THE JOURNAL OF PHYSICAL CHEMISTRY

Electronic Structure and Bonding of Cobalt Monoxide, CoO, and Its lons CoO⁺ and CoO⁻: An Ab Initio Study

Constantine N. Sakellaris and Aristides Mavridis*

Department of Chemistry, Laboratory of Physical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 71, Greece

Supporting Information

ABSTRACT: We present a systematic and high-level ab initio study of CoO and its ions, CoO+ and CoO-. Employing variational multireference (MRCI) and single-reference coupled-cluster methods combined with basis sets of quintuple quality, we have calculated 50, 31, and 7 bound states for CoO, CoO⁺, and CoO⁻, respectively. For all these states, complete potential energy curves have been constructed at the MRCI level of theory, whereas for a few low-lying states core subvalence and scalar relativistic effects have been taken into account. We report energetics, spectroscopic parameters, dipole moments, and spin-orbit coupling constants. The ground states of CoO, CoO⁺, and CoO^- are $X^4\Delta$, $X^5\Delta$, and $X^5\Delta$, respectively, the latter established for the first time. The CoO is quite ionic with a Co to O Mulliken charge transfer of ~0.6 electrons and a dipole moment $\mu(X^4\Delta) = 4.5 \pm 0.1$ D. The overall agreement between theory and experiment is good, but there are also important deviations. Despite the seeming simplicity of these diatomic species, reliable results can only be obtained at a high level of theory.

I. INTRODUCTION

The present study of cobalt monoxide and its ions (CoO, CoO^{\pm}) is related to our previous work on the 3d transition metal oxides $MO^{0,\pm}$, M = Sc, Ti, V, Cr, Mn, and Fe (refs 1–3). Despite their chemical simplicity, 3d MO diatomics are very demanding systems both computationally and experimentally,⁴ not yielding easily even to high-level methods of solving the eigenvalue Schrödinger equation. The causes for the great difficulties of obtaining reliable theoretical results on the 3d MO series are well-known and there is no need to discuss it here;¹⁻³ see also refs 5 and 6.

Experimental work on CoO extends to 16 publications;^{7–22} see also the review article by Merer.⁴ As early as 1945, Rosen⁷ reported an harmonic frequency for the ground state of CoO, $\omega_{\rm e} = 840 \,{\rm cm}^{-1}$. A first estimation of the binding energy was given in 1966 by Grimley et al., ${}^{8}D_{0}{}^{0} = 86.4 \pm 3$ kcal/mol. Twenty years later, Adam et al.¹¹ established through laser-induced fluorescence spectroscopy that the ground state of CoO is of ${}^{4}\Delta$ symmetry; until then it was believed to be ${}^{4}\Sigma^{-,9,10}$ In 1993 Ram et al.¹⁴ using FTIR emission spectroscopy reported along with the ground state a ${}^{4}\Pi$ state with $r_{e} = 1.653 \, 19 \, (18)$ Å, lying ~5500 cm⁻¹ above the $X^4\Delta$. These numbers have been confirmed later on by Danset and Manceron.¹⁹ More recently, Barnes and coworkers¹⁶ recorded through laser excitation beam spectroscopy nearly 100 bands of gaseous CoO in the wavelength region of 430-720 nm. Among their numerous findings, the possibility of a ${}^{4}\Sigma^{-}$ state was suggested lying 3038 cm $^{-1}$ above the ground state. A similar suggestion for the existence of a ${}^{4}\Sigma^{-}$ state at $T \sim 3400$ cm⁻¹ was made by Danset and Manceron. ¹⁹ Concerning the X⁴ Δ state, the most reliable experimental data read as follows: $r_e =$ 1.628 626 (32) Å¹⁴ or 1.627 862 (1) Å,²¹ $\omega_{\rm e} = 862.4 \text{ cm}^{-1,16}$ $D_0^{\ 0} = 4.08 \pm 0.09 \text{ eV} (=94.1 \pm 2.1 \text{ kcal/mol})$ ²⁰ and EA (electron affinity) = $1.45 \pm 0.01 \text{ eV}.^{11,17}$

```
Received: April 23, 2012
Revised:
          June 1, 2012
Published: June 18, 2012
```

The theoretical literature on CoO consists of three ab initio $^{23-25}$ and 10 density functional theory (DFT) 26 publications. The DFT results, as usual, at least for this type of molecules, depend upon the functional used. In 1987, Dolg et al.²³ calculated through CISD and adjusted ab initio relativistic pseudopotentials the ${}^{4}\Delta$ and ${}^{4}\Sigma^{-}$ states, suggesting the ${}^{4}\Delta$ as the ground state. Later on, Bauschlicher and Maitre²⁴ studied the ground states of the isovalent MO and MS series (M = Sc-Cu)by multireference averaged coupled pair functional (MR-ACPF) and coupled-cluster CCSD(T)/[7s6p4d3f2g/Maug-cc $pVQZ/_{O,S}$] methods. For the X⁴ Δ of CoO, they found r_e = 1.621 Å, $D_0^{0} = 83.9$ kcal/mol, $\omega_e = 909$ cm⁻¹, and $\mu = 3.46$ D. Very recently, Baranowska et al.²⁵ obtained $\mu = 5.13$ (CASPT2) and 4.71 D (CCSD(T)) using single-point ($r_e = 1.621 \text{ Å}^{24}$) calculations, combined with reduced-size polarized basis sets; corresponding values including scalar relativistic effects are $\mu =$ 5.42 and 4.64 D, respectively. There is no experimental value of the dipole moment of CoO.

We move now to the cation, CoO⁺. From the Armentrout group we do know the binding energy of CoO⁺, $D_0^{0} = 75.9 \pm 1.4^{12}$ or 76.1 \pm 1.6 kcal/mol,¹³ and the ionization energy of CoO, IE = 8.69 \pm 0.20 eV.¹² Through rotational photodissociation spectroscopy the ground-state symmetry of CoO⁺ was recently determined to be ⁵ Δ_4 with $r_0 = 1.65 \pm 0.01$ Å by Kamariotis et al.²⁷ In addition, these workers determined two more states, B⁵ Φ_5 and C⁵ Π_3 , with $T_0 = 16713 \pm 10$ and 17 588 \pm 10 cm⁻¹ at $r_0 = 1.87 \pm 0.01$ and 1.86 \pm 0.015 Å, respectively.

The first theoretical work on CoO⁺ was published in 1988 by Carter and Goddard.²⁸ Ten years later, Sodupe and co-authors²⁹ reported CCSD(T) and DFT/B3LYP calculations on the ground states of the MO⁺ series, M = Sc-Cu. The most recent theoretical work on CoO⁺ is that of Nakao et al.³⁰ These workers examined 16 states of CoO⁺ around equilibrium by multireference configuration interaction methods, using the Stuttgart relativistic small core effective potential for the $1s^22s^22p^6$ electrons of Co and a $[6s5p3d1f/_{Co}aug-cc-pVTZ/_O]$ basis set; they report r_e , D_0 , and ω_e . Their results will be contrasted with ours later on. Finally, among other molecular species, two more DFT works on CoO⁺ have appeared in the literature.^{26e,31}

For the anion, CoO⁻, the only experimental parameter known is its ionization energy, IE = $1.45 \pm 0.01 \text{ eV}$.^{11,17} Theoretical work is limited to DFT calculations,^{26b,d,f,i} predicting either a ${}^{5}\Delta$ (DFT/B1LYP)^{26d,i} or a ${}^{3}\Sigma^{-}$ (DFT/B3LYP)^{26f} ground state. The ground state of CoO⁻ has yet to be determined experimentally. Our results clearly indicate a ${}^{5}\Delta$ ground state followed by two low-lying states of ${}^{3}\Phi$ and ${}^{3}\Sigma^{-}$ symmetries (vide infra).

This literature survey shows the need for systematic high-level ab initio calculations on the $CoO^{0,\pm}$ species. To that end, we have performed variational multireference configuration interaction and single-reference coupled-cluster calculations, combined with extended correlation consistent basis sets. We have constructed full potential energy curves (PEC) for 50, 31, and 7 bound states of CoO, CoO⁺, and CoO⁻, respectively, reporting common spectroscopic parameters, dissociation energies, dipole moments, separation energies, and spin–orbit coupling constants.

This paper is structured as follows. In section II we give some technical details; sections IIIA, IIIB, and IIIC refer to results and discussion on CoO, CoO^+ , and CoO^- , respectively; and a final section IV epitomizes our findings.

II. TECHNICAL ASPECTS

The correlation consistent basis set of quintuple cardinality by Balabanov and Peterson³² was used for the Co atom combined

with the corresponding augmented basis set for the O atom, augcc-pV5Z.^{33,34} Both sets were generally contracted to [9s8p6d4f3g2h1i/_{Co}7s6p5d4f3g2h/_O] \equiv A5 ζ . This Gaussian set of order 280 was used for the construction of all potential energy curves (PEC). To account for the 3s²3p⁶ subvalence core electrons of the Co atom, the weighted core cc-pwCV5Z set was employed in the CI calculations.³² This means that the A5 ζ basis set was enriched by a set of weighted core functions, (2s2p2d1f1g1h1i), and then generally contracted to [11s10p8d5f4g3h2i/_{Co}7s6p5d4f3g2h/_O] (\equiv CA5 ζ) of order 338.

All PECs have been calculated by the complete active space self-consistent field (CASSCF) + single + double replacements (CASSCF + 1 + 2 = MRCI) method under $C_{2\nu}$ symmetry restrictions. The CASSCF reference wave functions are defined by allotting 13 (CoO), 12 (CoO⁺), and 14 (CoO⁻) electrons to nine "valence" orbitals (4s + $3d/_{Co}$ + $2p/_{O}$). Internally contracted (ic)³⁶ valence MRCI wave functions were calculated by single + double excitations out of the reference spaces including the 2s electrons of the O atom. For a limited number of low-lying states, the single-reference (based on CASSCF natural orbitals) restricted coupled-cluster + iterative singles + doubles + quasiperturbative connected triples approach, RCCSD(T), ³⁵ was also employed. Correlation effects of the subvalence electrons of the Co atom $(3s^23p^6)$ were taken into account by including them in the MRCI and RCCSD(T) calculations, named C-MRCI and C-RCCSD(T). For the first 5 states of CoO and CoO^+ and the 7 states of CoO^- , the inclusion of the 4p (Co) and 2s(O) orbitals in the reference space resulted in much larger expansions, tagged MRCI-L. These calculations were only possible by limiting the excitations to the 4p space to singles and doubles. The size of the icMRCI (MRCI), icC-MRCI (C-MRCI), and icMRCI-L (MRCI-L) expansions for the $X^4\Delta$ ground state of CoO, for instance, are $1.5 \times 10^{6} (2.2 \times 10^{8})$, $6.8 \times 10^{6} (1.3 \times 10^{9})$, and $6.7 \times 10^7 (7.9 \times 10^9)$ configuration functions. Of course, all our MRCI calculations are of the internally contracted type.

Scalar relativistic effects for a few low-lying states were estimated by the second-order Douglas-Kroll-Hess (DKH2) approach.^{37,38} For the DKH2 calculations, the A5 ζ and CA5 ζ basis sets were recontracted accordingly.³² Spin–orbit (SO) couplings constants (A) are obtained by diagonalizing the $\hat{H}_{e} + \hat{H}_{SO}$ Hamiltonian within the \hat{H}_{e} MRCI/A5 ζ eigenvectors, where \hat{H}_{SO} is the full Breit–Pauli operator. Basis set superposition errors (BSSE) estimated by the usual counterpoise method,³⁵ are about 0.4 kcal/mol or less. Spectroscopic parameters have been determined by solving numerically the one-dimensional Schrödinger equation. The size nonextensivity error (SNE) estimated by subtracting the sum of the energies of the atoms from the total energy of the supermolecule at the internuclear distance of 30 bohr is, for instance, $SNE(X^4\Delta) = 19$ (7) and 33 (11) mE_h at the MRCI (+Q)/A5 ζ and C-MRCI(+Q)/CA5 ζ level, respectively, where +Q refers to the Davidson correction. To further reduce the SNE we have performed multireference averaged coupled-pair functional (ACPF)⁴¹ calculations for a few states of CoO and the ground states of CoO[±]. At this level for the $X^4\Delta$ state, SNE = 0.3 (ACPF/A5 ζ) and 0.6 mE_h (ACPF/CA5 ζ).

