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Diffusion jumps of small molecules dispersed in chain molecules or other kinds of slow-moving matrices
have already been observed in many previous simulations of such systems, and their treatment led to important
qualitative conclusions. In the present work, a new, very simple yet effective method is described, allowing
for both identification of individual penetrant jump events and their quantitative treatment in a statistical
sense. The method is applied in equilibrium Molecular Dynamics simulations for systems of gaseous alkanes,
methane throughn-butane, including also a mixture of methane andn-butane, dispersed inn-decane or
n-eicosane. Equilibration and attainment of a linear diffusion regime is confirmed by means of various criteria,
and the jumps detection method is applied to all systems studied. The results obtained clearly show the existence
of distinct jump events in all cases, although the average jump length is reduced with penetrant or liquid
alkane molecular weight. The method allows one to determine the average jump length and the corresponding
jumps frequency. On the basis of these results, it was possible to estimate a random walk type diffusion
coefficient,Ds,jumps, of the penetrants, which was found to be substantially lower compared with the overall
diffusion coefficientDs,MSD obtained by the mean square displacement method. This finding led us to assume
that the overall penetrants’ diffusion in the studied systems is a combination of longer jumps with a smoother
and more gradual displacement, a result that confirms assumptions suggested in previous studies.

1. Introduction

Jumps of small diffusing molecules play an important role
in diffusion theory. Although the concept of diffusion jump is
a highly idealized one, it constitutes a theoretically appealing
notion since it has strong similarities to the random walk model.
Diffusion in molecular liquids is considered to proceed via such
small random translocations of a molecule hopping from a
“cage” formed by its nearest neighbor to a nearby empty site
generated as a result of thermal fluctuations.1 A rather different
situation occurs as we move on to more or less fixed matrices,
such as those formed by high molecular weight chains, with
small molecules dispersed therein. In these systems, free volume
cavities may exist for long time scales as compared with thermal
fluctuations duration, but at the same time, they are situated
relatively far apart, thus leading to infrequent and longer
penetrant translocations, as the literature cited in the next
paragraphs shows. Such events are actually complicated se-
quences of translations combined with intramolecular rearrange-
ments rather than more or less sudden events as those referred
to within the framework of molecular liquid systems. However,
the penetrant molecules are trapped in cavities for relatively
long time scales, so that a penetrant moving to another free
volume site comes up as a comparatively sharp process, thus
justifying its characterization as a jump.

Nowadays, it is generally assumed that diffusion of small
molecules in polymer matrices often, but not uniquely, proceeds
through such a “hopping mechanism” of diffusive jumps. These
jumps can be directly observed by analyzing trajectories
obtained within the framework of computer atomistic simula-
tions. Numerous examples of such observations exist in the
literature, usually visualized in the form of diagrams depicting
the distance of a single molecule from its initial position versus
time or as two- or three-dimensional pictures of penetrant’s
successive positions, of course after removing periodic boundary
conditions.

In this work, we are interested in the diffusion of small
molecules through slowly moving “matrices”, such as chain
molecules or other kinds of systems. With respect to the nature
of the matrix wherein penetrants diffuse, we may distinguish
three broad classes of systems: ordered fixed matrices, disor-
dered fixed matrices, and “dynamic” amorphous systems. The
term “fixed” used in the first two cases should not be interpreted
in an absolute sense; it merely denotes the persistence of a basic
structural pattern that thermal fluctuations or penetrants’ motion
cannot destroy. Crystals and zeolites are typical representatives
of the first class. Their order is reflected upon the regular spatial
arrangement of the interstitial sites where a penetrant molecule
can jump in. This regularity allows one to study diffusion by
simply assuming a model based on the probability of jumps
from a given site to each of the adjacent ones. In the case of
zeolite systems, transition state theory (TST) has also been
applied, and abundant literature exists on the topic (see, for
example, refs 2-10). These approaches actually represent the
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inverse one with respect to ours, that is, the ad hoc assumption
of a jump driven diffusion mechanism.

A rather different situation occurs in the second class, the
one of amorphous fixed matrices. Glassy polymers and other
similar systems belong to this class. In such systems, holes or
vacant sites are not located in space in a regular manner but
rather randomly. The procedure usually applied is that of
creating samples based on reliable atomistic models and then
generating a detailed map of the voids, based on either free
volume analysis or potential energy surface considerations; in
the latter case, penetrant “macrostates” are identified as the union
of adjacent possible penetrant locations with low potential
energy separated by very low (smaller thankBT) energy barriers.
Then, the network of paths formed by possible jumps to nearby
cavities or macrostates is considered; TST is employed to
estimate the rate of transition from one node of the network to
another, and subsequent statistical analysis allows one to
estimate the diffusivity. Again, numerous works exist in this
area.11-19 The feature in common with the analysis of systems
falling in the first class is the assumption of a jump diffusion
mechanism prevailing on all other possibilities. It should be
mentioned here that systems belonging to the last two classes
are characterized by very slow dynamics and direct observation
of diffusion by means of the molecular dynamics (MD)
technique is quite difficult, as it usually requires time-consuming
simulations.

Finally, in the third category, one may deal with such systems
as rubbery macromolecular ones. The matrices through which
penetrants diffuse, change with time, and their dynamics are
characterized by a vast spectrum of time scales. Local rear-
rangements allow for free volume cavities to appear and
disappear, change their shape and position, merge, or split. At
the same time, deformation of the matrix may allow for a
penetrant to move smoothly rather than suddenly from one site
to another, so that jumps do not constitute the only cause of
diffusion but may coexist with other microscopic mechanisms
as well. It is in such systems that MD applies for the study of
diffusion processes, and penetrant jumps may be directly
observed. On the other hand, the rather fast dynamics of free
volume do not allow one to apply such techniques as TST, which
are based on the a priori knowledge of the free volume cavities
position, so that MD is the common option.

