposits (compact material) [4] and the equivalent to compact thickness of the NiCl₂–Ni deposits (porous material) [4] examined by IS were determined from their masses (Table 1).

The deposits were circular films 27 mm in diameter. These were detached carefully from substrates to avoid damage to their structure. Two platinum circular plate electrodes, 10 mm in diameter, were attached to both face surfaces of each deposit so that the three centres of circular plates coincided. The diameter of deposit (27 mm) is much higher than that of electrodes (10 mm) and so no edge correction was needed [22].

An improved IS method was employed by which a full spectrum of impedance values at 400 discrete successive frequency values between 1 Hz and 100 kHz is obtained within a short time interval of the order of 1 s, allowing the detection of small spectrum details not distinguishable with common methods (i.e. the Q-meter method, etc.). Impedance measurements were obtained with a low-frequency Dynamic Signal Analyser (DSA) (Hewlett-Packard model 3561A). The instrument measured simultaneously the amplitude of the impedance vector (|Z|) and the phase (φ) shift at each frequency (F).

Table 1

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>pH</th>
<th>j (A m⁻²)</th>
<th>Ni thickness (μm)</th>
<th>10⁻³ × R, (Ω)</th>
<th>10⁻³ × R, (Ω)</th>
<th>C, × 10⁴ (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiSO₄</td>
<td>4.0</td>
<td>0.2</td>
<td>45.8</td>
<td>36.9</td>
<td>1.4</td>
<td>2.2</td>
</tr>
<tr>
<td>NiSO₄</td>
<td>4.0</td>
<td>1.2</td>
<td>49.4</td>
<td>37.1</td>
<td>1.4</td>
<td>2.2</td>
</tr>
<tr>
<td>NiSO₄</td>
<td>4.0</td>
<td>3.5</td>
<td>44.1</td>
<td>38.1</td>
<td>3.7</td>
<td>2.2</td>
</tr>
<tr>
<td>NiSO₄</td>
<td>4.0</td>
<td>4.0</td>
<td>43.0</td>
<td>34.8</td>
<td>3.5</td>
<td>2.4</td>
</tr>
<tr>
<td>NiSO₄</td>
<td>4.0</td>
<td>5.0</td>
<td>43.6</td>
<td>36.9</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td>NiCl₂</td>
<td>2.0</td>
<td>0.9</td>
<td>47.4</td>
<td>36.8</td>
<td>1.4</td>
<td>2.3</td>
</tr>
<tr>
<td>NiCl₂</td>
<td>2.5</td>
<td>1.0</td>
<td>43.1</td>
<td>34.6</td>
<td>3.5</td>
<td>2.4</td>
</tr>
<tr>
<td>NiCl₂</td>
<td>2.5</td>
<td>3.0</td>
<td>45.0</td>
<td>35.4</td>
<td>3.3</td>
<td>2.3</td>
</tr>
<tr>
<td>NiCl₂</td>
<td>2.5</td>
<td>5.0</td>
<td>47.6</td>
<td>37.5</td>
<td>1.4</td>
<td>2.2</td>
</tr>
<tr>
<td>NiCl₂</td>
<td>3.0</td>
<td>7.0</td>
<td>48.0</td>
<td>34.8</td>
<td>3.4</td>
<td>2.4</td>
</tr>
<tr>
<td>NiCl₂</td>
<td>4.0</td>
<td>1.2</td>
<td>48.0</td>
<td>34.7</td>
<td>3.5</td>
<td>2.4</td>
</tr>
<tr>
<td>NiCl₂</td>
<td>4.0</td>
<td>2.5</td>
<td>47.0</td>
<td>35.1</td>
<td>3.5</td>
<td>2.4</td>
</tr>
<tr>
<td>NiCl₂</td>
<td>4.0</td>
<td>4.0</td>
<td>48.3</td>
<td>34.7</td>
<td>3.4</td>
<td>2.4</td>
</tr>
</tbody>
</table>
periodic noise signal (large number of sine-wave signals) was applied by the instrument to the system composed of the sample combined in series with a constant, known resistance. The voltage across the resistance was kept less than 10% of the total voltage applied to the terminals to minimise its effect on \(\varphi \). The real and imaginary parts of \(Z \) (Re\(Z \) and Im\(Z \), respectively) and conductivity (\(\sigma \)) were determined. Measurements were taken at room temperature. The microstructure of Ni electrodeposits was also examined by electron microscopy and suitable electron photomicrographs were obtained.