All calculations have been carried out by the MOLPRO2006 suite of codes. $^{\rm 42}$

III. RESULTS AND DISCUSSION

A. CoO. The ground state of the Co atom is $a^4F(4s^23d^7)$ with the first two excited states, $b^4F(4s^13d^8)$ and $a^2F(4s^13d^8)$, 0.4172 and 0.8785 eV higher, respectively.⁴³ The interaction of Co (a^4F) and O(³P), albeit repulsive due to the $4s^2$ distribution of the Co

Table 1. Total Energies $E(E_h)$, Bond Distances $r_e(Å)$, Dissociation Energies $D_e(\text{kcal mol}^{-1})$, Harmonic Frequencies, and Anharmonicity Corrections ω_e , $\omega_e x_e(\text{cm}^{-1})$, Rotational–Vibrational Coupling Constants $\alpha_e \times 10^3 (\text{cm}^{-1})$, Dipole Moments μ (D), Mulliken Charges on Co q_{Co} , and Energy Separations $T_e(\text{cm}^{-1})$ of the First Five States of Co¹⁶O; Experimental Results Are Also Included

method ^a	-E	r _e	D_{e}^{b}	ω_{e}	$\omega_{\rm e} x_{\rm e}$	α_{e}	$\langle \mu \rangle / \mu_{\rm FF}{}^c$	$q_{\rm Co}$	T_{e}
				$X^4\Delta$ (a^4F)					
MRCI	1456.78176	1.628	79.6	881	5.7	3.9	3.61/4.50	0.54	0.0
MRCI+O	1456.83115	1.619	86.0	904	4.5	3.7	/4.62		0.0
MRCI+DKH2	1467.27752	1.616	78.8	894	5.1	3.9	3.63/4.37		0.0
MRCI+DKH2+O	1467.32771	1.607	85.4	923	5.7	3.9	/4.42		0.0
C-MRCI	1457.18841	1.629	76.3	879	5.3	3.9	3.61/4.47		0.0
C-MRCI+O	1457.28208	1.618	85.1	909	4.5	3.7	/4.64		0.0
C-MRCI+DKH2	1467.68473	1.618	75.5	893	5.6	4.0	3.64/4.35		0.0
C-MRCI+DKH2+O	1467.77935	1.606	84.4	929	5.9	3.9	/4.43		0.0
ACPF	1456.83434	1.618	86.0	909	5.1	3.7	3.41/4.64		0.0
ACPF+DKH2	1467.33112	1.606	85.6	924	4.4	3.8	3.40/4.39		0.0
C-ACPF	1457.29704	1.614	85.3	919	4.7	3.7	3.29/4.61		0.0
C-ACPF+DKH2	1467.79481	1.603	84.8	937	4.9	3.9	3.28/4.38		0.0
RCCSD(T)	1456.85236	1.623	89.8	906	4.0	3.3	/4.79		0.0
RCCSD(T)+DKH2	1467.34836	1.609	88.7	924	3.8	3.4	/4.60		0.0
C-RCCSD(T)	1457.32910	1.625	90.3	907	3.9	3.3	/4.74		0.0
C-RCCSD(T)+DKH2	1467.82569	1.611	88.9	926	3.6	3.3	/4.55		0.0
MRCI-L	1456.80560	1.626	84.8	92.9	6.1	3.5	4.73/4.69	0.58	0.0
MRCI-L+O	1456.84082	1.621	88.2	953	6.3	3.2	/4.35	0.00	0.0
MRCI-L+DKH2	1467.30106	1.614	83.8	938	5.9	3.5	4.60/4.53		0.0
MRCI-L+DKH2+O	1467 33665	1.609	87.1	962	5.8	33	/4 29		0.0
exnt	1407.33003	1.6279^d	$941 + 21^{e}$	862.4 ^f	5.13 ^f	3.9883 ^d	/ 4.27		0.0
expt		1.0279) <u>, , , , , , , , , , , , , , , , , , ,</u>	$a^{6}\Delta$ ($a^{4}F$)	5.15	5.7005			
MRCI	1456 77014	1 689	72.3	729	48	45	178/187	0.58	2550
MRCI+O	1456 81357	1.679	75.0	748	53	47	/1.75	0.00	3857
MRCI+DKH2	1467 26421	1.682	70.4	735	49	46	1 84/1 94		2921
MRCI+DKH2+O	1467 30826	1.670	73.2	756	5.5	4.8	/1.83		4267
C-MRCI	1457 17876	1.670	70.3	735	46	4.4	1.88/1.92		2117
C-MRCI+O	1457 26580	1.695	74.9	748	5.1	46	/1.82		3572
C-MRCI+DKH2	1467 67339	1.686	68.4	730	47	4.5	1 93/1 99		2489
C-MRCI+DKH2+O	1467.76112	1.673	73.0	753	5.3	4.7	/1.89		4000
ACPE	1456 81496	1.677	73.9	749	5.5	4.8	1 59/1 69		4253
ACPF+DKH2	1467 30981	1.668	73.2	758	57	4.9	1.59/1.09		4677
C-ACPE	1457.27690	1.677	72.6	751	5.5	4.8	1.65/1.69		442.1
C-ACPF+DKH2	1467.772.58	1.669	70.8	758	5.6	4.9	1.67/1.77		4879
RCCSD(T)	1456.82730	1.649	74.1	806	7.1	5.4	/1.58		5499
RCCSD(T)+DKH2	1467.32305	1.643	72.9	822	7.3	5.4	/1.70		5556
C-RCCSD(T)	1457.30171	1.646	73.1	830	7.0	5.2	/1.55		6011
C-RCCSD(T)+DKH2	1467.79832	1.640	71.8	842	7.0	5.2	/1.66		6006
MRCI-L	1456.79155	1.686	76.0	734	5.0	4.6	1.69/1.78	0.52	3082
MRCI-L+O	1456.82284	1.677	76.9	757	5.4	4.7	/1.72		3947
MRCI-L+DKH2	1467.28618	1.676	74.5	747	5.4	4.8	1.77/1.80		3265
MRCI-L+DKH2+O	1467.31795	1.667	75.4	771	5.9	4.8	/1.78		4104
expt ^g		1.686	,	729.7	0.0		,		7028 ± 1.3
			I	$B^4\Sigma^-$ (a^4F)					, 1
MRCI	1456.75491	1.583	62.7	904	3.1	5.9	3.50/4.70	0.61	5894
MRCI+O	1456.80568	1.568	70.0	972	3.2	4.8	/5.01		5590
MRCI+DKH2	1467.24788	1.580	60.2	890	3.3	6.6	3.58/4.53		6506
MRCI+DKH2+O	1467.29924	1.565	67.5	965	3.2	5.2	/4.80		6247
C-MRCI	1457.16261	1.583	60.1	898	3.4	6.4	3.51/4.52		5663
C-MRCI+O	1457.25740	1.565	69.6	987	3.6	4.9	/4.88		5416
C-MRCI+DKH2	1467.65621	1.581	57.6	884	3.5	7.0	3.60/4.41		6260
C-MRCI+DKH2+O	1467,75160	1.562	67.0	979	3.4	5.2	/4.69		6091
RCCSD(T)	1456.83587	1.579	79.5	961	3.6	3.2	/5.60		3618
RCCSD(T)+DKH2	1467.32807	1.572	76.0	967	3.2	3.2	/5 34		4453
C-RCCSD(T)	1457 31316	1.572	803	961	3.0	3.2	/5.54		3498
$C_{\rm RCCSD}(T)$	1467 80612	1.577	76.6	972	30	3.4	/5.30		4295
MRCI-L	1456.78371	1.594	71.1	920	3.7	5.3	5.12/5.53	0.58	4803
	1,00./03/1	1.077	/ 1.1	120	5.7	0.0	5.14 5.55	0.00	1000

Table 1. continued

method ^a	-E	r _e	D_e^{b}	$\omega_{\rm e}$	$\omega_{\rm e} x_{\rm e}$	$\alpha_{\rm e}$	$\langle \mu angle / \mu_{ m FF}{}^c$	$q_{\rm Co}$	$T_{\rm e}$
			В	${}^{4}\Sigma^{-}$ (a ⁴ F)					
MRCI-L+Q	1456.82040	1.581	75.4	978	3.6	4.4	/5.47		4481
MRCI-L+DKH2	1467.27565	1.591	67.8	891	3.5	5.9	5.07/5.48		5575
MRCI-L+DKH2+Q	1467.31248	1.578	71.9	952	3.4	5.1	/5.12		5306
expt ^g		1.641		835.5					3390 ± 1.3
			А	4Φ (a ⁴ F)					
MRCI	1456.75815	1.643	64.8	792	7.2	5.0	3.47/4.69	0.67	5182
MRCI+Q	1456.80430	1.633	69.2	823	7.7	5.0	/5.00		5892
MRCI+DKH2	1467.25166	1.639	62.6	793	7.7	5.2	3.57/4.69		5674
MRCI+DKH2+Q	1467.29842	1.628	67.0	825	7.2	4.9	/4.96		6428
C-MRCI	1457.16623	1.644	62.4	785	7.1	5.1	3.44/4.55		4867
C-MRCI+Q	1457.25603	1.632	68.8	822	7.6	5.0	/4.89		5718
C-MRCI+DKH2	1467.66040	1.640	60.2	785	6.9	5.2	3.55/4.57		5339
C-MRCI+DKH2+Q	1467.75088	1.627	66.5	825	8.4	5.2	/4.88		6249
MRCI-L	1456.78763	1.639	73.5	856	7.5	4.3	4.74/6.02	0.66	3943
MRCI-L+Q	1456.82031	1.633	75.3	887	8.4	4.1	/6.20		4501
MRCI-L+DKH2	1467.28080	1.634	71.1	850	7.7	4.5	4.79/5.67		4447
MRCI-L+DKH2+Q	1467.31380	1.628	72.7	879	7.7	4.2	/5.78		5016
			C	24Π (a4F)					
MRCI	1456.74700	1.660	57.8	741	5.9	5.3	3.55/4.78	0.67	7630
MRCI+Q	1456.79411	1.644	62.8	788	7.0	5.1	/5.00		8129
MRCI+DKH2	1467.24117	1.656	56.0	749	5.5	5.0	3.65/4.79		7978
MRCI+DKH2+Q	1467.28893	1.640	61.1	791	6.4	5.0	/4.98		8511
C-MRCI	1457.15486	1.661	55.3	731	6.2	5.5	3.52/4.66		7362
C-MRCI+Q	1457.24562	1.642	62.2	785	8.1	5.6	/4.91		8001
C-MRCI+DKH2	1467.64966	1.658	53.5	738	5.3	5.1	3.63/4.68		7698
C-MRCI+DKH2+Q	1467.74114	1.639	60.4	788	7.2	5.4	/4.92		8387
MRCI-L	1456.77600	1.652	66.2	811	7.0	4.6	4.77/6.46	0.66	6497
MRCI-L+Q	1456.80917	1.641	68.3	845	7.7	4.5	/6.08		6947
MRCI-L+DKH2	1467.26995	1.648	64.3	812	6.6	4.5	4.80/5.69		6826
MRCI-L+DKH2+Q	1467.30337	1.638	66.2	839	7.0	4.5	/5.57		7304
expt ^g		1.6532		804.8					5837 ± 1.3

^{*a*}+Q, DKH2, and C- refer to the Davidson correction for unlinked clusters, Douglas–Kroll–Hess approximation of second order for scalar relativity, and that the subvalence core electrons of Co($3s^23p^6$) have been included in the CI calculations, respectively. Calculations marked by "-L" (MRCI-L, MRCI-L+Q, MRCI+DKH-L, MRCI-L+DKH+Q) have been performed with a larger reference space; see text. ^{*b*}With respect to the ground state atoms, Co(a^4F) + O(³P). ^cDipole moment calculated as the expectation value $\langle \mu \rangle$, or through the finite-field approach, μ_{FF} ; field strength 10⁻⁵ au. ^{*d*}Reference 20; D_0 value. ^{*f*}Reference 16. ^{*g*}Reference 19; see text.

the radius of which is at least 3 times larger than the 3d radius,⁴⁴ gives rise to 36 $^{2S+1}\Lambda$ molecular states, namely, $^{2,4,6}(\Sigma^+[2], \Sigma^-,$ $\Pi[3], \Delta[3], \Phi[2], \Gamma)$ doublets, quartets, and sextets. Of course, an equal number of states (of the same space-spin symmetry) emanates from the second energy channel, $Co(b^4\bar{F}) + O(^3P)$. We have studied all 36 states correlating adiabatically to $Co(a^4F)$ + $O({}^{3}P)$, plus 14 more related to the second channel, $Co(b{}^{4}F)$ + $O(^{3}P)$. However, our results indicate (vide infra) that, (a) the CoO system in all states studied is quite ionic with an equilibrium Mulliken charge on Co of about +0.6, and (b) the corresponding occupations of the Co atom are very close to a 4s¹3d⁷ distribution, pointing to an in situ Co⁺ electron configuration. The first two excited states of Co^+ are $a^5F(4s^13d^7)$ and $b^{3}F(4s^{1}3d^{7})$, 0.4287 and 1.2118 eV above its ground $a^{3}F(d^{8})$ state, respectively;⁴³ the latter is not involved in the Co + Obonding process. These two Co⁺ terms, a⁵F and b³F, when combined with the ²P term of the oxygen anion give rise to doublets and quartets, and quartets and sextets, that is, $^{2,4}(\Sigma^+,$ $\Sigma^{-}[2], \Pi[3], \Delta[3], \Phi[2], \Gamma$ and ${}^{4,6}(\Sigma^{+}, \Sigma^{-}[2], \Pi[3], \Delta[3], \Phi[2], \Gamma)$, respectively, a total of 24 + 24 = 48 ${}^{2S+1}\Lambda$ molecular states. Therefore, we are inclined in the following discussion to adopt the ionic model Co⁺O⁻ as more pragmatic. Indeed, the construction of 50 complete potential energy curves at the

MRCI+Q/A5 ζ level, all bound with respect to ground-state atoms and with binding energies ranging from ~9 to 90 kcal/mol, seems to corroborate the above considerations.