Numerous treatments of such systems20-42 imply that one can
easily identify jumps as abrupt changes in a plot of displacement
versus time or as “threads” connecting highly populated regions
in three-dimensional graphs of penetrant positions. These
methods do provide a picture of penetrant jumps that take place,
although they do not constitute a rigorous definition of what is
a jump. On the other hand, attempts to derive a method for a
quantitative treatment of jumps are characterized by a certain
arbitrariness in the form of varying parameters that cannot be
determined in any other way but by comparison with mean
square displacement data, except in ref 30 where local orienta-
tion correlation functions were used to devise a spectrum of
characteristic length scales. However, using mean square
displacement data to tune arbitrary parameters of the jump
models is in general incorrect, since microscopic mechanisms
other than the hopping one have been observed in numerous
cases. It is worth noting, for instance, the work of Hahn et al.32

in which it is suggested that, in the case of phenol molecules in
bisphenol A-polycarbonate, diffusion mechanisms other than
the usually postulated one of jumps are the main contributors
to the overall diffusive motion. Instead of more or less fixed
cavities whose volume may fluctuate but their location is

essentially constant throughout the simulation, they observed a
certain coupling of penetrant and local polymer motion resulting
in the penetrant carrying the necessary free volume like a turtle
carries its shell, thus leading to a continuous rather than hopping
form of translocation.

Given the above, researchers often lean toward using plots
of displacement versus time as a handy tool to treat the jumps
observed in a quantitative manner.21,22,24-26,32-35,40 This is
problematic, however, since this kind of representation is
characterized by its inability to take into account the direction
in space a penetrant moves toward. Indeed, a molecular jump
may be considered as a combination of longitudinal and
transverse displacements with respect to the line connecting the
original and current penetrant position. A purely longitudinal
jump would be correctly identified quantitatively, whereas a
transverse one would hardly show up in the graph. In the simple
but illustrative scenario of a molecule jumping between different
points on a spherical surface centered at a position defined as
initial, the respective jumps would be severely underestimated.
Furthermore, as the molecule diffuses away from its original
position, all such “transverse” jumps would be virtually
indistinguishable from thermal noise in a plot of displacement
with time. Therefore, the underestimation effect in such
representations seems to be more apparent with increasing time.
Of course, the displacement can be defined not only as a
function of distance but also as a function ofx, y, or z. However,
such data sets are in general too “noisy” and need additional
processing and filtering before proceeding to further statistical
treatment.

In this work, we present a new alternative for a precise
identification of the diffusion jumps. The method has been
successfully applied to a number of systems consisting of small
gaseous alkane particles diffusing through similar linear mol-
ecules of higher molecular weight. It is based on tracking the
size of the region occupied by a specific number of successive
penetrant positions, throughout the simulation. In this way, one
can identify all isolated jumps and determine the respective jump
lengths. This kind of data can be further statistically processed
leading to information concerning both the average jump length
and the frequency of hopping events, provided that a large
enough sample has been obtained. With the aid of this
information, one can clarify the extent of jumps contribution
to the overall diffusion and thus to elucidate the possible
microscopic mechanisms underlying the behavior of diffusion
processes in such systems. Finally, it should be noted that the
proposed approach is capable of detecting the jump events
regardless of their origin, that is, whether the penetrant escaped
from a cavity and moved to another one or whether it was
suddenly drawn away because of the matrix’s structural rear-
rangement or other collective motion.

The present work is organized as follows: In section 2, we
describe the systems studied, the employed simulation meth-
odology, as well as the principles and details of the new jumps
detection method. In section 3, the simulation results are
presented and discussed. In particular, the simulation trajectory
data are processed, and information on the jump statistics is
obtained and analyzed via our new method. A summary of the
main results of our treatment is given in section 4.

Finally, in Appendix A, we justify a specific subset of the
potential parameters to model the liquid alkanes and penetrant
molecules. In Appendix B, some necessary mathematical
manipulations are presented in order to clarify specific parts of
the argumentation in the main text.
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2. Fundamentals

2.1. Simulation Details. Systems consisting of gaseous
alkanes dispersed in higher molecular weight normal alkanes
were simulated by means of the equilibrium MD simulation
technique. In particular, we studied the diffusion of methane,
ethane, propane, andn-butane, as well as that of an equimo-
lecular mixture of methane andn-butane, in linear hydrocarbons
of the type CnH2n+2, n ) 10, 20, hereafter referred to as “heavy
substances” or “liquids”. The penetrant gases are chemically
similar to the heavier substances, and therefore, interference by
other factors such as molecular architecture and chemical
composition is almost eliminated. The effect of such factors on
jumps statistics, microscopic mass transport mechanisms, and
other aspects of diffusion processes will be dealt with in
forthcoming studies. Normal pressure and ambient temperature
were chosen as conditions for all simulations, as will be
explained in the following subsections.

Force Field. Several united atom models exist in the
literature, which can reliably describe alkane molecules. Taking
this into account, a similar representation has been adopted here,
in which both CH2 and CH3 groups are represented as unified
interaction centers. The model used in this study is based on
the well-known NERD43 and UA-TraPPE44 models, which
have been successfully used in simulations of the homologous
series of alkanes. The modified NERD/UA-TraPPE force field,
introduced in this work and hereafter referred to as mNT,
accounts for a torsional potential combined with “local” or short
range nonbonded interactions. Separating the intrinsic bond
torsion potentials from the influence of nearby interaction sites
will allow us to study the effect of molecule rigidity, architec-
ture, and other factors in a systematic manner.