3. Results

3.1. Results of the impedance spectroscopy examination of Ni electrodeposits

The \(\varphi \) vs. frequency plots of the NiSO\(_4\)–Ni and NiCl\(_2\)–Ni deposits prepared at different pH and current density (\(j \)) values are shown in Fig. 1. The real part of impedance (\(Z \)) and imaginary part of impedance, (\(Z \)) vs. \(F \) plots are shown in Fig. 2a,b. All plots relevant to the different NiSO\(_4\)–Ni or NiCl\(_2\)–Ni deposits essentially coincide. Appreciable differences appear only between the groups of NiSO\(_4\)–Ni and NiCl\(_2\)–Ni deposits. Im\(Z \) gives a maximum at an \(F \) which, to a good approximation, is 19.25 kHz for all cases.

The corresponding Nyquist diagrams, i.e. the Im\(Z \) vs. Re\(Z \) plots (Fig. 3) are always almost perfect semicircles passing close to the origin. The centre of each semicircle lies almost on the Re\(Z \) axis. The semicircular Im\(Z \) vs. Re\(Z \) diagrams exclude the appearance of a self-inductance for \(F \leq 100 \) kHz [20]. The intersections of the semicircles with the Re\(Z \) axis are close to the Re\(Z \) values when \(F \to 0 \) and at \(F = 100 \) kHz. These values are noted as \(R_q + R_b \) and \(R_b \), respectively. The \(R_q \) and \(R_b \) values of all the NiSO\(_4\)–Ni and NiCl\(_2\)–Ni deposits are listed in Table 1. Always, \(R_b \ll R_q \). Slight relative variations of \(R_q \) and significant ones for \(R_b \) are observed. The \(R_q \)'s are essentially identical for all NiSO\(_4\)–Ni and NiCl\(_2\)–Ni deposits.
Fig. 3. The Nyquist diagrams for the NiSO₄–Ni and NiCl₂–Ni electrodeposits.

These Nyquist diagrams postulate an equivalent circuit consisting of the in parallel combination of \(R \) (resistive) and \(C \) (capacitive) elements combined in series with \(R \) (resistive) element [20] (Fig. 4) and that a single relaxation mechanism applies. Therefore
\[
2 \pi f_{\text{max}} \tau = 1, \tag{1}
\]
where \(\tau \) is the relaxation time. Because \(f_{\text{max}} \approx 19.25 \) kHz, it is inferred that \(\tau = 8.27 \times 10^{-6} \) s. The \(f_{\text{max}} \) must also satisfy the equation [20]
\[
2 \pi f_{\text{max}} R \, C = 1. \tag{2}
\]
The \(C \) values, found from Eq. (2), are given in Table 1. Both \(C \)'s and \(R \)'s are essentially independent of pH, \(j \), electrolyte kind and, therefore, also of the texture axis [4].

The a–c conductivity, \(\sigma \), was calculated by the form
\[
\sigma = 4h (\pi D^2)^{-1} G = 4h (\pi D^2)^{-1} \text{Re} Z(|Z|^2), \tag{3}
\]
where \(h \) is the Ni deposit thickness, \(D \) is the diameter of platinum electrode and \(G \) is the conductance or the real part of the admittance \(Z^{-1} \). The \(\sigma \) vs. \(F \) plots are shown in Fig. 5. Considering the conductivity of pure Ni, \(\approx 1.28 \times 10^3 \ \Omega^{-1} \ \text{cm}^{-1} \) [23], and the results in Fig. 5, it appears that the Ni deposits loses their metallic character to a great extent.

