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The time-correlation functions associated with the translational motions of the dipole—
induced by permanent multipoles of an arbitrary order 1 = 1,2,3,...—in a dense fluid have been
calculated analytically assuming the isotropic diffusion mechanism. The correlation functions
obtained from this model have been compared with the available results of the molecular
dynamics simulations in liquid N, (T'=75.5K, p = 0.814 gcm™?) and CS,(7 =298 K,

p = 1.26 g cm?) and appear to reflect the proper time scale of the relaxation process.

|. INTRODUCTION

The far-infrared absorption spectra of nonpolar mole-
cules are caused by induced dipoles due to intermolecular
interactions.'

These spectra reflect the relaxation of fluctuations in the
local structure in a fluid.

The interaction-induced total dipole moment M(¢), and
its correlation function C(¢) = <M(0) - M(#) > directly
depend upon intermolecular coordinates (reciprocal orien-
tations and intermolecular separations). This is an impor-
tant difference to allowed transitions (IR, Raman) which
reflect only indirectly the influence of intermolecular inter-
actions. The total correlation function C(¢) can be decom-
posed into a sum

C(2) = G (2) + C5(1) + Cy(1) (L.1)

of its separate, n-body contributions C, (¢) (n =2,3,4). In
other words, the induced spectrum /(@) [ Fourier transform
of C(t)] may be represented by a power series expansion in
density:

I(w) = L(w)  p*+ L) - p*+1,(®) " p*, (12)

where I, (@) is the spectrum [Fourier transform of C, (¢) ]
due to n-body correlations in the fluid.

In a dilute gas, only binary interactions are important,
and to a good approximation C(¢) = C,(¢), but as the den-
sity increases, the three-body term C;(#), eventually C,(?),
becomes more pronounced.

Even though in the dense fluid the experimental spec-
trum /() is not immediately related to any particular com-
ponent correlation functions C, (¢), this decomposition is
helpful in understanding how the dynamical modes probed
by far-infrared spectroscopy vary with density.

What is more important, the correlation functions
C, (1) can be separately simulated via molecular dynamics
(MD) experiments.

If accessible,?8 these functions may be used as very sensi-
tive probes of different aspects of molecular motions and the
dynamics of local structure in fluid. There are only two MD
simulations of C, (¢) in molecular liquids; the first by Steele®
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for nitrogen, the second one by Samios et al.? for CS,. The
most important result of both simulations is a clear time-
scale separation between the rapidly decaying C(¢) and its n-
body components C, (¢). The functions C, (¢), taken sepa-
rately, display a rather long time decay, at least one order
longer than C(¢). The total correlation function decays so
fast, because a great deal of almost exact cancellations oc-
curs between the positive C,(¢), C,(¢#) and the negative
Cy(1).

Although it does emerge from MD simulations that it is
the time behavior of the various C, (#) which primarily de-
termines the time plot of C(#), the theoretical treatment of
the separate components C,, (¢) is in its infancy. In this paper
we make a step in this direction, by attempting to understand
the contrasting behavior (slow and structureless decay) of
the translational component of the pair correlation function
C,(t). We explore a common assumption of decoupling of
the translational and rotational motions of molecules. Thus
C, () becomes a product C,(¢) = C,. (¢t) C,,, (¢) of the cor-
responding translational C,, (¢) and rotational C,, (¢) corre-
lation functions.

Assuming translational diffusion to be the mechanism
by which the local structure of the fluid is changing, we were
able to derive an analytical formula for C,_ (¢). The influence
of the atomic diffusion on the depolarized Rayleigh scatter-
ing from argon in DID approximation has been pointed out
by Ladd et al.,* also see further application by Madden and
Cox.> The model is tested vs MD results for liquid N, and
CS,.

ll. THE THEORETICAL CORRELATION FUNCTION

Absorption of radiation at angular frequency o is mea-
sured by the absorption coefficient 4 (). An isolated mole-
cule in the gas phase experiences only the electric field E, of
the exciting radiation, and in this case one can derive a rigor-
ous theoretical relationship between 4 (@) and the spectral
intensity /(w), which is the Fourier transform, or power
spectrum, of the dipole moment autocorrelation function
C(¢). In the classical limit, the standard linear response cal-
culation yields

4B
A = —""_ I
(@) 3V ol(w),

0

(2.1)
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where V, is the sample volume, c is the speed of light,
B = (kT)~! (k-Boltzmann constant), and

+
I(o) =Lf C(te—"dt, 2.2)
27 J_
where
C(1) = (M(0) - M(1)) . (2.3)

In Eq. (2.3) the angular brackets denote an equilibrium
ensemble average in the absence of the radiation field, M is
the total dipole moment of the system.