In mNT, the torsional potential is given as the sum of simple
torsion terms of the form:

In eq 1,æ stands for a dihedral angle defined by four consecutive
atoms along the molecular chain. The “local” nonbonded
potential acts between sites belonging to the same molecule and
is separated by three or four bonds. It is a sum of terms
characterized by their own parameters,σij and εij, for a 12-6
Lennard-Jones, LJ, potential,

whererij is the distance between two united atomsi andj. It is

assumed that these local interactions contribute to the torsion
potential, while they have no significant influence on the
thermodynamic properties. The latter are mainly affected by
the “nonlocal” interactions, that is, the rest of the nonbonded
interactions, which are characterized by the usual UA-TraPPE
parameters involved in similar energy contributions of the form
of eq 2.

Within the mNT model, bonds are flexible and obey a
quadratic potential. The corresponding mNT parameters were
obtained from the NERD potential. All mNT parameters are
summarized in Table 1. A further discussion on the determi-
nation of the exact values for the parameters can be found in
Appendix A.

Systems Construction.In each case, the initial configuration
was constructed at a density equal to that of the pure heavy
alkane, at a given temperature and pressure. All such structures
contained 1000 united atoms of the heavy substance, so that
for every CnH2n+2 system the number of heavy substance
molecules was 1000/n. Every mixture contained 20 penetrant
molecules of the diffusing substance (methane or butane) except
in the case of a methane-butane mixture in which, 10 mole-
cules of each gaseous alkane were present. Hence, the corre-
sponding heavy substance gas mixtures contained 1020, 1040,
1060, 1080, or 1050 united atoms, for the cases of methane
throughn-butane and of the methane/butane mixture, respec-
tively. The penetrants were uniformly dispersed in the systems,
thanks to the sample construction method, as explained in the
next paragraph. This fact was confirmed by inspecting their
positions in the samples.

The creation of the initial configuration for each system was
a two-step process. In the first step, all heavy substance and
gaseous molecules were built in parallel; that is, a new bond
was added at each step of the calculation for each molecule.
Trial bond orientations were accepted or rejected using a
Metropolis criterion that involved the sum of torsion and local
nonbonded energy due to the new bond addition. All angles
and bonds were taken to be at their equilibrium values, while
the equivalent atomic diameter was taken to be 2.5 Å.
Configurations with a strong overlap between nonbonded pairs,
that is, for a pair distance lower than 0.7σij, were excluded. This
procedure allows for a very fast construction of initial configu-
rations with reasonable dihedral angles distributions. At this
stage, no other nonlocal Lennard-Jones interactions were taken
into account. Cubic periodic boundary conditions were imposed,
and the simulation cell dimensions were determined according
to the desired initial density.

In the second step, a simple Monte Carlo, MC, scheme was
employed in order to perform energy optimization. Small

TABLE 1: Atomistic United Atom Force Field Used in the Simulations

bonded
stretching:Vl ) 1

2
kl(l - l0)

2 C-C l0 (Å) 1.54
interactions kl (kcal mol-1Å-2) 192

bending: Vθ ) 1
2

kl(θ - θ0)
2 C-C-C θ0 (°) 114

kθ (kcal mol-1 rad-2) 124.2

torsion: Vφ ) 1
2

kφ(1 + cos 3φ) C-C kæ (kcal mol-1) 3.25

nonbonded local interactions: of the same functional form CH2 σ (Å) 3.53
interactions as nonlocal ones ε (kcal mol-1) 0.026

CH3 σ (Å) 3.53
ε (kcal mol-1) 0.026

Vnb ) 4εij((σij

rij
)12

- (σij

rij
)6) nonlocal interactions CH2 σ (Å) 3.95

ε (kcal mol-1) 0.091
CH3 σ (Å) 3.75

ε (kcal mol-1) 0.195
CH4 σ (Å) 3.73

ε (kcal mol-1) 0.294

Vφ ) 1
2

kφ(1 + cos 3φ) (1)

Vnb ) 4εij((σij

rij
)12

- (σij

rij
)6) (2)
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displacements of randomly selected atoms constituted the MC
moves used at this stage. Here, the full potential was used,
and variation of all internal coordinates was allowed. This
process was employed in a series of consecutive MC cycles
with gradually increasing atomic diameters up to their nor-
mal values given by our model. The number of moves per
cycle varied from 105 to 5 × 105, depending on the speed by
which energy approached a minimum. The structure, relaxed
during each cycle, was used as input to the next calculation
with larger atomic diameters. Apart from relaxation toward a
lower energy state, the scope of this stage was a gradual
decorrelation of the initial configuration by lifting all constraints
from bonds and angles so as to have a more natural structure
as a starting point. A basic criterion providing such evidence
was the attainment of smooth and diffuse bond angles and
dihedral angles distributions with respect to the chain molecules,
instead of the discrete ones imposed during the first stage.45

Finally, the density was held constant throughout the second
stage, as well.

Molecular Dynamics Details. MD simulations have been
performed in the isothermal-isobaric, NPT, statistical mechan-
ical ensemble, at normal pressure and 293.15 K temperature,
which correspond to experimental values for the pure alkanes
densities.46 Apart from the liquid-gas mixtures under study,
simulations were also performed with three structures of pure
n-decane,n-eicosane, andn-triacontane under the same condi-
tions. The simulated densities were found to exceed the
experimental values at about 0.5-1%, which are found to be
in good agreement with experiment. In Figure 1, we present a
direct comparison between experimental values of densities at
various molecular weights and those obtained from our simula-
tion at 293.15 K.