The determined \(f_{\text{max}} \approx 19.25 \) kHz and \(\tau = 8.27 \times 10^{-6} \) s cannot be attributed to a relaxation mechanism involving electron polarisation, ionic/atomic polarisation, dipole polarisation and space charge polarisation since these processes are met at \(f \approx 10^{-12}–10^{-13}, \approx 10^8–10^9, \approx 10^6 \) and \(\approx 10^{-3} \) Hz, respectively [24]. It could be assumed that the results of this study refer to the last case. However, exhaustive examination of Ni deposits by the XRD, optical microscopy and electron microscopy [4] did not reveal the presence of any other phase than Ni (see also later). Hence, there are not two or more discrete phases so that a space charge could be developed. Because \(\tau \) is essentially constant, the species involved in the relaxation mechanism must be identical in all cases. Only hydrogen can satisfy that condition.

The \(\sigma \) vs. \(F \) for the NiSO₄–Ni and NiCl₂–Ni electrodeposits.

![Fig. 5. Dependence of \(\sigma \) on \(F \) for the NiSO₄–Ni and NiCl₂–Ni electrodeposits.](image-url)
The hydrogen atoms must participate in the conduction by a diffusion/hopping mechanism. It anticipates an activation energy comparable to that of hydrogen diffusion inside Ni. Similar relaxation mechanism was also revealed for Cu deposits containing hydrogen [25]. As shown [25], τ and the diffusion coefficient (D) are related by the equation

$$\tau = a^2/(12D)^{-1}.$$ \hspace{1cm} (4)

where a is the lattice constant of the solid material. For the Ni lattice, $a = 3.5238$ Å [24]. From the τ and a values, D is found to be $D = 1.25 \times 10^{-11}$ cm2 s$^{-1}$ at room temperature. It agrees well with that found by other methods for Ni deposits (implanted with P) $2-8 \times 10^{-10}$ [26,27] and Ni (melt-quenched Ni$_8$P$_{19}$ amorphous alloy) 2.2×10^{-11} cm2s$^{-1}$ [28] at this temperature verifying the above analysis.

3.2. The microstructure of Ni electrodeposits

The microstructure of NiSO$_4$–Ni and NiCl$_2$–Ni deposits was examined by electron microscopy. As verified, it is complex affected relatively slightly by pH and strongly by j in both cases. The microstructure of the NiSO$_4$–Ni and NiCl$_2$–Ni deposits in some characteristic cases is shown in Figs. 6 and 7.

The NiSO$_4$–Ni deposits (Fig. 6) are compact materials although micropores may appear. In general, the crystals/grains of material surface tend to be developed according to a pyramidal structure (a–d), but finally, it is transformed to a structure made of densely packed agglomerates of hemispherical grains, separate grains and clusters. The SO$_2$ ions in the

Fig. 6. Electron microscopy photomicrographs for the surfaces of NiSO$_4$–Ni deposits obtained at $j = 2$ (a and b), 3.5 (c) and 10 (d) A dm$^{-2}$; pH = 2 (a and b), 3.5 (c) and 4.5 (d). (a) Secondary electron image (SEI) × 60, (b) SEI × 480, (c and d) Scanning electron microscopy (SEM) × 4000.

At low and intermediate j’s, a columnar structure, parallel to gravity during the growth of deposits, is verified (Fig. 7a). Between columns of a flat material developed almost uniformly, linear valleys enlarged upwards appear inside, in which separate grains or clusters exist (Fig. 6a,b). The first regions are those at which the development of attached H₂ bubbles during the Ni deposition process is not favoured. In the second ones, despite the vigorous bath stirring, their development may be favoured hindering the Ni deposition and H₂ evolution processes until the bubbles are detached. Since the H₂ evolution rate is low [4], the average H₂ bubble grows slowly, remaining attached for a relatively long time before its detachment. When detached, the bubbles move spontaneously upwards. Small bubbles detached from lower surface regions may be joined with bubbles attached at upper positions forming larger attached ones. As a result, valleys are thus formed which are generally enlarged upwards.

At intermediate and high j’s, a fine microstructure and a stepwise sub-microstructure are verified (Fig. 6c,d). The observed stepwise sub-microstructure may be due to a stepwise development of each pyramid or is created by hydrodynamic effects of the vigorously stirred bath. The pyramidal/spheroidised structure is favoured at low and intermediate j and pH values, where the relative rates of H₂ evolution are high [4] (Fig. 7a–c). At high j and pH values, where the relative rates of H₂ evolution are low [4], besides the pyramidal/spheroidised structure, a cellular structure is also favoured (Fig. 7d).