When one considers the absorption of light by the mole-
cule of a liquid, however, one finds that the simple relation-
ship (2.1) no longer holds. This is because each absorbing
unit now no longer experiences only the field E,, but also the
fluctuating electric fields generated by the time-dependent
dipoles that E, induces neighboring molecules.

One is then confronted by a many-body problem for
which only formal, or approximate, solutions exist. One
such approximate treatment utilizes Lorentz’s concept of
the local field. This relates the average or local field E, acting
on an absorber in the condensed phase to E; by an equation
of the form

g =D gy,
9n
where 7 is the refractive index of the sample. The quantity
¥ = (n? 4+ 2)%/9n defined in Eq. (2.4) is referred to as the
Polo-Wilson factor.® Since the absorption is now propor-
tional to E 2 rather than to E 3, Eq. (2.1) is replaced by the
approximate relation

A(w)gx—;‘—g—i/ﬁ—wzl(w) .

o ‘
For a nonpolar fluid the dipole moment M can be writ-
ten as a sum of terms representing the induced dipoles of
pairs of molecules, triplets, etc.
Thus

M=Yp;+ > HBapt
J>i k>j>i
where p; denotes the dipole moment that the isolated pair of
molecules i and j induce in one another.

Only very rough estimates are at present available for
the three-body term 4, and none of the treatments dis-
cussed attempt to take any account of these terms. The im-
portance of three-body corrections in liquids is unclear, and
remains an intriguing question.

In the pairwise-additive approximation the correlation
function C(¢) becomes the sum of two-, three-, and four-
body terms,

C) = (> py(0) - pyu (2))

gkl

i

24)

(2.5)

(2.6)

+ Z (i (0) =y (1))

igk

+ 3y (0) gy (D),

ik,

(2.7)

where i,j,k,] identify different molecules.
In this paper we focus on the first (two-body) term

C(1) =Y (py (0) « py (2)) (2.8)
L)

in Eq. (2.7) leaving the more elaborate three- and four-body

terms for a further study.

As was shown by Joslin et al.,” the calculation of the
correlation functions encountered in interaction-induced
phenomena is considerably simplified if we work in terms of
spherical tensors.

The spherical tensor components of the dipole p, in-
duced on a molecule, which we label 2, by the electric field
generated by a neighboring molecule, labeled 1, are given by

Moy = — avV,é(r,); v=0,+1, 2.9)

where we have assumed that the molecular polarizability
tensor a is isotropic, i.e., @ = @, (1 = unit vector), V, de-
notes a spherical component of the gradient operator V =3/
Jr,, and ¢(r,,) in the electrostatic potential. Neglecting the
potential produced by the small induced moments them-
selves, we have

é(rp) = Z

Here r,, and w,, specify the magnitude and orientation, re-
spectively, of the intermolecular vector r,, ¢;,,, (@,,) denotes
a Racah spherical harmonic, @, specifies the orientation of
molecule 1, and @,,, denotes the mth component of the
spherical permanent multipole moment tensor of order 1.
Using the gradient formula, (viz. Ref. 8), the collision-
induced pair dipole moment of molecules 1 and 2 is therefore

:ull,v = ﬂl,v + lu'2,v

+1
Z Q% (@)Cpp(@)rp '+ Y. (2.10)

m= —1

=a; [+ 1)1+ 1))2

X C(I + LI+ Lmy,m +v)

X [Q?,‘n(a)l) + (- 1)I+1Q*1m ((02)]
U+ (2.11)
If the system contains N molecules, there are IN(N — 1)
molecular pairs and C,(¢) becomes

C(t)y=iN(N-1) z (ﬂlz,v(o)/‘n,v(t))

XCiy tm 4+ v (@12

=C2A () +ng(t) s (2.12)

where

Cu) ={NN—Da* 3

L' m.m' v

KII ’mm'vA 'mm'v »

(2.13)

C,p (1) =IN(N — )a’ z

Li'mm' v

Kll'mm'vBII'mm'v ’
(2.14)
Kpmmy =LA+ DRI+ 1"+ D2+ 1)]"?