In all MD simulations of pure heavy substance and gas
mixtures, we utilized a fifth order Gear predictor-corrector
algorithm47 with a time step of 0.5 fs. Cubic periodic boundary
conditions were applied, and the Verlet neighbor list technique48

was also employed for speeding up calculations of nonbonded
interactions. A cutoff distance of 2.33σij, whereσij denotes the
equivalent diameter of theij atom pair, was adopted for the LJ
potential. At distances greater than 1.45σij, the LJ potential
was approximated by a fifth order spline polynomial in order
to eliminate discontinuities at the cutoff distance. All simulations
were performed with the Nose´-Klein method for the NPT
ensemble.49 Application of this method required the calculation

of the energy and pressure correction due to the applied cutoff
of nonbonded potential, which accounted for the interactions
at greater distances. Pressure calculation involved computation
of the instantaneous molecular virial,50 which is exclusively
formed by intermolecular nonbonded contributions and is, there-
fore, computationally less demanding. All simulations lasted
for 6 ns of which the first one was taken as an equilibration
stage.

Prior to the analysis of the mass transport phenomena, certain
criteria were employed to assess the initial structures and
corresponding MD trajectories obtained, especially in terms of
sufficient equilibration. The total potential energy and its
components, namely, stretching, bending, torsion, and Lennard-
Jones energy, were recorded. It was observed that total and
nonbonded energy decreased during the first 50 to 100 ps and
from then on kept fluctuating about a constant value. The other
components also exhibited the same fluctuating behavior from
the beginning. This is an indication that residual overlaps among
the various interaction sites, which escaped the equilibration
stage during the initial structure generation process, were easily
removed during the MD simulation. The running average of
the systems density was also recorded, and it was observed to
reach an asymptotic value within the first 1 ns of the simulations.
To check whether the systems were homogeneous, the simula-
tion box was divided in eight equal sub-boxes, and the number
density running average in each of them was recorded. It was
observed that the density of each sub-box and that of the whole
box practically coincided within the first 1 ns equilibration
period.

The dihedral angles distribution of the initial structures was
computed and compared to the average distribution obtained
during each nanosecond (ns) of the simulations. It was found
that the distribution remained practically the same as a result
of the building procedure which ensures the generation of
amorphous structures. On the other hand, time autocorrelation
in the form of first and second order Legendre polynomials, of
the end-to-end vector of whole chains and subchains of various
lengths, clearly showed mobility and loss of structural memory.45

Thus, the systems were not frozen in their initial state but were
actually liquid.

2.2. Proposed Jumps Detection Method: Diffusion Mech-
anisms. As mentioned above and following the literature so
far, jumps are usually identified by previous workers as more
or less abrupt changes observed in graphs of a single molecule’s
displacement with respect to its initial position. The true
molecular motion is not always described correctly by such
graphs, since the translating molecule may jump between sites
that are situated at roughly equal distances from the penetrant’s
initial position. Because of this fact, contribution of the jump
mechanism might appear to be underestimated. On the other
hand, detailed information concerning the jumps distribution
might be quite helpful in order to understand more precisely
the mass transport processes. In an effort to elucidate the
contribution of the different diffusion mechanisms in the
framework of our simulations, devise improved tools for
presenting the penetrant translation information, and clarify the
diffusive jump notion itself, we employ a new quantitative
method, which is described herein.

According to it, we accept that the penetrant molecule spends
most of its time being trapped inside various free volume cavities
formed by the heavy substance molecules. Thus, by recording
its center-of-mass positionN times within a time interval∆t, it
is most probable to collect a cloud or swarm of points
concentrated inside a particular area. From time to time, thermal

Figure 1. Pure normal alkanes,n-CnH2n+2, density values (g cm-3)
at 293.15 K temperature and normal pressure with respect to
inverse degree of polymerization,n-1: simulation and experimental
values.
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fluctuations allow the penetrant to pass from one cavity to
another. If such a jump event occurs during the observation
time interval∆t, the swarm of points should become elongated.
Of course, a similar effect is to be expected in the case of a
penetrant moving from one end of an elongated cavity to the
other. In the present approach, we are not concerned with the
polymeric environment but rather with the penetrant trajectory
itself.

By taking into account an appropriate measure of the swarm
size as a function of time, one expects to observe a number of
peaks corresponding to the occurrence of particular jumps. Such
a measure can be given in terms of the radius of gyration,RG,
taken over all swarm points

where timet denotes the middle of observation time interval
∆t, Ri(t;∆t) ) R(t - ∆t/2 + i∆t/N) is the position of every
observation point andRCM is the swarm center of mass, defined
as follows:

By using such a criterion, we define jump lengthλ′(t;∆t) by
the following relation:

The prefactor of 2 has been introduced in order to correctly
account for the whole area covered by the swarm of points.
Diffusion jumps are obviously not absolutely sharp but rather
complicated events, and therefore, the means to describe them
should reflect this fact. In this respect, if the time interval∆t is
long enough, the respective set of successive positions consti-
tutes a random walk. This assumption has indeed been
confirmed by plotting the average square lengthλ′2(t;∆t) with
time interval ∆t, which yielded a straight line.45 Then, the
positions recorded within each time interval constitute a normal
distribution centered atRCM (eq 4), with a standard deviation
equal to the radius of gyration (eq 3). The standard deviation
of a normal distribution multiplied by 2 is a common measure
for its width and therefore constitutes a plausible choice for
our definition of the diffusion jump length.