Tables 1 and 2 collect our numerical results ($E, r_e, D_e, \omega_e, \omega_e x_e, \alpha_e, \mu, T_e$) for 50 bound states of CoO along with existing experimental values for easy comparison, whereas Figure 1 displays full MRCI+Q/A5 ζ PECs and the corresponding energy level diagram (inset).

1. $X^4\Delta$. Employing a variety of methods, i.e., MRCI, ACPF, RCCSD(T), and MRCI-L including subvalence $(3s^23p^6)$ core effects and scalar relativistic corrections (DKH2), we have performed calculations for five low-lying states, $X^4\Delta$, $a^6\Delta$, $A^4\Sigma^-$, $B^4\Phi$, and $C^4\Pi$, in ascending formal energy order according to the MRCI+Q results; see Table 1. It was not possible to apply the RCCSD(T) method to the $B^4\Phi$ and $C^4\Pi$ states. We discuss here separately our findings on the ground state of CoO, followed by the first four excited states and then the rest 45 states, the latter calculated at the plain MRCI+Q/AS ζ level.

Including the spin-orbit (SO) coupling the $X^4\Delta_{\Omega}$ splits into four Ω -components, namely, ${}^4\Delta_{1/2}$, ${}^4\Delta_{3/2}$, ${}^4\Delta_{5/2}$, and ${}^4\Delta_{7/2}$, the ground state being ${}^4\Delta_{7/2}$, i (inverted).¹¹ The MRCI/A5 ζ calculated (experimental)²¹ SO coupling constant A is 181 (162.8 ± 2.60) cm⁻¹. Table 2. Total Energies $E(E_h)$, Bond Distances $r_e(A)$, Dissociation Energies $D_e(\text{kcal mol}^{-1})$, Harmonic Frequencies and Anharmonicity Corrections ω_e , $\omega_e x_e(\text{cm}^{-1})$, Rotational–Vibrational Coupling Constants $\alpha_e \times 10^3 (\text{cm}^{-1})$, Dipole Moments μ (D), Mulliken Charges on Co q_{Co} , and Energy Separations $T_e(\text{cm}^{-1})$ of 45 Higher States of Co¹⁶O at the MRCI+Q Level of Theory (Experimental Values in Brackets)

state ^a	-E	r _e	$D_e^{\ b}$	ω _e	$\omega_{\rm e} x_{\rm e}$	α_{e}	$\mu_{\mathrm{FF}}{}^c$	$q_{\rm Co}$	$T_{\rm e}$
$1^{2}\Gamma$ ($a^{4}F$)	1456.79040	1.698	64.6	695	4.2	4.1	4.00	0.54	8942
$1^{2}\Pi$ ($a^{4}F$)	1456.78802	1.612	63.1	740	9.7	7.8	4.19	0.46	9466
$1^{4}\Gamma$ ($a^{4}F$)	1456.78387	1.800	60.5	607	2.6	2.8	2.23	0.65	10375
$1^2\Delta$ (a ⁴ F)	1456.78072	1.699	58.5	574	0.7	4.4	3.86	0.54	11068
		$[1.733^d]$							$[10131 \pm 5^d]$
$2^4\Delta$ (a^4F)	1456.78051	1.815	58.5	556	2.6	0.5	2.27	0.66	11113
$1^{2}\Sigma^{+}(a^{4}F)$	1456.78019	1.642	58.2	711	8.1	7.2	4.35	0.50	11182
$1^2\Sigma^-$ (a^4F)	1456.77907	1.591	57.5	$570(=\Delta G_{1/2})$			3.76	0.50	11430
$2^{4}\Pi$ ($a^{4}F$)	1456.77688	1.779	56.3	665	20.3	2.7	2.04	0.63	11911
$2^{4}\Sigma^{-}(b^{4}F)$	1456.77661	1.800	59.0	963	32.5	1.8	3.72	0.73	11970
1 ⁶ П (а ⁴ F)	1456.77642	1.844	56.0	605	3.0	2.7	2.61	0.67	12011
$2^4\Phi$ (a^4F)	1456.77384	1.800	54.4	$535(=\Delta G_{1/2})$			4.75	0.74	12576
1 ⁶ Γ (a ⁴ F)	1456.77323	1.900	53.9	583	2.3	3.5	2.86	0.69	12712
$3^{4}\Pi$ ($a^{4}F$)	1456.77286	1.820	53.7	$639(=\Delta G_{1/2})$			4.02	0.73	12793
$1^{6}\Sigma^{+}$ ($a^{4}F$)	1456.77245	1.862	53.5	576	3.1	2.0	2.68	0.67	12882
$1^{4}\Sigma^{+}$ ($a^{4}F$)	1456.77232	1.828	53.4	580	2.6	2.5	2.41	0.67	12911
$3^4\Delta$ (a^4F)	1456.77177	1.826	53.1	549	0.8	2.3	2.47	0.67	13031
		$[1.778 = r_0^{e}]$							[13950.07 ^e]
$1^2\Phi$ (a^4F)	1456.76846	1.627	50.9	972	49.5	15.2	3.52	0.62	13758
$2^2\Delta$ (a^4F)	1456.76783	1.704	50.5	427	2.8	4.0	3.88	0.55	13897
$2^{2}\Sigma^{-}(b^{4}F)$	1456.76672	1.610	52.6	1054	17.2	4.4	3.50	0.54	14140
$2^{6}\Delta$ ($a^{4}F$)	1456.76667	1.910	49.8	600	3.1	2.8	2.95	0.70	14150
$1^{6}\Phi$ ($a^{4}F$)	1456.76656	1.897	49.8	594	3.0	2.9	2.64	0.68	14174
2 ⁶ Π (a ⁴ F)	1456.76540	1.904	49.0	591	2.9	2.9	2.72	0.69	14429
$1 \ {}^{6}\Sigma^{-} (a^{4}F)$	1456.76488	1.915	48.6	594	3.1	2.8	2.98	0.70	14544
44Π (b4F)	1456.76364	1.770	50.8	621	3.8	2.7	3.28	0.63	14815
$[{}^{4}\Pi_{5/2}{}^{e}]$		$[1.810=r_0^{e}]$							$[15884.64^{e}]$
2 ⁴ Γ (b ⁴ F)	1456.76080	1.855	48.9	640	3.4	2.8	3.50	0.66	15438
$4^4\Delta$ (b ⁴ F)	1456.75855	1.796	47.5	668	5.1	4.7	2.97	0.70	15932
		$[1.791^d]$		$[540 \pm 10^{d}]$					$[15446 \pm 8^d]$
		$[1.815=r_0^{e}]$							$[15650.679^e]$
$2^{2}\Pi$ ($a^{4}F$)	1456.75687	1.638	43.6	$237(=\Delta G_{1/2})$			3.61	0.60	16302
$2^{4}\Sigma^{+}$ ($a^{4}F$)	1456.75524	1.845	42.7	621	2.9	2.8	3.02	0.66	16660
$2^2\Phi$ (a^4F)	1456.75419	1.772	42.0	952	18.2	-0.7	1.96	0.63	16890
$3^{2}\Pi$ ($a^{4}F$)	1456.75091	1.717	39.9	846	22.1	-3.1	2.68	0.62	17610
$3^2\Delta$ (a^4F)	1456.74751	1.642	37.8	869	0.3	2.5	2.51	0.52	18355
4²Π (b ⁴ F)	1456.74571	1.663	39.5	1118	43.9	3.7	3.65	0.57	18750
$2^{2}\Sigma^{+}$ ($a^{4}F$)	1456.74358	1.643	35.3	728	-3.0	2.8	2.37	0.53	19219
$3^4\Phi$ (b ⁴ F)	1456.74267	1.904	37.6	595	3.0	2.8	2.39	0.68	19418
		$[1.845^{e}]$							$[21046^{e}]$
5 ⁴ Π (b ⁴ F)	1456.74161	1.910	36.9	593	3.0	2.8	2.46	0.69	19650
5 ² Π (b ⁴ F)	1456.73708	1.693	34.0	730	-8.2	3.6	2.63	0.55	20645
$3^{6}\Delta$ (a ⁴ F)	1456.73559	1.855	30.4	634	3.9	3.2	2.65	0.76	20971
$3^2\Phi$ (b ⁴ F)	1456.73546	1.666	33.0	746	-2.3	6.4	3.73	0.54	21000
$4^{2}\Delta$ (b ⁴ F)	1456.73395	1.661	32.0	830	9.5	5.3	1.86	0.59	21332
$2^{6}\Phi$ (a ⁴ F)	1456.73123	1.865	27.7	600	3.4	3.3	2.77	0.77	21928
3°П (а ⁴ F)	1456.72993	1.830	26.8	585	2.8	4.0	2.59	0.75	22215
$2^{6}\Sigma^{-}$ (b ⁴ F)	1456.72355	1.874	25.5	572	3.6	2.9	2.92	0.79	23615
4⁰Π (b⁴F)	1456.72230	1.863	24.8	659	3.8	2.7	2.54	0.68	23889
$2^{6}\Sigma^{+}$ ($a^{4}F$)	1456.71952	1.806	20.3	703	5.0	4.1	2.21	0.62	24498
4°∆ (b⁴F)	1456.69501	1.920	7.8	589	3.0	2.9	2.96	0.69	29877

^{*a*}For MRCI results see Table S1 of Supporting Information, ref 50. ^{*b*}With respect to adiabatic products; in parentheses the adiabatic atomic terms of the Co atom. ^{*c*}Dipole moments calculated with the finite field method. ^{*d*}Reference 19. ^{*e*}Reference 16.

At the highest level of theory and in all methods MRCI +DKH2+Q (C-MRCI+DKH2+Q) [C-ACPF+DKH2]{C-RCCSD(T)+DKH2}|MRCI-L+DKH2+Q|, the bond distance,

 $r_{\rm e} = 1.607 \ (1.606) \ [1.603] \ \{1.611\} \ |1.609|$ Å, is essentially method independent; Table 1. Disregarding the 1.603 value, $r_{\rm e} = 1.609 \pm 0.002$ Å at this level of theory, in fair agreement with the

Figure 1. MRCI+Q/A5 ζ adiabatic PECs and energy level diagram (inset) of 50 (=36 from the first +14 from the second channel) bound states of CoO. The ordering follows that of Tables 1 and 2. All energies are shifted by +1456 $E_{\rm h}$.

experimental value of 1.627 862(1) Å.²¹ Observe that without the relativistic effects amounting in all methods to a shortening of \sim 0.01 Å, the calculated bond length is close to 1.620 Å in good agreement with experiment. The best agreement is obtained at the C-RCCSD(T) level where $r_e = 1.625$ Å. Worth noticing as well is the fact that the core subvalence $(3s^23p^6)$ electrons have practically no effect on the bond length. The corresponding dissociation energy values are $D_e = 86.0$ (84.4) [84.8] {88.9} 187.11 kcal/mol, where combined core + relativistic effects reduce the D_e by ~1 kcal/mol. The zero point energy correction (= $\omega_e/2$) reduces the above $D_{\rm e}$ values by ~1.3 kcal/mol, giving a multireference estimated $D_0^0 = 85-86$ kcal/mol. The best result, as compared to the experimental value, is obtained at the C-RCCSD(T) approach, where $D_0^0 = 89.0$ kcal/mol; Table 1. Even so, the difference between experiment $(D_0^0 = 94.1 \pm 2.1 \text{ kcal}/$ mol²⁰) and theory is considerable, the former being larger by \sim 8 kcal/mol (or \sim 10%) from the estimated multireference value of 85-86 kcal/mol. Because the one-electron basis set is certainly adequate and the combined core and relativistic effects are of minor importance, the discrepancies observed are mainly due to missing electron correlation.

