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Molecular logic gates are devices that can perform Boolean logic operations. They have remarkable 
properties and the can gradually replace traditional silicon based electronic computers. They 
used or they can be used in disease diagnosis and treatment, in food safety, in metal detection, 
and as biosensors. They have many development prospects and potential.
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Editorial
Over the past four decades, a lot of research has been conducted 
to investigate and to develop artificial receptors for species 
sensing and recognition, as well as to design molecular systems 
that can process information [1-28]. In general, molecules can 
respond to changes related to their environment, e.g., pH, 
temperature, light, solvent polarity, presence of other neutral 
or charged species, etc.; and then under certain conditions, the 
information could be processed, similar to electronic systems 
[3-7]. The “input” is the change of their environment, while 
the “output” is the measured property. These molecules are 
characterized as molecular logic gates (MLG) and they can 
demonstrate sequential advanced logic functions such as those 
used to make memory devices, storage and delay elements, 
and finite state machines. Firstly, this idea was demonstrated 
by de Silva in 1993 [1]. and very soon interdisciplinary 
research on this topic blossomed. 

Very often, the property that it is used as an output is the 
absorption or emission spectra. In order a molecular system 
to be used as chemosensor or MLG, it is necessary to occur a 
reversible change; i.e., the MLG must be transformed between 
two forms by the absorption of electromagnetic radiation, 
where the two forms have different absorption or emission 
spectra. In plain language, this can be described as a reversible 
change of color upon exposure to light. The changes of their 
spectra are affected by photoinduced electron transfer (PET), 
electronic energy transfer (EET), internal charge transfer 
(ICT), proton transfer (PT), and photochromic processes 
(PC) [3]. Generally, most of the fluorescence chemosensors, 
molecular switches, and molecular logic gates are based on 
the “on-off” or “off-on” response of photoinduced electron 
transfer (PET). The molecular systems are designed according 
to the principles of modular PET, i.e., in a ‘fluorophore–

spacer–receptor’ or ‘fluorophore–spacer–receptor1–spacer–
receptor2’ format where the fluorophore and receptor sites are 
purposely separated [3-6]. Furthermore, there is a fragment that 
can serve as an ‘‘antenna’’ for the absorption of photons and of 
using the photon energy to transform the molecular structure, 
as well as a fragment whose reactivity changes as a result of the 
structural transformation. The advantage of PET process is that 
it produces very sharp changes in the signal intensity, and it can 
be modulated in such a way as to generate significant changes in 
the emission spectra of molecules. The impact of PET on UV-
vis absorption is often negligible and other phenomena, such as 
intramolecular charge transfer (ICT) could affect it. Finally, it 
should be noted that there are also fluorescent switches which are 
not built based on PET, but on other mechanisms, such as twisted 
intramolecular charge transfer [3,7-10].

MLG are defined as devices that make the input signals 
transform to specific output signals by Boolean logic operation. 
A “threshold” is introduced in logic gates that can distinguish 
two kinds of different states in a process. For example, different 
concentrations of analytes or the light radiation are taken as 
an input signal, and the generating of different fluorescence 
intensities are regarded as the output signals. In terms of input 
signals, the presence and absence of inputs are defined as 
“1” and “0”, respectively. If the value of the produced output 
intensity is higher than a specific threshold, the logic gates will 
have an output “1” or “TRUE”, while if it is lower, the output 
will be “0” or “FALSE”. Additionally, it worths to mention 
that MLG can be complexed, and the same molecular system 
can perform multiple logic operations. This was demonstrated 
for the first time by Baytekin and Akkaya [2]. who show that 
multiple logic behaviors can be resulted from a single system 
by changing the wavelength of excitation and/or detection. 
This remarkable property has been demonstrated in other 
MLG, see for instance [6,24]. 
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Finally, it should be noted that the progress of molecular logic 
gates is very impressive. Up to now, many experimental and 
computational articles have been published, where many 
promising candidates as MLG have been studied [1-13]. 
Additionally, many reviews have been written that report the 
new advancements on this topic, while they provide ideas 
and discuss possible future directions [14-28]. This research 
area is now firmly established. The next one or two decades 
many applications are expected to be developed in different 
research directions from medicine, for instance, intracellular 
and biomedical uses, [25] photodynamic therapy, [26] devices 
with autonomous therapeutic applications, [17] to material 
science [27] and information security, [19] for instance 
replacement of semiconductors in the IT industry which will 
overcome all issues occurring when semiconductors approach 
nano-dimensions; to environmental analysis, for instance 
water quality monitoring and heavy metal ion detection [28] 
and to food safety. To sum up, MLG have broad development 
prospects and huge development potential. Their study is an 
extremely active direction of research and it will remain active 
for the next decades. 
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