As a simpler variant of the above method, one could use the
measure of the observation points swarm end-to-end vector,

to describe its size with time. This is useful in estimating the
size of diffusion jumps, but as our experience showed, it results
in a much noisier signal and therefore is not practical. On the
contrary, the radius of gyration time series,RG(t;∆t), leads to a
smoother curve, which allows one to precisely identify jumps
with peaks in the respective graph. Moreover, it can reliably
estimate a jump’s size sinceRG, as given by eq 3, is an
appropriate measure of the extent to which the successive
penetrant positions are spread in space over a certain time period.
It should be also noted that the method introduced in this work
manages to isolate the jumps mechanism from other processes
also underlying diffusion, as, for instance, smooth translation,
revealing the real extent of its contribution. Finally, a refinement
introduced in the next paragraphs will allow us to incorporate

the quantity defined by eq 6, in an appropriate factor multiplying
the length introduced in eq 5, so as to correctly determine the
successful jumps contribution to the overall diffusive displace-
ment.

Indeed, by considering the series of jumps observed as a
random walk, one can define a corresponding diffusion coef-
ficient, Ds, jumps, via the well-known formula:51

whereν denotes the frequency of successful jumps andλ denotes
the average jump length. In terms of simulation results, the
frequencyν is calculated as the number of all successful jumps
performed by all of the penetrants divided by the total simulation
time. The diffusion coefficientDs, jumps provides the measure
of jumps contribution to the overall diffusive motion.

At this point, we should discuss two problems. The first one
is related to the arbitrary parameter∆t entering the jump length
definition by eq 5 and how one could remove it. The second
problem concerns the question of how to distinguish between
successful and unsuccessful jumps so as to calculate a reliable
Ds, jumpsvia eq 7. These two problems are solved simultaneously
according to the following argumentation: An ideal successful
jump could be considered as that of a molecule moving along
a straight line from the first to the last of a set ofN consecutive
points. In real situations, however, the penetrant should follow
a much more complicated trajectory between the first and the
last point, more or less deviating from ideality. Therefore, the
ratio of the distancer1N divided by the contour length of the
particle’s real path from point 1 toN should provide a measure
of such deviations. In the extreme case of a penetrant returning
to its initial host cavity,r1N would be close to zero and so would
the ideality ratio. This kind of event can be considered as an
unsuccessful jump. Consequently, one may use this ratio to
properly weight the jump size curve obtained by eq 5.
Obviously, the sum of the distancesri,i+1, i ) 1, 2, ...,N - 1,
would replace the contour length of the penetrant path, leading
to a reformulated definition of jump length replacing that of eq
5, in the following manner:

Moreover, the average of the above quantity over the total
simulation time and all of the penetrants in the system can be
easily shown to be essentially independent of the time inter-
val ∆t (see Appendix B), a fact that has been also confirmed
by our results, as will be explained in the subsequent sec-
tion 3. This way, the arbitrary parameter problem is also
eliminated.

By comparing the random walk diffusion coefficient,Ds, jumps,
based on the weighted jump lengthλ(t) to the one directly
obtained from the mean square displacement (MSD) relation
with time scales,Ds, MSD, one can estimate the contribution of
jumps to the overall diffusive motion. In particular, we may
state that the jumps contribution to the diffusive motion is
important if the respective random walk diffusivity is close to
the mean square displacement one. If, on the other hand, the
former is, for example, 1 order of magnitude lower than the
latter, additional diffusion mechanisms such as smooth transla-
tion of the reptation kind should be present.

Ds, jumps)
1
6

νλ2 (7)

λ(t) ) 2RG(t;∆t)
||R1(t;∆t) - RN(t;∆t)||

∑
i)1

N - 1

||Ri(t;∆t) - Ri+1(t;∆t)|

(8)

RG(t;∆t) ) x1

N
∑
i)1

N

(Ri(t;∆t) - RCM(t;∆t))2 (3)

RCM )
1

N
∑
i)1

N

Ri(t;∆t) (4)

λ′(t;∆t) ) 2RG(t;∆t) (5)

r1N(t;∆t) ) |R1(t;∆t) - RN(t;∆t)|| (6)
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One more final remark should be added concerning the
validity of treating jumps as a random walk process to discern
whether they coexist or not with other factors causing diffusion.
It is well-known that, although jumps are random events, their
randomness, justifying use of eq 7, is clearly exhibited only
beyond a certain space-time scale,31 which depends on the
particular system under study. Otherwise, subdiffusion is
observed because of the restrictions imposed upon penetrants
by the surrounding matrix molecules. Nevertheless, if the overall
diffusion is in the normal regime, then two possible cases
exist: either the jumps themselves constitute a subdiffusive
process and consequently can not be the sole contribution to
the mass transport process, or they do constitute a true three-
dimensional random walk, and then it is fair to use the respective
formalism combined with our jumps analysis to decide whether
they are the only important microscopic diffusion mechanism
or not.

3. Results and Discussion

3.1. Macroscopic Mass Transport Properties.First, the
gaseous alkanes self-diffusion coefficients,Ds, MSD, were cal-
culated from the well-known Einstein relation connecting mean
square displacement with time scales

whereτ is the time scale andRi(t) is the position vector for the
center of mass of moleculei at timet. The brackets〈 〉i,t0 denote
averaging with respect to all moleculesi of a given type, gas
or liquid, and all initial timest0 of every time scaleτ. The
quantity〈|Ri(t0 + τ) - Ri(t0)|2〉i,t0 is the mean square displace-

ment (MSD) of the diffusing molecule. Results for methane and
n-butane inn-decane andn-eicosane are shown in Figure 2.
Similar curves have been obtained for all of the other systems
studied in this work. From the curves in Figure 2, we easily
observe that a linear part is clearly present which allows one to
define self-diffusivity according to eq 9. Table 2 summarizes
self-diffusion coefficient values of all gas-liquid mixtures
obtained from present simulations. At this point, it is worth
noting the remarkable deviation of methane’s diffusivity
observed in the presence ofn-butane with respect to the one
calculated for pure methane.