We turn now to the calculation of the dipole moment of the $X^4\Delta$ state. With the exception of the MRCI-L type calculations, dipole moments obtained by the expectation value method range from $\langle \mu \rangle = 3.3$ to 3.6 D, with corresponding finite field values $\mu_{\rm FF} = 4.4 - 4.8$ D, the latter being the most reliable.⁴⁵ On the other hand, the MRCI-L $\langle \mu \rangle$ and $\mu_{\rm FF}$ values at all levels are practically equal, indicating a better internal consistency of the MRCI-L type calculations. The recommended value for the dipole moment of CoO is $\mu(X^4\Delta) = 4.5 \pm 0.1$ D; recall that the dipole moment of CoO has not been measured yet.

We examine now the bonding character of the $X^4\Delta$ state. The leading equilibrium MRCI configuration and Mulliken atomic populations, suppressing the 20 internal electrons, are

$$\begin{aligned} |X^{4}\Delta\rangle_{A_{1}} &\approx 0.82|1\sigma^{2}2\sigma^{2}3\sigma^{2}1\pi_{x}^{2}1\pi_{y}^{2}2\pi_{x}^{1}2\pi_{y}^{1}1\delta_{+}^{2}1\delta_{-}^{1}\rangle \\ 4s^{1.08}4p_{z}^{0.12}4p_{x}^{0.04}4p_{y}^{0.04}3d_{z}^{1.49}3d_{xz}^{1.34}3d_{yz}^{1.34}3d_{x}^{1.34}3d_{x}^{1.98}d_{xy}^{1.01}/_{Co} \\ 2s^{1.89}2p_{z}^{1.38}2p_{x}^{1.60}2p_{y}^{1.60}/_{O} \end{aligned}$$

Some 0.6 e⁻ are transferred from the Co to the O atom. Taking also into account the synthesis of the MRCI σ -orbitals, i.e., $1\sigma = 2s$, $2\sigma \approx (0.47)3d_{z^2} + (0.32)4s - (0.78)2p_{z}$, and

$$3\sigma \approx (0.66)4s - (0.72)3d_{z^2} - (0.20)2p_z$$

the following vbL (valence-bond-Lewis) icon can be considered as a fair representation of the bonding within the Co^+O^- ionic model.

According to the Mulliken populations, about 0.8 e⁻ are transferred from the O⁻ to Co⁺ through the π -system, while ~0.3 e⁻ are moving back through the σ frame. Certainly the bonding is more involved, but we believe that the picture above represents a good "zeroth-order" approximation of the attractive interaction between Co(a⁴F) + O(³P).

2. ${}^{6}\Delta$, ${}^{4}\Sigma^{-}$, ${}^{4}\Phi$, ${}^{4}\Pi$. Experimentally, the first three excited states of CoO, ${}^{4}\Sigma^{-}$, ${}^{4}\Pi_{5/2}$, and ${}^{6}\Delta$ are within 7000 cm⁻¹, with energy distances with respect to the X⁴ $\Delta_{7/2}$, T = 3390, 5837, and 7028 cm⁻¹, respectively, the ${}^{4}\Sigma^{-}$ being the first excited state.¹⁹ However, for both ${}^{4}\Sigma^{-}$ and ${}^{6}\Delta$ states, T and r_{e} values are not certain; bond lengths have been obtained via the Herschbach–Laurie⁴⁶ semiempirical linear regression approach (see ref 19 for details). It should be stated also that a low-lying ${}^{4}\Phi$ state at $T \sim 5000$ cm⁻¹, calculated here for the first time (Table 1 and Figure 2), has never been observed.

For the states above subvalence core and scalar relativistic effects are not significant. For instance, for the $^{6}\Delta$ state the bond distance is reduced by about 0.002 and 0.006 Å due to core and relativistic effects, respectively, whereas core effects alone increase $T_{\rm e}$ values by 200–300 cm⁻¹ depending on the method employed; see Table 1. Results of similar absolute size hold for the other three states, ${}^{4}\Sigma^{-}$, ${}^{4}\Phi$, and ${}^{4}\Pi$. Therefore, MRCI-L +DKH2+Q (+core corrections) energy separation estimates are as follows: $T = 4104(+300) \simeq 4400 \text{ cm}^{-1}(^{6}\Delta), 5016(-100) \simeq$ 4900 cm⁻¹ (⁴ Φ), 5300(-200) \simeq 5100 cm⁻¹ (⁴ Σ ⁻), and $7304(-200) \simeq 7100 \text{ cm}^{-1}$ (⁴ Π). The calculated SO coupling constants |A| of $a^6\Delta$, $A^4\Phi$, and $C^4\Pi$ states are 117, 170, and 178 cm⁻¹, respectively. Experimentally, A = -158.5723(21) cm⁻¹ for the C⁴ Π state,¹⁴ i.e., the $\Lambda + \Sigma = 5/2$ component is the lowest one. Taking into account the SO coupling for the $C^4\Pi$ and the zero-point energy corrections, the previous energy separations with respect to the X⁴ Δ become $T_0 = T_e - \Delta \omega_e/2 = 4300$ (a⁶ $\Delta \leftarrow$ $X^{4}\Delta$), 5638 (${}^{4}\Sigma^{-} \leftarrow X^{4}\Delta_{7/2}$), and 7314 (${}^{4}\Pi_{5/2} \leftarrow X^{4}\Delta_{7/2}$) cm⁻¹; see Figure 2. There is an obvious disagreement between theory and experiment, the latter values $being^{19} T = 7028$ $(^{6}\Delta)$, 3390 $(^{4}\Sigma^{-})$, and 5837 $(^{4}\Pi_{5/2})$ cm⁻¹. Recall, however, that

Figure 2. Theoretical vs experimental energy separation values (cm⁻¹) of the first five low-lying states of CoO including SO coupling. The ⁴ Φ state has not been observed experimentally. The $\Omega = \Lambda + \Sigma$ components of the ⁴ Φ_{Ω} and ⁶ Δ_{Ω} states are (9/2, 7/2, 5/2, and 3/2) and (9/2, 7/2, 5/2, 3/2, 1/2, and -1/2), respectively.

the experimental *T* values for the ${}^{6}\Delta$ and ${}^{4}\Sigma^{-}$ states are quite uncertain (vide supra). Therefore, and according to our calculations, the first four excited states of CoO can be tentatively labeled, as ${}^{6}\Delta$, ${}^{A}\Phi$, ${}^{B}\Phi\Sigma^{-}$, and ${}^{C}\Pi$.

Considering that the subvalence core effects are of no importance, the MRCI-L+DKH2+Q bond lengths (experimental values in parentheses¹⁹) are $r_e = 1.667(1.686)$, 1.628, 1.578(1.641), and 1.638(1.653) Å, for the $a^6\Delta$, $A^4\Phi$, $B^4\Sigma^-$, and $C^4\Pi$ states, respectively; Table 1. With the exception of the ${}^{4}\Sigma^{-}$ state, where the r_e value is calculated to be 0.06 Å shorter, the agreement between theory and experiment can be considered as good. As was already stated, however, experimental r_e values for the ${}^{6}\Delta$ and ${}^{4}\Sigma^{-}$ states are uncertain by at least ± 0.01 Å (vide supra). Recommended dipole moments based on the MRCI-L+DKH2+Q finite field approach are $\mu_{\rm FF} = 1.8 \ (a^6\Delta)$, 5.8 $(A^4\Phi)$, 5.2 $(B^4\Sigma^-)$, and 5.5 $(C^4\Pi)$ D; Table 1.

We would like now to touch upon the electronic structure of these states. In what follows, we give the dominant equilibrium MRCI configurations along with corresponding Mulliken atomic populations.

$$\begin{split} |a^{6}\Delta\rangle_{A_{1}} &\approx 0.84|1\sigma^{2}2\sigma^{2}3\sigma^{1}4\sigma^{1}1\pi_{x}^{2}1\pi_{y}^{2}2\pi_{x}^{1}2\pi_{y}^{1}1\delta_{+}^{2}1\delta_{-}^{1}\rangle \\ 4s^{0.90}4p_{z}^{0.33}4p_{x}^{0.03}4p_{y}^{0.03}3d_{z^{2}}^{1.25}3d_{xz}^{1.43}3d_{yz}^{1.43}3d_{x^{2}-y^{2}}^{1.96}3d_{xy}^{1.02} \\ &/2s^{1.94}2p_{z}^{1.55}2p_{x}^{1.51}2p_{y}^{1.51} \end{split}$$

$$\begin{split} |\mathsf{B}^{4}\Sigma^{-}\rangle &\approx 0.81|1\sigma^{2}2\sigma^{2}3\sigma^{1}1\pi_{x}^{2}1\pi_{y}^{2}2\pi_{x}^{1}2\pi_{y}^{1}1\delta_{+}^{2}1\delta_{-}^{2}\rangle \\ 4s^{0.85}4p_{z}^{0.12}4p_{x}^{0.04}4p_{y}^{0.04}3d_{z}^{1.04}3d_{xz}^{1.33}3d_{yz}^{1.33}3d_{x}^{1.39}_{z^{2}-y^{2}}3d_{xy}^{1.80} \\ /2s^{1.89}2p_{z}^{1.10}2p_{x}^{1.78}2p_{y}^{1.78} \\ |\mathsf{A}^{4}\Phi\rangle_{\mathsf{B}_{1}} &\approx 0.56|1\sigma^{2}2\sigma^{2}3\sigma^{1}1\pi_{x}^{2}1\pi_{y}^{2}2\pi_{x}^{2}2\pi_{y}^{1}1\delta_{+}^{2}1\delta_{-}^{1}\rangle \\ &\quad - 0.56|1\sigma^{2}2\sigma^{2}3\sigma^{1}1\pi_{x}^{2}1\pi_{y}^{2}2\pi_{x}^{2}2\pi_{y}^{2}1\delta_{+}^{1}1\delta_{-}^{2}\rangle \\ 4s^{0.88}4p_{z}^{0.14}4p_{x}^{0.05}4p_{y}^{0.05}3d_{z}^{1.03}3d_{xz}^{1.58}3d_{yz}^{1.57}3d_{x}^{1.50}d_{xy}^{1.49} \\ /2s^{1.90}2p_{z}^{1.04}2p_{x}^{1.84}2p_{y}^{1.84} \end{split}$$

Changing the leading coefficient(s), 0.56, of the A⁴ Φ state, to 0.51 and the plus sign to minus, we obtain the C⁴ Π state with very similar populations to those of the A⁴ Φ state. Overall, about 0.6 and 0.7 e⁻ are moving from Co to O in (a⁶ Δ , B⁴ Σ ⁻) and (A⁴ Φ , C⁴ Π) states, respectively. Based on the leading configurations, atomic populations, and taking into consideration the synthesis of the σ atomic orbitals of the a⁶ Δ and B⁴ Σ ⁻ states, namely

$$\mathbf{a}^{6} \Delta \begin{cases} 2\sigma \approx (0.42) 3 \mathbf{d}_{z^{2}} - (0.82) 2\mathbf{p}_{z} \\ 3\sigma \approx (0.90) 3 \mathbf{d}_{z^{2}} + (0.41) 2\mathbf{p}_{z} \\ 4\sigma \approx (0.90) 4\mathbf{s} - (0.49) 4\mathbf{p}_{z} \end{cases} \\ \mathbf{B}^{4} \Sigma^{-} \begin{cases} 2\sigma \approx (0.58) 3 \mathbf{d}_{z^{2}} - (0.72) 2\mathbf{p}_{z} \\ 3\sigma \approx (0.85) 4\mathbf{s} - (0.47) 3 \mathbf{d}_{z^{2}} \end{cases} \end{cases}$$

the bonding of these two states can be visualized by the two vbL diagrams below.

The bonding of the $A^4\Phi$, $C^4\Pi$ states is more involved and will not be discussed at this point.