X C(Ll.l + Lm,y,m + v) C(l',l,l’ + 1,m' s v,m’ +v) *

(2.15)
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AII'mm’v = ({le [a)l(o)]Q?‘m’ [wl(t)] + ( - 1)1+l’+2le [02(0)]

XQ ¥ [0,()]}ICH, m+ v [@0120001C; 1 [@(D] - 15 CF2(0)r T 2(D),

BIl’mm'v = <{( - 1)1’+ lle [a)l(o)]Q#m' [w2(t)]

(2.16a)

+(— 1)l+lle [0,(0)1Q P [wl(t)]}cf+ 1.m+v[a)12(0)]XCI'+l,m'+v[m12(t)]r1;(1+2)r1; R ()

In Eq. (2.16) there are two types of variables; the bimo-
lecular variables 7,,, ®,, which describe the mutual transla-
tion and orientation of two colliding molecules, and the
monomolecular variables @, and @, which specify the rota-
tion of each molecule.

In the correlation function C,(#), these two types of
variables are coupled via the anisotropic part of the potential
interaction, thus ruling out the possibility of a complete ana-
lytical calculation of C,(¢).

Nevertheless, by noting the weak asymmetry of the
small molecules considered here, we assume, in a first ap-
proximation, that the pair U(r,,, ©,, ®,) potential is iso-
tropic.

Following the arguments presented by Joslin et al.,” we
write the orientational dependence of the Q,,, (w) explicitly
as

O (@) =3 Dy ()0, , (2.17)

where D!, (») denotes a generalized spherical harmonic,

and @,, is a body-fixed component of Q. If the intermolecu-

lar potential is isotropic, i.e., depends only on 7,, and not on

@12, @, &, We generate the averages
(D}, (@) =0 (I1#0)

and

(DL [0(0) 1D L [0()]) = 818,y O (21 + 1) 72

(2.18)

X(¥ D, [a()]), (2.19)

with dw(t) denoting the rotation needed to bring @ (0) into
coincidence with w(z).

As a consequence of Eq. (2.18), C,5 (¢) = O for the iso-
tropic intermolecular potential.

Defining Q ** = 3, |Q,, |? and noting that®

z Crulop(0)]C, 0] =P [cos ()],
* (2.20)

where 6,,(1) is the angle betweenr,, (0) and r,, (¢), and P,
[cos 8,,(¢) ] denotes the th order Legendre polynomial, one
then obtains

G =3 CPM - CRMN. (2.21)
]

The translation correlation function of order 1, C{’(z), is
defined as

CP(t) = N(N — 1)@®Q P (I + 1)(P,, , [cos B,,(2)]
X [112(0) i (£)] ~ U+ D) (2.22)

and the rotational correlation function of order 1, C {})(¢) is
given by

(2.16b)

l
1

21 +1
Since in the isotropic potential the molecules rotate freely
(the angular momentum is conserved), (2, D’ [6w(2)])

can be calculated without further approximation. For a free-
ly rotating spherical top we have®

cOw =

(3 D, (0(1))) . (2.23)

+1
21_1*_ n Y (1 —-KZ%w5t?)exp( — 4K ’0dt?),
k= —1
(2.24)

wherew, = (kT /I)? with I the molecular moment of iner-
tia.

The two-body translational correlation function C ()
cannot be calculated so easily. In fact, the theoretical treat-
ment of the separate components of the total correlation
function C(¢) [see Eq. (1.7)] is in its infancy. It may there-
fore be useful at this stage to construct a simple model for
C (1), not in the expectation that it will accurately repre-
sent the real dynamics but rather in order to test the possibi-
lities and the limitations of a simple calculable model.

In the next section we calculate C {(¢) analytically, as-
suming that molecular center-of-mass translations in dense
media proceed by a mechanism which can be approximated
by the isotropic translational diffusion of the noninteracting
hard spheres.

chm=

lll. TRANSLATIONAL DIFFUSION OF THE
INTERACTION-INDUCED MOLECULAR DIPOLES

In this section we explicitly calculate the two-body,
translational correlation function C{’(r) given by Egq.
(2.22), assuming that the molecular translational motions
can be described by the diffusion equation. We assume no
explicit interactions between the freely diffusing molecules.

“The calculation is done analytically.

If P(R, Ry, t) is the conditional probability density that
the intermolecular vector r,, has the value R at the time ¢ if it
has the value R, at 1 =0, and if P(R,) is the probability
density that r,, has value R, at ¢ = 0, then'®

Ct(r,)(t) ""J f d3R0 d3R P(R,Ro,t)P(RO) (RRO) —(+2)

XPpy [cos8,,()] . (3.1)

In the integration (3.1) R = |R| and R, = |R,| cannot
take values below a lower limit 4 which is the minimum
distance of approach of the molecular centers.