The values of the displacement correlation matrix elements,
normalized by the MSD, have also been computed to infer about
the possible anisotropy in the penetrants’ motion. These are
defined by

where∆Ri ) |Ri(t0 + τ) - Ri(t0)|, ∆Ri ) |Ri(t0 + τ) - Ri(t0)|
with R ) x, y, z, andδRâ is Kronecker’s symbol, so that the
condition for isotropic diffusion assumes the following particu-
larly simple form:

In Table 2, the average values over diagonal,R ) â, and non-
diagonal,R * â, elements and over time scales from 1000 up
to 4000 ps are shown, together with the diffusion coefficients.
Time scales shorter than 1000 ps were excluded so as to fulfill
the condition for longτ, eq 11, whereas the ones longer than
4000 ps were rejected as subject to larger statistical error as
the respective time intervals become fewer. The obtained values
show that there is neither significant anisotropy nor any strong
correlation in the penetrants’ motion along thex, y, or z axis in
any of the systems studied. This result together with the form
of the curves in Figure 2 imply that normal diffusion has been
attained within the space and time scales studied.

The MSD based self-diffusion coefficients are also shown
graphically in Figure 3 as a function of carbon atoms in the
penetrant molecule. The results presented in this subsection
provide valuable information about the dependence of systems’
mass transport properties on such parameters as penetrant or
matrix molecular weight. However, no direct information about
the underlying diffusion mechanism can be acquired. It should
be noted also, that the obtained Einstein or MSD coefficients
constitute a measure of theoVerall diffusive motion of the
penetrants; in other words, they incorporate contributions from
all microscopic mechanisms that possibly act in the systems.
In the next subsection, we proceed to the investigation of
microscopic molecular motion via the new jumps detection
technique.

Figure 2. Mean square displacement (Å2) of methane andn-butane
dispersed inn-decane andn-eicosane.

TABLE 2: Self-Diffusion Coefficients, Ds × 107 cm2 s-1, of Gaseous Alkanes Dispersed in Normal Alkane “Heavy Substances”,
n-CnH2n+2, at 293.15 K Temperature and Normal Pressure, with Respect to Degree of Polymerization,n, and Elements of the
Displacement Correlation Matrix Averaged over Diagonal or Nondiagonal Terms and Time Scales (See Main Text, Section 3.1,
for Details)

penetrant: methane ethane propane n-butane

methane
(mixed with
n-butane)

n-butane
(mixed with

methane)

n-decane Ds × 106 cm2 s-1 in n-decane 55 44 42 30 87 29
〈CRR(τ)〉a,τ 0.00( 0.03 0.00( 0.08 0.00( 0.04 0.00( 0.05 0.00( 0.07 0.00( 0.06
〈CRâ(τ)〉a,â,τ -0.01( 0.04 -0.04( 0.02 0.02( 0.04 0.04( 0.03 -0.02( 0.07 -0.04( 0.06

n-eicosane Ds × 106 cm2 s-1 in n-eicosane 36 22 19 14 29 23
〈CRR(τ)〉a,τ 0.00( 0.04 0.00( 0.04 0.00( 0.11 0.00( 0.04 0.00( 0.04 0.00( 0.03
〈CRâ(τ)〉a,â,τ 0.00( 0.03 0.02( 0.02 0.03( 0.06 -0.02( 0.02 0.01( 0.07 -0.05( 0.08

Ds,MSD ) lim
τf∞

1
6τ

〈|Ri(t0 + τ) - Ri(t0)|2〉i,t0
(9)

CRâ(τ) )
〈∆Ri∆âi〉i,t0

〈∆Ri
2〉i,t0

-
δRâ

3
(10)

lim
τf∞

CRâ(τ) ) 0 (11)
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3.2. Microscopic Diffusion Mechanisms.Before proceeding
to the application of our method, we depict the penetrants’
behavior in terms of a displacement with time graph, Figure
4a, and a three-dimensional plot, Figure 4b, for a representative
case of a single methane molecule diffusing inn-decane. The

noisy or “blurred” nature of the trajectory is evident in these
pictures. As will be explained in the next paragraph, this fact is
connected to the coexistence of the jump mechanism with other
microscopic contributions to the overall diffusion, a fact related
to the “softness” of the liquid alkane matrices chosen in this
work. It should also be noted, with respect to Figure 4b, that,
although jumps between distinct regions are observed, clearly,
they are not the sole contributors to the overall diffusion.

In applying our method, the unweighted jump length defini-
tion, given by eqs 3 and 5, was employed first. Thus, we obtain
a picture of the penetrants mobility, regardless of the jumps
real contribution to the overall diffusion. Figure 5a,b shows
individual unweighted jump graphs for single methane and
n-butane molecules inn-decane for a given time interval∆t. It
is evident that heaviern-butane molecules tend to perform
shorter jumps than methane ones. In order to proceed further,
quantitatively, we need to isolate the local maxima of each
curve, which we identify with jump events, and record their
values. Then, we can process these data statistically, as will be
shown in the next paragraphs. Usually, the curves obtained are
smooth enough that their maxima can be located by simply
tracking the change in slope, expressed as the difference between
two successive recorded values. In some cases, however, an
amount of “residual” noise was still present and had to be
removed by employing moving averages over 10-20 successive
points.

As mentioned above, jump lengths should be properly
weighted to account for unsuccessful jumps, that is, jump events

Figure 3. Self-diffusion coefficients of alkane gases, in square
centimeters per second, based on MSD data. For the purpose of clarity,
values corresponding to gas mixtures are also labeled in the following
manner: (a) methane (mixed withn-butane) inn-decane, (b)n-butane
(mixed with methane) inn-decane (c) methane (mixed withn-butane)
in n-eicosane, (d)n-butane (mixed with methane) inn-eicosane.