The only distinguishable phase in Fig. 6 is that of Ni. Nevertheless, separate dark regions in the boundaries between two and mainly between three neighbouring grains are distinguished (Fig. 6b–d), which
are attributed primarily to inclusions and secondarily to void spaces. Such regions are also dispersed on the surface of grains. The latter regions are destined to become the boundary regions containing inclusions and/or voids between neighbouring grains as above during the next stages of Ni deposition process. Such regions are rare or absent inside the bulk of each separate grain.

The NiCl$_2$–Ni deposits (Fig. 7) are fine spongy materials (Fig. 7a,c,d). Their structure also tends to become a pyramidal/spheroidised one at low j's, Fig. 7a. A stepwise sub-microstructure is also verified at intermediate j's (Fig. 7b,c). This stepwise sub-microstructure is explained as for the NiSO$_4$–Ni deposits. At intermediate j's, the material shows a clear pyramidal structure (Fig. 7b). The boundaries between two neighbouring coarse pyramids are distinguished in the lower region of Fig. 7c.

The growth of crystallisation nuclei on the surface of the big pyramids (Fig 7b,c) predicts a dentritic development of material. Pores of largely varying sizes are observed in each grain (Fig. 7c) created probably by the dentritic development and/or by the adsorption of H$_2$. At higher j's, a porous, columnar, spongy and dentritic microstructure is clearly shown (Fig. 7d) which seems to be characteristic for the NiCl$_2$–Ni deposits. The average grain sizes of NiCl$_2$–Ni deposits is generally lower than that of the NiSO$_4$–Ni deposits. The only distinguishable phase in Fig. 7 is also Ni. However, as in the NiSO$_4$–Ni deposits, separate dark regions in the boundaries between two and mainly between three neighbouring grains as well as on the surface of the grains appear, which are attributed to the same reasons, i.e. to inclusions and voids. The number and extent of such regions in the NiCl$_2$–Ni are larger than in the NiSO$_4$–Ni deposits. This is also valid for the bulk grains.

4. Discussion

4.1. Interpretation of the involvement of hydrogen in the mechanism of conduction

The adsorption of hydrogen on metallic surfaces disturbs the band structure of the metals affecting the electrical conductivity. An increase of conductivity was observed during the adsorption of hydrogen on some metallic surfaces [29] but even metal–insulator transitions occurred in other cases [29]. Although the mechanism of its adsorption is generally different from that of its incorporation in the metal bulk, e.g. in Ni deposits forming hydrides [8], these are consistent with the decrease of conductivity of Ni deposits.

Because the H atoms are small and mobile, they can be incorporated easily in interstitial positions (H) and voids (H and/or H$_2$). The formation of H$^-$ is possible because the electronegativity of H is appreciably higher than that of Ni. That is why Ni hydride is easily formed [8]. Electrons are captured from those in the conduction band of Ni causing the decrease of conductivity. The ionised H atoms contribute to the conduction mechanism by their hopping/diffusion through voids or interstitials causing some increase of conductivity. The final result is a strong decrease of conductivity of Ni deposits, as indeed observed. The H$_2$ molecules must be incorporated mainly in voids in the grain boundaries. The probable incorporation of non-ionised H atoms must decrease the conductivity due to both the deformation of the crystal lattice and disturbance of the Ni band structure.

4.2. Interpretation of the ohmic R_a and R_b and capacitive C_a elements

The size of SO$_2^-$ incorporated in the NiSO$_4$–Ni deposits [4,7] is much larger than that of Ni$^{2+}$, and SO$_2^-$ cannot penetrate the Ni crystal lattice. They can be incorporated exclusively in the grain boundary surfaces, where they are strongly bound by ionic bond and become immobile. The Ni$^{2+}$ bound with SO$_2^-$ do not offer electrons to the conduction band. The formed NiSO$_4$ is an insulator increasing the resistance of Ni deposits.