3. Higher States. Table 2 collects results for 45 higher bound states of CoO, all calculated at the MRCI(+Q)/A5 ζ level of theory, lying within an energy range of 21 000 cm⁻¹. To the Co(a⁴F) + O(³P) channel correlate adiabatically 31 states, the rest 14 to Co(b⁴F) + O(³P); see Figure 1. Experimental results exist for five states, ² Δ , ⁴ Δ [2], ⁴ Π , and ⁴ Φ , located between *T* = 10 000 and 21 000 cm⁻¹. These can be identified with the calculated ones 1² Δ , 3⁴ Δ , 4⁴ Π , 4⁴ Δ , and 3⁴ Φ as labeled in Table 2. Given the inherent egregiousness of the CoO molecule, the agreement between experiment and theory can be considered as good, with differences in the energy separation values *T* no more

than 1000 cm⁻¹, or about 10%. We were unable to locate one more state of ⁴ Φ symmetry detected experimentally¹⁶ at $T = 16\,000$ cm⁻¹. All 50 states studied have a strong component of ionic character with increasing ionicity for states of higher multiplicity. In particular, the average Mulliken positive charge on Co (\overline{q}_{Co}) for 17 doublets, 18 quartets, and 15 sextets is \overline{q}_{Co} = 0.55, 0.67, and 0.70, respectively. A similar tendency has been observed in the FeO molecule as well.³

MRCI results for the 45 higher states of CoO are given in Table S1 in the Supporting Information. In addition, for these states MRCI leading configurations and atomic populations are available in Tables S2 and S3, respectively, in the Supporting Information.⁵⁰

B. CoO⁺. The ground state of Co⁺ is $a^{3}F(3d^{8})$ with its first excited state $a^{5}F(4s^{1}3d^{7})$ located 0.4287 eV higher.⁴³ The interaction of Co⁺($a^{3}F$) + O(³P) related to the first channel results in 36 molecular ^{2S+1}A states, singlets, triplets, and quintets, that is, ^{1,3,5}($\Sigma^{+}[2]$, Σ^{-} , $\Pi[3]$, $\Delta[3]$, $\Phi[2]$, Γ). Another set of 36 states of the same orbital angular momentum are obtained from the second channel ($a^{5}F$), but with multiplicities 2S + 1 = 3, 5, 7. We have constructed full MRCI+Q/A5 ζ PECs for all singlets (11 bound +1 repulsive), 8 triplets, and 8 quintets, i.e., ^{3,5}(Σ^{+} , Σ^{-} , $\Pi[2]$, $\Delta[2]$, Φ , Γ], all correlating adiabatically to the lowest channel Co($a^{3}F$) + O(³P). Their MRCI+Q/A5 ζ PECs for all 12 septets 4 of which can be considered as bound; see Figure 3. The remaining 8 septets are of repulsive nature, displayed also in Figure 3. As was discussed earlier, Nakao and co-workers³⁰ studied

Figure 3. MRCI+Q/AS ζ adiabatic PECs and energy level diagram (inset) of 27 bound states of CoO⁺ correlating to Co⁺(a³F) + O(³P). The ordering follows that of Tables 3 and 4. All energies are shifted by +1456 E_h. Twelve more PECs of 4 bound ⁷(Φ , Σ^+ , Π , Δ) and 8 repulsive states correlating to a⁵F + ³P are also shown.

around equilibrium the exact same 8 triplets and 8 quintets as in the present work; for some reason, no singlets have been calculated. Their results are contrasted with ours in Tables 3 and 4.

For the first 5 states $(X^5\Delta, a^3\Gamma, b^3\Pi, c^3\Delta, d^3\Phi)$ the methods employed at the highest level are C-MRCI+DKH2+Q and MRCI-L+DKH2+Q, whereas for the X-state alone the highest level includes the C-ACPF-DKH2+Q and C-RCCSD(T)+DKH2 methods as well; Table 3. The higher 26 states are calculated at the plain MRCI(+Q) level; Table 4.

1. $X^5\Delta$. The ground-state symmetry of CoO⁺, $X^5\Delta_4$, was determined experimentally only recently²⁷ and confirmed theoretically for the first time by Nakao and co-workers.³⁰ The present highlevel calculations leave no doubt as to the symmetry $({}^{5}\Delta)$ of the lowest state of CoO⁺, with the first excited state $a^{3}\Gamma$ some 7500 cm⁻¹ higher (vide infra). It can be seen from Table 3 that, in all methods, core-correlation $(3s^23p^6)$ and scalar relativistic effects reduce the bond distance by the same amount, \sim 0.01 Å, the combined effect being -0.016 Å and to an excellent approximation additive. Corresponding effects on the binding energy are very close to -3.5and +6.5 kcal/mol, respectively, the combined effect, also additive, being \sim 3 kcal/mol. Similar conclusions hold for the next 4 states. Thus, our recommended MRCI-L+DKH2+Q r_{e} and D_{e} (D_{0}) values are $r_e = 1.626 - 0.008$ (core effects) = 1.618 Å and $D_e = 76.5 - 3.7 =$ 72.8 (71.6) kcal/mol, in fair agreement to the experimental values of $r_0 = 1.65 \pm 0.01 \text{ Å}^{27}$ and $D_0^0 = 75.9 \pm 1.4 \text{ kcal/mol.}^{12}$ The experimental ionization energy of CoO is $IE = 8.69 \pm 0.20 \text{ eV}$,¹² in good agreement at the highest level(s) of calculation C-MRCI+DKH2+Q(C-RCCSD(T)+DKH2)[MRCI-L +DKH2+Q] = 8.19 (8.67) [8.42] eV.

The main MRCI equilibrium configuration and the atomic Mulliken populations are

$$\begin{aligned} |X^{5}\Delta\rangle_{A_{1}} &\approx 0.86|1\sigma^{2}2\sigma^{2}3\sigma^{1}1\pi_{x}^{2}1\pi_{y}^{2}2\pi_{x}^{1}2\pi_{y}^{1}1\delta_{+}^{2}1\delta_{-}^{1}\rangle \\ 4s^{0.30}4p_{z}^{0.06}4p_{x}^{0.02}4p_{y}^{0.02}3d_{z^{2}}^{1.23}3d_{xz}^{1.51}3d_{yz}^{1.51}3d_{x^{2}-y^{2}}^{1.93}3d_{xy}^{1.01} \\ &/2s^{1.93}2p_{z}^{1.45}2p_{x}^{1.43}2p_{y}^{1.43} \end{aligned}$$

In conjunction with the composition of the 2σ and 3σ equilibrium orbitals (the 1σ is a pure 2s orbital on oxygen),

 $2\sigma \approx (0.47)3d_{z^2} - (0.81)2p_z + (0.22)4s,$ $3\sigma \approx (0.85)3d_{z^2} + (0.40)2p_z - (0.28)4s$

the following vbL bonding diagram can be drawn

The bonding implicates $3e^{-}$ along the σ -frame, $(4s3d_{z^2})^{1.5} + (2p_z)^{1.5}$, slightly assisted through the interaction of the π -system. Near 0.4 e⁻ are moving from Co⁺ to O via the σ path, while 0.1 e⁻ are moving back via the π path from O to Co⁺, resulting in a total Co⁺ to O transfer of 0.3 e⁻. The calculated SO coupling constant A of X⁵ Δ state is A = -143 cm⁻¹, negative according to ref 27.

2. $a^{3}\Gamma$, $b^{3}\Pi$, $c^{3}\Delta$, $d^{3}\Phi$. Results of the above 4 states have been obtained at the MRCI(MRCI-L) methodology including core + scalar relativistic corrections; Table 3. All four states are of intense multireference character, hence any single-reference calculation

Table 3. Total Energies $E(E_h)$, Bond Distances $r_e(A)$, Dissociation Energies $D_e(\text{kcal mol}^{-1})$, Harmonic Frequencies and Anharmonicity Corrections ω_e , $\omega_e x_e(\text{cm}^{-1})$, Rotational–Vibrational Coupling Constants $\alpha_e \times 10^3 (\text{cm}^{-1})$, Mulliken Charges on Co q_{Co} , and Energy Separations $T_e(\text{cm}^{-1})$ of the First Five States of Co^{16}O^+

method ^a	-E	r _e	D_e^{b}	ω _e	$\omega_{\rm e} x_{\rm e}$	$\alpha_{\rm e}$	$q_{\rm Co}$	$T_{\rm e}$
			$X^5\Delta$ (a^3F)					
MRCI	1456.49423	1.635	66.8	833	4.7	4.2	1.32	0.0
MRCI+Q	1456.53335	1.630	70.3	852	5.0	4.2		0.0
MRCI+DKH2	1466.98425	1.626	73.6	847	5.8	4.4		0.0
MRCI+DKH2+Q	1467.02360	1.620	77.0	868	6.2	4.4		0.0
C-MRCI	1456.90512	1.631	62.6	839	5.1	4.4		0.0
C-MRCI+Q	1456.98709	1.622	66.6	871	5.7	4.4		0.0
C-MRCI+DKH2	1467.39598	1.623	69.4	854	6.4	4.6		0.0
C-MRCI+DKH2+Q	1467.47828	1.613	73.4	890	7.2	4.5		0.0
ACPF	1456.53263	1.631	70.8	847	5.1	4.2		0.0
ACPF+DKH2	1467.02293	1.621	77.4	863	6.3	4.4		0.0
C-ACPF	1456.99412	1.624	67.5	865	5.8	4.5		0.0
C-ACPF+DKH2	1467.48543	1.615	73.8	884	7.3	4.6		0.0
RCCSD(T)	1456.54162	1.631	67.6	832	3.5	3.8		0.0
RCCSD(T)+DKH2	1467.03192	1.620	74.1	846	3.7	3.9		0.0
C-RCCSD(T)	1457.01610	1.626	64.7	843	4.2	4.1		0.0
C-RCCSD(T)+DKH2	1467.50724	1.615	71.2	861	4.4	4.1		0.0
MRCI-L	1456.51225	1.643	74.0	807	3.1	3.4	1.29	0.0
MRCI-L+Q	1456.53707	1.638	70.5	816	3.1	3.5		0.0
MRCI-L+DKH2	1467.00206	1.631	81.0	811	2.7	3.7		0.0
MRCI-L+DKH2+Q	1467.02716	1.626	76.5	822	2.7	3.8		0.0
MRCI+Q ^c		1.623	78.6	881				
expt		1.65 ± 0.01^{d}	75.9 ± 1.4^{e}					
-			a³Γ (a³F)					
MRCI	1456.46375	1.712	47.7	681	1.9	3.4	1.37	6689
MRCI+Q	1456.50016	1.701	49.5	688	1.6	3.5		7283
MRCI+DKH2	1466.95402	1.704	54.6	682	2.1	3.5		6636
MRCI+DKH2+Q	1466.99068	1.694	56.3	690	1.7	3.6		7226
C-MRCI	1456.87545	1.709	44.0	672	1.7	3.6		6513
C-MRCI+Q	1456.95404	1.692	45.9	681	1.1	3.8		7253
C-MRCI+DKH2	1467.36665	1.699	51.0	674	2.0	3.8		6438
C-MRCI+DKH2+Q	1467.44561	1.685	52.9	685	1.4	4.0		7170
MRCI-L	1456.47892	1.712	53.5	697	3.5	2.7	1.34	7313
MRCI-L+Q	1456.50246	1.701	48.5	704	3.4	3.3		7596
MRCI-L+DKH2	1466.96904	1.704	60.0	692	3.5	3.0		7248
MRCI-L+DKH2+Q	1466.99282	1.693	55.0	698	3.5	3.4		7537
MRCI+Q ^e		1.706	57.4	723				
MDCI	1456 46059	1 629	b°II (a°F)	445	27	80	1 27	7295
MRCL	1450.40058	1.628	45.0	005	3./	8.0	1.2/	/385
MRCI+Q MRCI+DVH2	1450.49991	1.620	49.5	/ 30	4.2	0.5 6.9		7339
MRCI+DKH2+O	1466 00050	1.605	562	731	3.2 4.4	7.0		7210
C-MRCI	1456 87273	1.619	42.0	687	5.1	83		7110
C-MRCI+O	1456.95553	1.592	46.5	823	4.8	9.3		6927
C-MRCI+DKH2	1467.36424	1.620	49.3	672	5.6	7.7		6965
C-MRCI+DKH2+O	1467.44695	1.591	53.4	790	5.2	8.9		6876
MRCI-L	1456.47407	1.614	50.4	641	3.7	7.9	1.25	8378
MRCI-L+Q	1456.50012	1.597	47.0	769	3.7	8.4		8109
MRCI-L+DKH2	1466.96440	1.625	57.0	771	3.8	8.8		8265
MRCI-L+DKH2+Q	1466.99016	1.600	53.2	751	3.9	7.4		8122
MRCI+Q ^c		1.648	55.1	622				
			$c^{3}\Delta$ ($a^{3}F$)					
MRCI	1456.45879	1.729	44.6	634	1.6	2.4	1.37	7779
MRCI+Q	1456.49556	1.715	46.6	632	0.6	2.4		8293
MRCI+DKH2	1466.94905	1.721	51.5	630	1.5	2.4		7725
MRCI+DKH2+Q	1466.98610	1.706	53.5	628	0.4	2.5		8231
C-MRCI	1456.87019	1.727	40.7	622	1.4	2.5		7667
C-MRCI+Q	1456.94905	1.705	42.7	615	-0.5	2.8		8349