Figure 4. (a) Displacement∆Ri(t) ) ||Ri(t) - Ri(0)| of three methane
molecules diffusing inn-decane. (b) Trajectory of one of the above
methane molecules (periodic boundary conditions removed).

Figure 5. (a) Identification of jumps of a single methane molecule
diffusing throughn-decane via the “unweighted” version of our method,
eqs 3 and 5. (b) Same as in (a), for an-butane molecule.
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that do not result in substantial translocation of the penetrant.
Essentially, this leads to the calculation of effective jump
lengths, which are usually substantially smaller than the
unweighted ones, as our calculations showed. The weighting
scheme proposed here is also shown to remove the arbitrariness
inherent in employing a time window∆t. This is corroborated
by the results depicted in Figure 6a,b showing the weighted
jump length for methane andn-butane reaching an asymptotic
value as predicted theoretically (Appendix B). Similar curves
have been obtained in all other cases studied here. At this point,
we should also note that all local maxima identified in our plots
were taken into account in our subsequent analysis. Indeed,
calculation ofRG essentially leads to smoothing out fluctuations
that should not be considered as jumps, especially for large∆t.
However, in some cases, calculations were repeated by employ-
ing only the part of the unweighted jumps curve with values
larger than the penetration length (DMSD∆t)1/2, in determining
the weighted lengths. The difference in the average length and
jump induced diffusion coefficients between filtering and
nonfiltering computations was insignificant.

Figure 7 shows the dependence of penetrant weighted jump
length on molecular weights. It is observed that jump length
tends to smaller values with increasing penetrant or matrix
molecular weight. However, the dependence on penetrant
molecular weight is remarkably weak, especially in the case of
diffusion throughn-eicosane. An interpretation of this finding
will be attempted in the next paragraphs. It should be noted
that the weighting scheme introduced by eq 8 represents an
effective average length or, in other words, a measure of the

jumps contribution to the overall diffusivity and not the jumps’
actual size. The latter is given, of course, by the radius of
gyration, eq 5. The small values shown in Figures 6 and 7
suggest that the jumps contribution to the overall penetrant
diffusive motion is small in the case of the systems studied.

In Figure 8, the MSD or Einstein self-diffusion coefficient,
Ds,MSDis compared to theDs,jumpsvalue based on weighted jumps
for all gas species inn-decane andn-eicosane. The notable
conclusion is that jump lengths and resulting jump induced
diffusivities are less sensitive to molecular weight dependence
than MSD coefficients. In addition, jump induced diffusivities
are much lower than the MSD one, leading to the unavoidable
conclusion that the jumps mechanism has a low contribution to
the overall diffusive motion in the systems studied in this work.
This is not surprising since then-decane andn-eicosane chains
are not long enough to reach the entanglement limit and form
a more or less stable matrix with persistent free volume cavities.
The environment in which penetrants move changes more
rapidly than it would in the case of matrices made of high
molecular weight chains with very long relaxation times.
Therefore, in the systems studied here, diffusion preserves some
characteristics of mass transport phenomena observed in simpler,
low molecular weight liquids.

However, as Figure 7 shows, passing fromn-decane to
n-eicosane, jump length tends to be unaffected by penetrant
molecular weight. This is an indication that, in the latter case,
occurrence of jump events is mainly affected by the matrix
microstructure and to a much lesser degree by the penetrant
molecular weight. In other words, then-eicosane matrix is a
much less mobile system,45 and long-lived free volume cavities
are formed in it. Therefore, jump events are limited to
translocations among “well-defined” cavities as has been
observed in previous simulation studies, and jump length mostly
depends on the distances between such cavities rather than on
the penetrant mobility. Finally, it should be noted that a fairly
constant ratio of MSD over jump induced diffusivity has been
observed. Its values are 10.0( 1.0 Å in n-decane and 17.5(
2.0 Å in n-eicosane.

From all of the above remarks and observations, we may form
a more concrete picture of the microscopic mechanisms
underlying gas diffusion in the matrices herein studied,n-decane
andn-eicosane. Inn-decane, a more liquid-like transportation
mechanism prevails, which might include smooth translation
and to a small extent jumps to temporarily formed cavities. In

Figure 6. (a) Weighted jump length,λ, for methane inn-decane versus
time interval∆t. Its value attains an asymptotic limit for large enough
∆t. (b) Same as in (a) forn-butane inn-eicosane.

Figure 7. Dependence of weighted jump length, eq 8, on
penetrant molecular weight.
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n-eicosane, smooth translation is inhibited, but so are the
penetrant jumps. This is probably because jumps in this case,
are only possible among long-lived cavities that are formed in
the matrix. In other words, opening and closing of temporary
cavities is less frequent, and therefore chances for a penetrant
to jump into them are also reduced. Inn-eicosane, smooth
translation is still possible and indeed constitutes the main
contribution to the overall diffusion. If we moved to higher
molecular weight matrices however, intercavity jumps would
probably be the main mechanism. Then, assuming that free
volume distribution is more or less similar to that ofn-eicosane,
diffusion coefficients in high polymer matrices might be of the
order ofDs,jumpsvalues herein calculated. This consideration is
not inconsistent with already published results concerning the
flow of gaseous alkanes through poly(ethylene).52 However, a
definite confirmation of this assumption will be given by further
analysis of simulation results concerning polymer simulation
via the jumps detection method.