The Cl$^-$ ions, present at significant amounts inside the NiCl$_2$–Ni deposits [10], and OH$^-$ must be located also mainly in these surfaces as impurities. Ni$^{2+}$ are bound with Cl$^-$ and OH$^-$ by ionic bond. The formed NiCl$_2$ and Ni(OH)$_2$ or Ni(OH)$_3$ are also insulating materials increasing the resistance of deposits. The existence of Cl$_2$ in the grain boundaries exerts similar effects.

The H$_2$ molecules incorporated mainly in the grain boundaries in both the NiSO$_4$–Ni and NiCl$_2$–Ni...
deposits act as a physical and energy barrier and exert similar effects.

Hence, all the above inclusions increase strongly the resistance of the grain boundary surfaces. In some places of these surfaces, the concentration of the insulating impurities and their thickness become sufficiently high and this part of the surfaces does not permit the current passage, either electronic or by the hydrogen diffusion/hopping mechanism; it is essentially an insulator and becomes capacitive. The C_s capacitive element is thus justified. Even the H$_2$O molecules, probably embodied in the above surfaces, give a capacitive character to these surfaces due to their high dipole moment. It is noted that the geometrical self-capacitance of Ni deposits may imperceptibly contribute to C_s.

In the remaining part of the grain boundary surfaces, the concentration of the insulating impurities and their thickness are not significant and it behaves as an ohmic resistance. The passage of electronic current through this part is strongly hindered but possible, while the current passage by the hydrogen diffusion/hopping mechanism becomes significant compared to the electronic one. The R_s ohmic element is attributed to that part of the grain boundary surfaces. Apparently, C_s and R_s are combined in parallel.

The imperceptible variations of C_s and R_s with the preparation conditions and the kind of electrolyte can be interpreted if it is considered that the above two parts of the grain boundary surfaces are comparable in the different cases. This is possible considering that the capacitive regions are mainly the boundaries between three grains, where impurities at large amounts are accumulated, and the ohmic regions are mainly those between two grains where the amount of inclusions are much lower.

The grains bulk must also have some resistance R_o, much lower than R_s, mainly because the amount of inclusions is negligible compared to that of the ohmic part of the grain boundaries. The conductivity inside them must approach that of pure Ni. Therefore, R_o must be much lower than R_s, or it is a part of R_o. The remainder R_s-R_o is attributed to arbitrary resistances in the contacts between specimens and electrodes. This justifies the significant variation of R_s, which is thus attributed to the scatter of these resistance values.

4.3. Interpretation of the variation of σ with F and the kind of electrolyte

Due to the forced electrochemical process of Ni deposition, the sizes of grains become generally small and a significant concentration of lattice defects of both kinds, interstitials and voids exists inside them. Since the NiCl$_2$–Ni are porous, spongy and dendritic materials [4] and have more kinds and higher amounts of inclusions than the NiSO$_4$–Ni, the NiCl$_2$–Ni have lower crystallite sizes, more kinds and higher concentrations of defects than the NiSO$_4$–Ni; the crystal lattice of NiSO$_4$–Ni approaches better the perfect crystal lattice.

The participation of hydrogen atoms by the hopping mechanism in the conduction can explain the variation of σ with F for both NiSO$_4$–Ni and NiCl$_2$–Ni. It is known [30] that three cases of the hopping conduction mechanism are distinguished. The first is a simple hopping mechanism where, in the absence of long range interactions, a single particle (H$^-$ in the present case) is presumed to move along an infinite lattice of identical potential wells. The conductivity is then expected to be relatively low and independent of F. This case is met in the NiSO$_4$–Ni, the crystal lattice of which approaches the perfect crystal lattice and the potential wells in it are more regularly distributed.