Table 3. continued

method ^a	-E	r _e	D_e^{b}	ω _e	$\omega_{\rm e} x_{\rm e}$	$\alpha_{\rm e}$	$q_{\rm Co}$	$T_{\rm e}$
			$c^{3}\Delta$ ($a^{3}F$)					
C-MRCI+DKH2	1467.36141	1.718	47.7	618	1.3	2.7		7588
C-MRCI+DKH2+Q	1467.44068	1.695	49.8	612	-0.8	3.0		8253
MRCI-L	1456.47495	1.724	50.8	650	2.1	2.0	1.33	8184
MRCI-L+Q	1456.49859	1.710	46.0	649	1.7	2.1		8444
MRCI-L+DKH2	1466.96500	1.715	57.5	640	1.8	1.7		8135
MRCI-L+DKH2+Q	1466.98892	1.700	52.4	638	2.6	2.3		8393
MRCI+Q ^c		1.715	55.5	672				
			$d^{3}\Phi$ ($a^{3}F$)					
MRCI	1456.45419	1.707	41.6	663	1.2	4.1	1.32	8788
MRCI+Q	1456.49078	1.694	43.6	685	2.4	4.7		9341
MRCI+DKH2	1466.94653	1.690	49.8	678	2.5	4.6		8279
MRCI+DKH2+Q	1466.98352	1.681	51.8	702	3.3	5.0		8798
C-MRCI	1456.86540	1.704	37.4	652	1.7	4.7		8719
C-MRCI+Q	1456.94441	1.684	39.5	680	2.1	5.2		9368
C-MRCI+DKH2	1467.35866	1.687	45.8	668	2.7	5.1		8190
C-MRCI+DKH2+Q	1467.43825	1.670	48.0	704	3.7	5.5		8785
MRCI-L	1456.46853	1.718	46.9	661	1.8	3.7	1.31	9594
MRCI-L+Q	1456.49208	1.704	41.7	678	4.3	3.3		9874
MRCI-L+DKH2	1466.96066	1.700	54.8	669	2.6	4.0		9087
MRCI-L+DKH2+Q	1466.98466	1.688	49.7	681	2.8	4.4		9328
MRCI+Q ^c		1.706	51.7	705				

^{*a*}See Table 1 for explanation of acronyms and symbols. ^{*b*}With respect to the adiabatic fragments; term in parentheses after the molecular term symbol denotes the end term symbol of Co⁺. ^{*c*}Reference 30; MRCI+Q/[6s5p3d1f/_{Co}aug-cc-pVTZ/_O] with Stuttgart relativistic small core $(1s^22s^22p^6/_{Co})$ effective potential; D_0 values. ^{*d*}Reference 27; r_0 value. ^{*e*}Reference 12; D_0 value.

approach was precluded (see Tables S4, S5, and S6 of the Supporting Information for plain MRCI results, leading MRCI configurations, and atomic populations, respectively).⁵⁰ The first two states, $a^{3}\Gamma$ and $b^{3}\Pi$, well separated from the $X^{5}\Delta$ state, are energetically close, with C-MRCI+DKH2+Q (MRCI-L +DKH2+Q) $T_e = 7170 (7537)$ and 6876 (8122) cm⁻¹, respectively. With some confidence, we can claim that $a^{3}\Gamma$ is the first excited state of CoO⁺ with the $b^{3}\Pi$ about 500 cm⁻¹ higher; see Table 3 and Figure 3. The corresponding T_e values for the $c^3\Delta$ and $d^3\Phi$ are T_e = 8253 (8393) and 8785 (9328) cm⁻¹, respectively. As in the $X^5\Delta$ state, core and relativistic effects separately reduce the bond distance by the same amount (~0.01 Å), whereas core (relativistic) effects decrease (increase) binding energies by ~ 3 (7) kcal/mol, both effects being well additive. Therefore, recommended r_e and D_e values at the MRCI-L+DKH2+Q level corrected for core effects are $r_e = 1.693 - 0.09 = 1.684 (a^3 \Gamma), 1.600 - 0.015 = 1.585 (b^3 \Pi), 1.700$ $-0.01 = 1.690 (c^{3}\Delta), 1.688 - 0.01 = 1.678 (d^{3}\Phi)$ Å, and $D_{e} = 55.0$ $-3.6 = 51.4 (a^{3}\Gamma), 53.2 - 2.8 = 50.4 (b^{3}\Pi), 52.4 - 3.9 = 48.5 (c^{3}\Delta),$ $49.7 - 4.1 = 45.6 (d^3 \Phi)$ kcal mol⁻¹. MRCI SO coupling constants |A| are 153 ($a^{3}\Gamma$), 285 ($b^{3}\Pi$), 351 ($c^{3}\Delta$), and 122 ($d^{3}\Phi$) cm⁻¹.

3. Higher States. Table 4 collects MRCI+Q results on 22 bound states, 11 singlets, 4 triplets, and 7 quintets, all correlating adiabatically to the ground-state atoms; see also Figure 3. Results on 4 more bound states of septet multiplicity are listed in Table 4 with their PECs displayed in Figure 3, correlating to the second channel Co⁺(a⁵F) + O(³P). Assuming that our deductions for the first 5 states of CoO⁺, concerning core + relativistic effects (vide supra), apply to the higher states as well, more reliable r_e and D_e estimates for the 22 states can be obtained by reducing uniformly all r_e by ~0.02 Å and by increasing D_e values by ~3.5 kcal/mol.

For all 27 states correlating to the first channel, a Co⁺ to O charge migration is observed ranging from ~0.1 $(1^{1}\Sigma^{+})$ to ~0.5 e⁻ $(1^{5}\Gamma, 2^{5}\Delta)$, increasing monotonically from singlets to triplets

to quintets. For the 4 septets, as expected, interaction energies are much lower (~9 kcal/mol), certainly of a "van der Waals" nature, the bond distances being larger by ~0.7 Å than those of the lower spin states. No Co^+ to O charge transfer is observed for the septets; see Table 4.

C. CoO⁻. The only experimental information on CoO⁻ is its ionization energy (or EA of CoO), IE = $1.45 \pm 0.01 \text{ eV}$.^{11,17} Theoretical work is limited to DFT calculations (see the Introduction). A reliable experimental dissociation energy, however, can be obtained indirectly through energy conservation relation

$$D_0(\text{CoO}^-) = D_0(\text{CoO}) + \text{EA}(\text{CoO}) - \text{EA}(\text{O})$$
$$= (4.08 \pm 0.09)^{20} + (1.45 \pm 0.01)^{11,17}$$
$$- (1.461)^{47} \text{ eV}$$
$$= 93.8 \pm 2.1 \text{ kcal mol}^{-1}$$

very close to the D_0 value of the neutral species CoO. As a matter of fact, $D_0(\text{CoO}) = D_0(\text{CoO}^-)$, because the electron affinities of CoO and O happen to be equal. From the energy conservation relation it is clear that if EA(MO) < EA(O), then $D(\text{MO}^-) < D(\text{MO})$ and vice versa. Given that the EAs of the MO series (M = Sc–Ni) differ by about 0.15 eV, we can ascertain that $D(\text{MO}) \approx D(\text{MO}^-)$. In particular, EA = 1.35 (ScO), 1.30 (TiO), 1.30 (VO), 1.22 (CrO), 1.375 (MnO) eV (refs 1,2), 1.50 (FeO),³ 1.45 (CoO),^{11,17} and 1.46 (NiO) eV.⁴⁸ Therefore, for the first five MOs, $D(\text{MO}) = D(\text{MO}^-) + \delta$, with 2 (MnO) < δ < 5 (CrO) kcal/mol, while for the oxides FeO, CoO, and NiO, $D(\text{MO}) = D(\text{MO}^-)$ within 1 kcal/mol. With an EA = 1.777 eV,⁴⁹ the neutral CuO should have a binding energy smaller than its anion CuO⁻ by the difference δ = EA(CuO) – EA(O) = (1.777 – 1.461) eV = 7.3 kcal/mol, which is indeed the case.⁴⁹

Table 4. MRCI+Q Total Energies $E(E_b)$, Bond Distances r_a (Å), Dissociation Energies D_a (kcal mol⁻¹), Harmonic Frequencies and Anharmonicity Corrections ω_e, ω_e, x_e (cm⁻¹), Rotational–vibrational Coupling Constants $\alpha_e \times 10^3$ (cm⁻¹), Mulliken Charges on Co q_{Co} , and Energy Separations T_e (cm⁻¹) of Higher States of Co¹⁶O⁺; in Parentheses, Theoretical Results from the Literature (footnote c), in Brackets Experimental Results

state ^a	-E	r _e	D_{e}^{b}	$\omega_{\rm e}$	$\omega_{\rm e} x_{\rm e}$	α_{e}	$q_{\rm Co}$	T_{e}
$1^{3}\Sigma^{-}(a^{3}F)$	1456.48971	1.709	43.0	639	5.7	1.6	1.39	9577
		(1.717)	(51.0)	(671)				
$2^{3}\Pi$ ($a^{3}F$)	1456.48763	1.696	41.6	654	1.9	5.0	1.35	10033
		(1.714)	(49.4)	(647)				
$1^{3}\Sigma^{+}(a^{3}F)$	1456.48692	1.720	41.3	634	0.9	3.3	1.39	10189
		(1.728)	(49.2)	(671)				
$2^{3}\Delta$ ($a^{3}F$)	1456.48336	1.744	39.0	624	3.3	1.5	1.41	10970
		(1.746)	(47.5)	(658)				
1 ⁵ П (а ³ F)	1456.48203	1.771	38.1	680	3.0	2.5	1.43	11263
		(1.760)	(47.6)	(687)				
$1^{1}\Pi$ ($a^{3}F$)	1456.47910	1.625	36.2	$682(=\Delta G_{1/2})$			1.15	11906
$1^{1}\Sigma^{+}(a^{3}F)$	1456.47898	1.643	36.3	$732(=\Delta G_{1/2})$			1.09	11933
$1^{5}\Sigma^{+}(a^{3}F)$	1456.47696	1.790	35.0	647	2.7	2.4	1.45	12376
		(1.770)	(45.2)	(656)				
1 ⁵ Γ (a ³ F)	1456.47643	1.826	34.6	682	3.0	2.7	1.47	12491
		(1.818)	(42.7)	(687)				
$1^1\Delta$ (a^3F)	1456.47590	1.595	34.3	765	35.9	14.4	1.22	12609
$2^{1}\Sigma^{+}$ ($a^{3}F$)	1456.47196	1.611	31.7	870	20.7	7.5	1.24	13473
$1^{5}\Phi(a^{3}F)$	1456.47140	1.829	31.5	664	2.8	2.6	1.42	13596
		(1.819)	(40.8)	(668)				
$[B^5\Phi_5]^d$		$[1.87 \pm 0.01]$		[608]				$[16713 \pm 10]$
$2^5\Delta$ (a^3F)	1456.46833	1.841	29.6	659	2.8	2.8	1.47	14269
		(1.834)	(38.0)	(662)				
2 ⁵ Π (a ³ F)	1456.46823	1.838	29.5	657	2.9	2.7	1.43	14291
		(1.828)	(38.7)	(657)				
$[C^{5}\Pi_{3}]^{d}$		$[1.86 \pm 0.015]$						$[17588 \pm 10]$
$1^{1}\Phi(a^{3}F)$	1456.46637	1.733	28.3	730	22.7	7.2	1.11	14699
$1^5\Sigma^-$ (a^3F)	1456.46571	1.847	27.9	650	3.0	2.9	1.47	14844
		(1.840)	(36.6)	(650)				
$2^{1}\Delta$ ($a^{3}F$)	1456.46375	1.660	26.7	$709(=\Delta G_{1/2})$			1.19	15274
$2^{1}\Pi$ ($a^{3}F$)	1456.46239	1.685	25.8	$682(=\Delta G_{1/2})$			1.28	15573
$2^{1}\Phi$ ($a^{3}F$)	1456.45582	1.749	21.6	$682(=\Delta G_{1/2})$			1.20	17016
$1^{1}\Gamma$ ($a^{3}F$)	1456.45505	1.652	21.2	$725(=\Delta G_{1/2})$			1.23	17185
$1^{1}\Sigma^{-}$ ($a^{3}F$)	1456.44462	1.689	14.7	$466(=\Delta G_{1/2})$			1.25	19472
$3^{1}\Pi$ ($a^{3}F$)	1456.44040	1.750	12.2	$700(=\Delta G_{1/2})$			1.14	20399
$1^7\Phi$ (a^5F)	1456.42115	2.291	10.6	215	3.5	4.8	0.92	24624
$1^7\Sigma^+$ (a^5F)	1456.42078	2.284	10.5	205	3.2	4.6	0.93	24706
$1^{7}\Pi$ (a ⁵ F)	1456.41791	2.403	8.7	187	3.5	4.9	0.94	25336
$1^7\Delta$ (a ⁵ F)	1456.41488	2.578	6.7	164	3.3	4.8	0.96	26000

^aFor MRCI results see Table S4 of Supporting Information, ref 50. ^bWith respect to adiabatic products; in parentheses after the molecular term symbol are the end term symbol of Co⁺. ^cReference 30. ^dReference 27, rotational photodissociation spectroscopy.