4. General Discussion and Concluding Remarks

In this work, a method was presented for identifying
individual penetrant jump events that take place in the course
of molecular dynamics simulations. In contrast with previous
attempts, the method is able to directly identify each individual
jump event, and assign it a measure proposed by us. These data

can be easily collected and further processed statistically
(average jump length, length distribution, etc.), leading to
conclusions about the characteristics of jumps and about their
contribution to the mass transport processes that take place. This
way, one can discern whether diffusion of penetrants in the
system is mainly due to such jump events or other microscopic
mechanisms also present. It should be noted that the method is
based on analyzing the penetrants’ trajectories in space and not
the surrounding matrix motion. Therefore, all jumps are
identified regardless of their origin. For instance, the matrix
itself might impose a penetrant’s translocation through some
kind of collective rearrangement. Although such a behavior has
been identified as the cause of smooth rather than sharp
penetrant displacements,32 we should not exclude the possibility
of “matrix induced” jumps.

The method was applied in systems ofn-decane andn-
eicosane with gaseous normal alkanes dispersed therein. Our
results suggest that diffusive jumps are not the only mechanism
present in such systems. On the contrary, other mechanisms
such as gradual translation play a more important role in the
specific systems. On the other hand, the average jump length
is a weak function of penetrant molecular weight in the case of
n-eicosane, which suggests that, in those systems, diffusion
jumps are more or less a matter of free volume distribution. In
other words, as the matrix molecular weight increases, free
volume cavities as well as their distribution become more
persistent with time and impose a corresponding distribution
of possible jump lengths.

Appendix A

Determination of “Local” mNT Parameters. In both the
UA-TraPPE force-field44 and the NERD model,43 nonbonded
interactions comprise intramolecular pairs of interaction centers
separated by four or more bonds, while the torsion potential
affects atoms separated by three bonds and has a dependency
on the torsion angleæ, of the form:

In our mNT model, the total torsion energy is a sum of (i)
an intrinsic torsion potential, eq 1, characterizing every bond,
and (ii) nonbonded interactions, eq 2 between interaction centers
separated by three of four bonds, which are referred to as “local”
in contrast to the remaining nonbonded “nonlocal” interactions.
Simulations based on this distinction have already been suc-
cessfully conducted in the case of polypropylene53 and orga-
nosilicon polymers.54-56

For the case of the simplest alkane with a rotating bond in
the main chain,n-butane, we require this sum to approximate
the torsion potential predicted by NERD/TraPPE. Butane is
chosen because of both simplicity of the problem and absence
of nonbonded intramolecular forces in its NERD/TraPPE
representation. First, we choose a pair diameterσ such that the
distance of end methyl groups in the trans configuration
minimizes the corresponding Lennard-Jones potential, that is

Then, we choose depthε and torsion potential barrierkæ so as
to minimize the square error between NERD/TraPPE and mNT:

Figure 8. Self-diffusion coefficient based on weighted jump lengths
and frequencies compared to values based on MSD (Einstein relation),
for (a) n-decane and (b)n-eicosane systems.

Vφ,TraPPE) V0 + V1(1 + cosφ) + V2(1 - cos 2φ) +
V3(1 + cos 3φ) (12)

rCH3-CH3

trans ) 21/6σ (13)
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the angleæ varying from 0 to 360° with a step of 1°. The
potential shift byε does not affect the molecular dynamics which
is solely based on energy variations rather than its absolute
values.

Given a torsion potential barrier, the smallest distance of the
methyl groupsr ) rCH3-CH3

cis observed in a cis configuration
should maximize

Therefore, it holds that

Finally, the torsion potential barrier,kæ, is determined so as to
minimize the square error in eq 14, which was computed to be
12.7%.45

Appendix B

Asymptotic Limit of the Average Weighted Jump Length.
According to eq 8, the average weighted jump length is equal
to

Assuming diffusive motion implies that, for large enough∆t,

which is a reformulation of the Einstein relation, eq 9. In a
similar fashion,

expresses the connection of the standard deviation of positions’
distribution with elapsed time, characterizing random walks in
general. Besides, the denominator in eq 17 should be propor-
tional to ∆t:

with δt denoting the time interval between two successive
positionsRi andRi+1. The last three equations imply that

with κ, λ, andµ as constants and〈ε′(∆t)〉/∆t1/2, 〈ú′(∆t)〉/∆t1/2,
〈η′(∆t)〉/∆t f 0, leading to

for ∆t f ∞. In the case of systems where long jumps are
frequently observed, two possible scenaria may be anticipated:
In the first one, the penetrant motion reduces to a quasi-one-
dimensional random walk, and the above derivation is still valid.

In the second scenario, considerable deviations off a pure
random walk might show up as the penetrant tends to move
ballistically rather than erratically. Then, the quantities in eqs
18 and 19 will be proportional to∆t rather than to its square
root. Equation 20 is still expected to hold since, in that case,
∑i)1

N-1||Ri - Ri+1| ≈ |R1 - RN|. In other words, a penetrant
moving in a channel connecting two adjacent cavities will be
subjected to friction forces that will prevent it from accelerating.
Then, a dependence on∆t could be observed for intermediate
∆t values. As we move on to longer time intervals, the overall
intercavity motion again reduces to a random walk, and any
dependence on∆t should disappear. In fact, the threshold at
which the average weighted jump length becomes constant
should provide an indication of the average jump duration.

Note Added after ASAP Publication. This article was
published ASAP on Nov 1, 2007. A Supporting Information
paragraph was added. The corrected version was reposted on
Nov 6, 2007.

Supporting Information Available: Torsional potential
herein employed with respect to torsion angle, as compared with
TraPPE and sinusoidal potentials; evidence proving sufficient
equilibration of the structures simulated, in the form of bond
angles distribution, time autocorrelation function of the end-
to-end vector of the chain molecules and time autocorrelation
of dihedral angles; and average square of unweighted jump
length with respect to varying time intervals∆t. This material
is available free of charge via the Internet at http://pubs.acs.org.
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