In the second case, double potential wells separated by a barrier with height lower than that of the outer wells walls (single biwell potential) exist, and a single particle hopping is supposed to occur forward and backward inside each double potential well. The conductivity may increase with increasing rate of F, and the σ vs. F plots stem from a relatively low value on the σ axis. The double potential wells may be anticipated by the lattice structure or are formed by suitable defects. In the third case, triple potential wells exist in which the heights of the two internal potential barriers are not equal and both are lower than the lateral equal potential barriers. A single particle hopping is supposed to occur forward and backward inside them. In this case, a stepwise, constant low σ appears in the region of low F’s, followed by an accelerated increase of σ, followed by a stepwise, constant σ, etc. Such potential wells may be anticipated by the crystal lattice or are formed by suitable complex defects.
The conductivity of NiCl₂–Ni must be attributed to the second case or to a mixture or a hybrid between the first and the second cases. This may be also attributed to a mixture or a hybrid between the first, second and third cases, where in the third case, the first stepwise stage appears for a narrow range of F’s in the vicinity of $F = 0$. Nevertheless, the successive stage, where the conductivity increases, normally develops. The second and probably the third cases are possible mainly for NiCl₂–Ni rather than for NiSO₄–Ni. This is due to the much higher amount of inclusions, the porous structure, the lower grain sizes, etc. of NiCl₂–Ni, which create complex defects capable of forming such double and probably triple potential wells, mainly near the grain boundaries. It is noted that σ in the second case, as well as in the third case, supposing that the first stepwise conductivity stage appears in the vicinity of $F = 0$ and in a narrow range of F’s, is given by the form [30].

$$\sigma = \sigma_0 + A \omega^n \text{or } \ln(\sigma - \sigma_0) = \ln A + n \ln \omega,$$

(5)

where σ_0 is σ at $F = 0$, A and n are constants, characteristic of the material, and ω is the cyclic frequency. To test its validity, the average σ’s of the NiCl₂–Ni were determined at various discrete F’s like 20, 40, 60, 80 and 100 kHz and the $\ln(\sigma - \sigma_0)$ vs. $\ln \omega$ plot was constructed (Fig. 8). By the linear regression analysis, the n, A and correlation coeffi-

Fig. 8. Plots of $\ln(\sigma - \sigma_0)$ vs. $\ln \omega$ for the NiCl₂–Ni deposits.

Fig. 9. Real (a) and idealized (b) schematic representations of the boundaries between two grains. The regions of the ohmic resistance R_a and capacitance C_a of the grain boundaries and of the ohmic resistance R_b of the grains bulk are depicted.
cient values were found to be $1.9898, \approx 2, 2.852 \times 10^{-12}$ and 1, respectively, verifying Eq. (5) and the whole above analysis.

4.4. The suggested model for the microstructure of Ni electrodeposits

As verified, the microstructures of NiSO$_4$–Ni and NiCl$_2$–Ni are complex enough, while a large variety and strongly variable quantities of inclusions exist in the deposits [4–13]. Due to the complex nature/composition and structure of deposits, which are largely varying with the kind of bath solution and preparation conditions, a general and satisfactory interpretation of the peculiar properties of Ni electrodeposits [14–19] based on these characteristics seems to be extremely difficult or impossible. Nevertheless, the IS results showed that the role of the grains and inclusions is similar in both NiSO$_4$–Ni and NiCl$_2$–Ni deposits. This allows the formulation of a general model for the microstructure of Ni deposits applicable in both cases, which may be used to explain the peculiar properties of Ni electrodeposits in future studies.

Taking into consideration all given above, a real and an idealized schematic representation/model of the bulk and boundary surfaces of two grains, with their boundary surface perpendicular to the field strength direction, the ohmic resistances and capacitance regions and the corresponding elements of the equivalent circuit are given in Fig. 9a,b. This model is applicable irrespective of the complexity of the microstructures and the kinds and quantities of inclusions for both the NiSO$_4$–Ni and NiCl$_2$–Ni deposits.

5. Conclusions

(1) The inclusions yield capacitive regions in the boundaries mainly between three grains, and ohmic regions mainly between two grains. The conduction through the latter regions embraces a hopping/diffusion conduction mechanism of incorporated ionised H atoms.

(2) The conductivity of NiCl$_2$–Ni is generally higher than that of NiSO$_4$–Ni for $F \gg 0$, which is well justified by the hydrogen hopping/diffusion mechanism of conduction.

(3) The diminution of the conductive–metallic character of Ni deposits, the incorporation of highly resistive or insulating species in the grain boundaries, the hydrogen hopping/diffusion conduction mechanism, the equivalent circuit (Fig. 4) and the microstructure model (Fig. 9) may explain in future studies the peculiar properties of Ni deposits [14–19].

(4) The results of this study are important, stimulating further investigation for the mechanism of current conduction through the Ni electrodeposits and their microstructure.

References