The ground-state channel Co $(a^4F; 4s^23d^7) + O^{-(^2P)}$ gives rise to 24 molecular states of CoO⁻, 12 triplets and 12 quintets (vide supra). We have calculated MRCI-L+Q/ A5 ζ PECs for 7 states, namely, ${}^{5}\Delta$, ${}^{3}\Phi$, ${}^{3}\Sigma^{-}$, ${}^{3}\Delta$, ${}^{3}\Gamma$, ${}^{5}\Gamma$, and ${}^{5}\Sigma^{-}$. Numerical results are listed in Table 5, while MRCI-L+Q/A5 ζ PECs are shown in Figure 4. For the ground state only $(X^{5}\Delta)$, in addition to the MRCI-L approach, the ACPF-L and RCCSD(T) methods have been also applied.

With no doubt, the ground state of CoO^- is ⁵ Δ followed by a ${}^{3}\Phi$ state about 2000 cm⁻¹ higher. Core subvalence effects seem to be of no importance, at least for the X-state at the coupled-cluster method. At the highest level of theory MRCI+L+DKH2+Q(ACPF-L+DKH2+Q) [C-RCCSD(T)+ DKH2+Q], we obtain $r_e = 1.664$ (1.664) [1.650] Å and $D_0(=D_e - \omega_e/2) = 84.3$ (86.1) [89.9] kcal/mol, the best value with respect to experiment being that of RCCSD(T). The dominant MRCI configuration, Mulliken populations, and the σ orbitals of the X⁵ Δ state are

$$\begin{split} |X^{5}\Delta\rangle_{A_{1}} &\approx 0.86|1\sigma^{2}2\sigma^{2}3\sigma^{2}4\sigma^{1}1\pi_{x}^{2}1\pi_{y}^{2}2\pi_{x}^{1}2\pi_{y}^{1}1\delta_{+}^{2}1\delta_{-}^{1}\rangle \\ &4s^{1.96}4p_{z}^{0.28}4p_{x}^{0.07}4p_{y}^{0.07}3d_{z}^{1.52}3d_{xz}^{1.26}3d_{yz}^{1.26}3d_{x}^{1.28}d_{x}^{1.98}d_{z}^{1.98}d_{xy}^{1.00}\\ &/2s^{1.79}2p_{z}^{1.41}2p_{x}^{1.65}2p_{y}^{1.65}\\ &2\sigma \approx (0.56)4s - (0.49)2p_{z},\\ &3\sigma \approx (0.29)4s - (0.70)3d_{z}^{2} + (0.57)2p_{z},\\ &4\sigma \approx (0.53)4s + (0.70)3d_{z}^{2} + (0.52)2p_{z} \end{split}$$

.

Table 5. Total Energies $E(E_h)$, Bond Distances $r_e(Å)$, Dissociation Energies D_e (kcal mol⁻¹), Harmonic Frequencies and Anharmonicity Corrections ω_e , $\omega_e x_e$ (cm⁻¹), Rotational–Vibrational Coupling Constants $\alpha_e \times 10^3$ (cm⁻¹), Mulliken Charges on Co q_{Co} , and Energy Separations T_e (cm⁻¹) of Co¹⁶O⁻

method ^a	-E	r _e	$D_{\rm e}$	$\omega_{\rm e}$	$\omega_{\rm e} x_{\rm e}$	$\alpha_{\rm e}$	$q_{\rm Co}$	$T_{\rm e}$			
$X^{5}\Delta$ ($a^{4}F$)											
MRCI-L	1456.84054	1.679	85.2	805	6.1	2.0	-0.44	0.0			
MRCI-L+Q	1456.88509	1.673	87.2	825	5.2	2.2		0.0			
MRCI-L+DKH2	1467.33439	1.671	83.4	854	6.7	2.7		0.0			
MRCI-L+DKH2+Q	1467.37966	1.664	85.5	880	8.7	2.2		0.0			
ACPF	1456.89057	1.675	88.7	848	8.5	2.6		0.0			
ACPF+DKH2	1467.38569	1.664	87.3	840	6.0	3.6		0.0			
RCCSD(T)	1456.90528	1.662	90.2	911	8.2	3.0		0.0			
RCCSD(T)+DKH2	1467.40188	1.651	89.6	903	8.3	3.2		0.0			
C-RCCSD (T)	1457.38009	1.662	89.5	921	8.0	3.1		0.0			
C-RCCSD(T)+DKH2	1467.88142	1.650	91.2	918	8.0	3.4		0.0			
			³ Φ (a ⁴ I	F)							
MRCI-L	1456.83177	1.663	79.7	823	7.3	3.8	-0.35	1925			
MRCI-L+Q	1456.87563	1.658	81.1	850	7.8	3.6		2077			
MRCI-L+DKH2	1467.32696	1.655	78.9	832	7.8	3.8		1632			
MRCI-L+DKH2+Q	1467.37140	1.650	80.4	854	6.9	3.5		1812			
			${}^{3}\Sigma^{-}(a^{4})$	F)							
MRCI-L	1456.82116	1.638	73.2	779	8.2	4.1	-0.50	4254			
MRCI-L+Q	1456.86885	1.625	77.1	827	8.0	3.6		3563			
MRCI-L+DKH2	1467.31614	1.633	72.0	782	7.9	5.1		4005			
MRCI-L+DKH2+Q	1467.36423	1.619	75.8	835	8.4	4.1		3386			
			³ Δ (a ⁴ F	F)							
MRCI-L	1456.80082	1.668	60.3	864	28.2	-0.1	-0.48	8716			
MRCI-L+Q	1456.84649	1.651	63.0	926	19.0	-4.8		8472			
MRCI-L+DKH2	1467.29789	1.659	60.5	840	27.0	-3.3		8011			
MRCI-L+DKH2+Q	1467.34428	1.647	63.3	946	33.2	-3.0		7765			
			³ Γ (a ⁴ F	7)							
MRCI-L	1456.79632	1.846	57.5	467	2.0	3.4	-0.60	9705			
MRCI-L+Q	1456.83659	1.823	56.7	470	2.0	3.6		10643			
MRCI-L+DKH2	1467.29108	1.837	56.3	457	1.2	3.4		9505			
MRCI-L+DKH2+Q	1467.33200	1.810	55.6	459	0.9	3.8		10460			
			°Г (а4F	7)							
MRCI-L	1456.78630	1.982	51.2	486	4.5	4.0	-0.44	11905			
MRCI-L+Q	1456.82506	1.974	49.6	489	3.8	3.9		13174			
MRCI-L+DKH2	1467.28053	1.982	49.6	481	4.6	4.1		11820			
MRCI-L+DKH2+Q	1467.31982	1.974	48.0	484	4.2	4.0		13134			
			${}^{5}\Sigma^{-}(a^{4})$	F)							
MRCI-L	1456.77677	2.006	45.4	429	12.7	-0.1	-0.43	13996			
MRCI-L+Q	1456.81532	2.000	43.7	410	17.6	-2.5		15312			
MRCI-L+DKH2	1467.27119	2.006	43.8	427	18.9	-0.8		13871			
MRCI-L+DKH2+Q	1467.31028	2.000	42.0	404	26.5	-4.6		15228			
^a See Table 1 for explanation	n of acronyms and s	wmbols.									

The vbL diagram below gives a fair visualization of the Co + O^- interaction in the $X^5\Delta$ state.

The bonding comprises a 2-center— $5e^- \sigma$ and two 2-center— $3e^- \pi$ interactions. About 0.7 e^- are moving from O⁻ to Co through the π frame, while ~0.2 e^- are transferred back through the σ frame, resulting in a net O⁻ to Co charge migration of ~0.5 e^- .

The vbL diagram above is very similar to the diagram of the $X^4\Delta$ state of the neutral species after attaching one electron to the σ -frame of the latter.

For the six higher states of symmetries, ${}^{3}\Phi$, ${}^{3}\Sigma^{-}$, ${}^{3}\Delta$, ${}^{3}\Gamma$, ${}^{5}\Gamma$, and ${}^{5}\Sigma^{-}$ numerical results at the MRCI-L approach are collected in Table 5. All six states are relatively strongly bound with respect to the ground-state channel Co(${}^{4}F$) + O⁻(${}^{2}P$), with bond distances ranging from 1.62 (${}^{3}\Sigma^{-}$) to 2.00 Å (${}^{5}\Sigma^{-}$). Four of the states, namely, X⁵ Δ , ${}^{3}\Phi$, ${}^{5}\Sigma^{-}$ and ${}^{3}\Delta$, are stable with respect to the X⁴ Δ state of CoO at the MRCI-L+Q and MRCI-L+DKH2+Q/A5 ζ levels of theory. To be more specific, the total energy of the ${}^{3}\Delta$ state of CoO⁻ is lower by about 5 mE_h than the X⁴ Δ state of CoO; see Tables 1 and 5. The rest of the states, ${}^{3}\Gamma$, ${}^{5}\Gamma$, and ${}^{5}\Sigma^{-}$, are certainly unstable with respect to the X⁴ Δ state of CoO by ~4, 16, and 26 mE_h, respectively. A considerable O⁻ to Co

Figure 4. MRCI-L+Q/A5 ζ adiabatic PECs and energy level diagram (inset) of 7 bound states of CoO⁻. The ordering follows that of Table 5. All energies are shifted by +1456 $E_{\rm h}$.

charge transfer of about 0.5 e⁻ is observed, whereas all six states are of intense multireference characher; see Tables S7 and S8 in the Supporting Information.⁵⁰ The MRCI SO coupling constants of $X^{S}\Delta$ and ${}^{3}\Phi$ states are A = 139 and 254 cm⁻¹, respectively.

IV. SUMMARY AND REMARKS

The present work is a comprehensive high-level ab initio study of the CoO and its ions, CoO^+ and CoO^- , related to our recently published work in the 3d $MO^{0,\pm}$ (M = Sc-Fe) series.¹⁻³ Previous ab initio studies on CoO and CoO+ have been very limited indeed, being completely absent for CoO-; similarly, experimental results on the latter are practically nonexistent. The intricate electronic structure and high-density spectrum of the MO^{0,±} species dictate a multireference method of calculation and this is our method of choice in the present work. Using the MRCI method combined with augmented correlation consistent basis sets of quintuple quality (MRCI (+Q)/A5 ζ), we have constructed full PECs for 50, 31, and 7 bound states of CoO, CoO⁺, and CoO⁻, respectively. It should be mentioned, however, that as the number of valence electrons increases along the MO series (M = Sc-Ni), the efficiency of the MRCI method decreases; see, for instance, refs 1-3. The situation becomes more involved when one is trying to correct for subvalence $(3s^23p^6)$ core correlation and/or scalar relativistic effects (DKH). In the first case, size nonextensivity effects increase steeply, whereas in the second DKH corrections can create serious imbalances. In an effort to secure more credible results, for the first 5 states of CoO and CoO⁺ and the $X^5\Delta$ state of CoO⁻ we have performed multireference ACPF and single-reference RCCSD(T) calculations correcting as well for core and scalar relativistic effects. In addition, for these five states of CoO and CoO⁺, and all 7 states of CoO⁻, larger MRCI calculations have been done (MRCI-L) by increasing the size of the reference space(s).

We report energetics, common spectroscopic constants, dipole moments (CoO), Mulliken charges, and spin-orbit coupling constants (A) for the first few low-lying states of CoO, CoO⁺, and CoO⁻. Our conclusions are summarized below.

- 1. It has been confirmed that the ground states of CoO and CoO^+ are of ${}^{4}\Delta$ and ${}^{5}\Delta$ symmetries, respectively, whereas the ground state of CoO⁻, established with certainty for the first time, is ${}^{5}\Delta$.
- 2. Considering the very complex electronic structure of these molecules, our results are in fair to good agreement with experiment. An interesting discrepancy between theory and experiment, however, is observed in the ordering of the first excited states of CoO. While experimentally the first excited state is ${}^{4}\Sigma^{-}$ at $T = 3390 \text{ cm}^{-1}$, our calculations indicate instead a ${}^{6}\Delta$ state at ~4400 cm $^{-1}$, locating the ${}^{4}\Sigma^{-}$ state at ~5100 cm $^{-1}$ or some 700 cm $^{-1}$ above the ${}^{6}\Delta$ state. In addition, a ${}^{4}\Phi$ state, calculated to be just 500 cm $^{-1}$ above the ${}^{6}\Delta$, has never been observed experimentally. Finally, the ${}^{6}\Delta$ state is located experimentally at T = 7028 cm $^{-1}$, about 2600 cm $^{-1}$ higher than the calculated one.
- 3. The neutral molecule CoO is fairly ionic with a Co to O Mulliken charge transfer ranging from less than 0.50 (1²Π) to 0.80 (2⁶Σ⁻). Even in the cation Co⁺-O a considerable Co⁺ to O Mulliken charge transfer is found, ranging from 0.1(1¹Σ⁺) to 0.5(1⁵Γ, 2⁵Δ) electrons. On the other hand, in the anion CoO⁻ the negative charge is almost equally distributed between the two atoms for all 7 states examined, i.e., a flow of ~0.5 e⁻ is observed from O⁻ to Co.
- 4. To our knowledge, there is no experimental dipole moment for the ground or any other state of CoO. For the X⁴ Δ state of CoO the finite field calculated dipole moment ranges, in all methods employed, from 4.3 to 4.6 D; the recommended value is $\mu_{FF} = 4.5 \pm 0.1$ D. Electric dipole moments (μ_{FF}) are, in general, large, varying at the MRCI+Q level between 1.8 (a⁶ Δ) and 5.0 (B⁴ Σ^- , A⁴ Φ , C⁴ Π) D, most of them clustering around 3 D.
- 5. Results obtained at the MRCI+Q level do not differ significantly from all other approaches including core and relativistic effects. Therefore, all our results obtained at the MRCI+Q level can be considered better than of semiquantitative nature due to cancellation of errors. This is corroborated, for instance, by contrasting experimental versus MRCI+Q separation energies (T_e) for higher states of CoO (theoretical values in parentheses): $T_e = 10131 \pm 5$ (11068), 13950.07 (13031), 15 884.64 (14 815), 15 650.679 (15 932), and 21 046 (19 418) cm⁻¹ for the $1^2\Delta$, $3^4\Delta$, $4^4\Pi$, $4^4\Delta$, and $3^4\Phi$ states, respectively.
- 6. An effort has been made to adumbrate the bonding characteristics for a few lower states of CoO and the X-states of CoO⁺ and CoO⁻. It should be stated, however, that the bonding is quite complicated due to the multireference nature of these systems and their interaction with ionic channels. Thus, conventional bonding interpretations based on a naïve orbital picture are not realistic and can lead to wrong conclusions.

It is our belief that the present study of CoO and CoO^{\pm} is a significant contribution to the literature of the 3d transition metal monoxides. In particular, the construction for the first time of a

very large number of full potential energy curves along with corresponding calculated spectroscopic parameters can provide valuable information to the understanding of their complex spectra and other properties. From the theoretical point of view, it is indeed remarkable that a huge effort is required for obtaining useful results, even for rather light diatomic molecules of a certain type like the ones examined here, when employing all-electron ab initio wave function methods.

ASSOCIATED CONTENT

Supporting Information

MRCI results for higher states of CoO and CoO⁺ as well as leading MRCI/A5 ζ configurations, Mulliken atomic populations, and atomic charges for all species, CoO^{0,±}. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: mavridis@chem.uoa.gr.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

C.N.S. expresses his gratitude to the Special Funding Research Account (E. Λ .K.E.) of the National and Kapodistrian University of Athens for financial support.

REFERENCES

- (1) Miliordos, E; Mavridis, A. J. Phys. Chem. A 2007, 111, 1953.
- (2) Miliordos, E; Mavridis, A. J. Phys. Chem. A 2010, 114, 8536.
- (3) Sakellaris, C. N.; Miliordos, E; Mavridis, A. J. Chem. Phys. 2011, 134, 234308.
- (4) Merer, A. J. Annu. Rev. Phys. Chem. 1989, 40, 407.
- (5) Harrison, J. F. Chem. Rev. 2000, 100, 679 and references therein.
- (6) Gong, Y; Zhou, M.; Andrews, L. Chem. Rev. 2009, 109, 6765.
- (7) Rosen, B. Nature 1945, 156, 570.
- (8) Grimley, R. T.; Burns, R. P.; Inghram, M. G. J. Chem. Phys. 1966, 45, 4158.

(9) DeVore, T. C.; Gallaher, T. N. J. Chem. Phys. 1979, 71, 474.

- (10) Green, D. W.; Reedy, G. T.; Kay, J. G. J. Mol. Spectrosc. 1979, 78, 257.
- (11) Adam, A. G.; Azuma, Y.; Barry, J. A.; Huang, G.; Lyne, M. P. J.; Merer, A. J.; Schröder, J. O. J. Chem. Phys. **1987**, *86*, 5231.
- (12) Fisher, E. R.; Elkind, J. L.; Clemmer, D. E.; Georgiadis, R.; Loh, S. K.; Aristov, N.; Sunderlin, L. S.; Armentrout, P. B. *J. Chem. Phys.* **1990**, 93, 2676.
- (13) Fisher, E. R.; Armentrout, P. B. J. Phys. Chem. 1990, 94, 1674.
- (14) Ram, R. S.; Jarman, C. N.; Bernath, P. F. J. Mol. Spectrosc. 1993, 160, 574.
- (15) Clouthier, D. J.; Huang, G.; Merer, A. J.; Friedman-Hill, E. J. J. Chem. Phys. **1993**, *99*, 6336.
- (16) Barnes, M.; Clouthier, D. J.; Hajigeorgiou, P. G.; Huang, G.; Kingston, C. T.; Merer, A. J.; Metha, G. F.; Peers, J. R. D.; Rixon, S. J. J. Mol. Spectrosc. **1997**, 186, 374.
- (17) Li, X.; Wang, L.-S. J. Chem. Phys. 1999, 111, 8389.
- (18) Namiki, K. C.; Saito, S. J. Chem. Phys. 2001, 114, 9390.
- (19) Danset, D; Manceron, L. J. Phys. Chem. A 2003, 107, 11324.
- (20) Liu, F; Li, F.-X.; Armentrout, P. B. J. Chem. Phys. 2005, 123, 064304.
- (21) McLamarrah, S. K.; Sheridan, P. M.; Ziurys, L. M. *Chem. Phys. Lett.* **2005**, *414*, 301.
- (22) Guo, J; Wang, T.; Zhang, Z.; Chen, C.; Chen, Y. J. Mol. Spectrosc. 2006, 240, 45.

- (23) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 2123.
- (24) Bauschlicher, C. W., Jr.; Maitre, P. Theor. Chim. Acta 1995, 90, 189.
- (25) Baranowska, A; Siedlecka, M.; Sadlej, A. J. *Theor. Chem. Acc.* 2007, 118, 959.

(26) (a) Piechota, J; Suffczyński, M. Phys. Rev. A: At. Mol. Opt. Phys.
1993, 48, 2679. (b) Gutsev, G. L.; Rao, B. K.; Jena, P. J. Phys. Chem. A
2000, 104, 5374. (c) Bridgeman, A. J.; Rothery, J. J. Chem. Soc., Dalton
Trans. 2000, 211. (d) Uzunova, E. L.; Nikolov, G., St; Mikosch, H.
J. Phys. Chem. A 2002, 106, 4104. (e) Gutsev, G. L.; Andrews, L.;
Bauschlicher, C. W., Jr. Theor. Chem. Acc. 2003, 109, 298. (f) Dai, B;
Deng, K.; Yang, J.; Zhu, Q. J. Chem. Phys. 2003, 118, 9608. (g) Uzunova,
E. L.; Nikolov, G. St.; Mikosch, H. ChemPhysChem 2004, 5, 192.
(h) Jensen, K. P.; Roos, B. O.; Ryde, U. J. Chem. Phys. 2007, 126, 014103.
(i) Uzunova, E. L.; Mikosch, H.; Nikolov, G. St. J. Chem. Phys. 2008, 128, 094307. (j) Liu, L.; Zhao, R.-N.; Han, J.-G.; Liu, F.-Y.; Pan, G.-Q.;
Sheng, L.-S. J. Phys. Chem. A 2009, 113, 360.

(27) Kamariotis, A; Hayes, T.; Bellert, D.; Brucat, P. J. *Chem. Phys. Lett.* 2000, 316, 60.

- (28) Carter, E. A.; Goddard, W., III J. Phys. Chem. 1988, 92, 2109.
- (29) Sodupe, M; Branchadell, V.; Rosi, M.; Bauschlicher, C. W., Jr. J. Phys. Chem. **1997**, 101, 7854.
- (30) Nakao, Y; Hirao, K.; Taketsugu, T. J. Chem. Phys. 2001, 114, 5216.
 (31) Fiedler, A; Schröder, D.; Shaik, S.; Schwarz, H. J. Am. Chem. Soc. 1994, 116, 10734.
- (32) Balabanov, N. B.; Peterson, K. A. J. Chem. Phys. 2005, 123, 064107.
- (33) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
- (34) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.
- (35) Raghavachari, K; Trucks, G. W.; Pople, J. A.; Head-Gordon, M.
- Chem. Phys. Lett. 1989, 157, 479. Watts, J. D.; Bartlett, R. J. J. Chem. Phys.
- 1993, 98, 8718. Knowles, P. J.; Hampel, C.; Werner, H.-J. J. Chem. Phys. 1993, 99, 5219; *ibid* 2000, 112, 3106E.
- (36) Werner, H.-J.; Knowles, P. J. J. Chem. Phys. **1988**, 89, 5803. Knowles, P. J.; Werner, H-J. Chem. Phys. Lett. **1988**, 145, 514.
- (37) Douglas, M.; Kroll, N. M. Ann. Phys. 1974, 82, 89.
- (38) Hess, B. A. Phys. Rev. A: At. Mol. Opt. Phys. **1985**, 32, 756; ibid. **1986**, 33, 3742.
- (39) Jansen, H. B.; Ross, P. *Chem. Phys. Lett.* **1969**, *3*, 140. Boys, S. F.; Bernardi, F. *Mol. Phys.* **1970**, *19*, 553.
- (40) Langhoff, S. R.; Davidson, E. R. Int. J. Quantum Chem. 1974, 8, 61. Davidson, E. R.; Silver, D. W. Chem. Phys. Lett. 1977, 52, 403.
- (41) Gdanitz, R. J.; Ahlirichs, R. Chem. Phys. Lett. **1988**, 143, 413. Werner, H-J.; Knowles, P. J. Theor. Chim. Acta **1990**, 78, 175.
- (42) Werner, H.-J.; Knowles, P. J.; Lindh, R.; Manby, F. R.; Schütz, M.; Celani, P.; Korona, T.; Mitrushenkov, A.; Rauhut, G.; Adler, T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hetzer, G.; Hrenar, T.; Knizia, G.; Köppl, C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklass, A.; Palmieri, P.; Pflüger, K.; Pitzer, R.; Reiher, M.; Schumann, U.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M.; Wolf, A. MOLPRO, version 2006.1, a package of ab initio programs; see http://www. molpro.net.
- (43) Ralchenko, Yu.; Kramida, A. E.; Reader, J. NIST ASD Team (2010). NIST Atomic Spectra Database (version 4.0), [Online]. Available at: http://physics.nist.gov/asd. National Institute of Standards and Technology: Gaithersburg, MD.
- (44) Bunge, C. E.; Barrientos, J. A.; Bunge, A. V. At. Data Nucl. Data Tables **1993**, 53, 113.
- (45) Tzeli, D; Mavridis, A. J. Chem. Phys. 2003, 118, 4984; ibid. 2010, 132, 194312.
- (46) Herschbach, D. R.; Laurie, W. V. J. Chem. Phys. 1961, 35, 458.
- (47) Blondel, O; Chaibi, W.; Delsart, C.; Drag, C.; Goldfarb, F.;
- Kröger, S. Eur. Phys. J. D 2005, 33, 335.
 (48) Ramond, T. M.; Davico, G. E.; Hellberg, F.; Svedberg, F.; Salén,
- P.; Söderqvist, P; Lineberger, W. C. J. Mol. Spectrosc. 2002, 216, 1.

(49) Polak, M. L.; Gilles, M. K.; Ho, J.; Lineberger, W. C. J. Phys. Chem.

(19) Folds, W. E., Ghies, W. E., Fish, J., Elleberger, W. C., Fish, Chem. **1991**, 95, 3460. (50) See Supporting Information for MRCI results for higher states of CoO and CoO⁺ as well as leading MRCI/A5 ζ configurations, Mulliken atomic populations, and atomic charges for all species, CoO^{0,±}.