Since the medium is very large, homogeneous, and free
of translational order, we have P(R,) = 1/V¥,, In Legendre
polynomial P, _, [cos 6,,(2)], 8,,(2) is the angle between
r;2(0) andr,,(#),i.e., between R, and R. Using the spherical
harmonics addition thereom® we may expand
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P, [cos@,(t)] in terms of spherical harmonics
Y 1m (QR), Yy 1 (Qg,) as follows:
4 gl

21+ 3 m=21_1
XVi41,m (QR) s (3.2)

where Q = (6g,$z) and Qp = (6g .#r,) are the polar
angles of the vector R and Ry, respectively. Thus, C P (¢)
becomes

I+1
cew~ 3 [[araw

m= —1I~1

XP(R,Ry,t) (RR,) ~ t+2

Py i [cosb,(1)] = YEim (‘QR(,)

XVE 1m (Qr Wig 1m (AR ) - (3.3)
The solution of the diffusion equation
Qﬂ;ﬁ=pv2¢(n,t), (3.4)

where(R,0) = §(R — R,),V = d/d Risthegradientoper-
ator, and D is the translational diffusion coefficient, is given
by
P(RRy,1) = (47Dt) >/ %exp[ — (R —Ry)*/4Dt]. (3.5)
In our case, r,, does not represent the radius vector of
the molecule which diffuses relative to a fixed point, but the
distance between two molecules which diffuse relative to
each other. In other words, the vectorr,, =r, — r, is a ran-
dom variable being defined as the sum of the independent
random variables r, and — r,, each of which has a distribu-
tion which is a solution of the diffusion equation (3.4). Since
the probability density of a random variable which is a sum
of independent random variables has a Fourier transform
that is a product of the Fourier transforms of the densities of
the independent variables it is clear that the only change is
the replacement of Dt by 2Dt in Eq. (3.5), leading to the
expression

P(R,R,,t) = (87Dt) > %exp[ — (R-Ry)%/8Dt].  (3.6)
The above expression can be expanded in terms of spherical
harmonics by first using the Fourier integral expansion

exp[ — (R — R,)?*/8D¢ ]
= (2Dt/7r)3/2fd3lc exp( — 2Dtx*)

Xexp[(ik - (R—Ry)] (3.7)

and then replacing exp( — ikR) and exp( — ikR;) by their
expansion of the form

exp(iK-R)=477'('n’/2KR)”2i g (D) "yma (Qg)

n=0A= —n

XynA(QK)Jn+l/2(KR) ’ (3'8)

where Q, = (6,,¢, ) specifies the direction of kand J, , ,,»
are Bessel functions.'

After Eqgs, (3.7) and (3.8) are substituted in Eq. (3.6),
one can perform the integral over £}, by use of the orthogon-
ality relation for spherical harmonics,

[d0st @Y @ = 6,080 (3.9)

with the result
P(RR,,t) = (RR,) /2 f dx ke =20
0

+n

XZ > Q)Y (Qg)

n=0A= —n
Xy 412 (KR, 112 (KR) (3.10)
because d °k = k’dk dQ,., in which dQ, =sin 8, df, dé,.
Substituting Eq. (3.10) into Eq. (3.3), taking into account
the orthogonality properties of the spherical harmonics and
the relations d°R = R *dR dQy, d°Ry=R}dR,dQy , it
follows that

cPw ~f dx e =P
(V]

o 2
xU dRJ,, 5, (KR)R —“+V2>] . (3.11)
d

The integral in the brackets in Eq. (3.11) is equal to
d~@+Y =17 1, (dk). When we set x = dk and take
into account that fFdxx~'J7,  ,(x)=QI+1)7", we
obtain the simple expression for the normalized correlation
function C P (1) = CP(1)/C{(0),

CP) =@+ 1) f dxx— U2, (x)
0
Xexp( — 2Dtx*/d?) . (3.12)

Although the function x ~! exp( — 2Dtx*/d *)J 7, |, (x) in
Eq. (3.12) behaves analytically for x > 0, the numerical inte-
gration of this function may create an error at the limit x—0.
We show in the Appendix, that the formula (3.12) for
C {P(¢) can be written in the form

2/

6,‘}’(::):1« ;'IJ dxx~'I,_,,(d*x/4Dr)
1

Xexp( —d*x/4Dt) , (3.13)

which is more convenient for the numerical integration;
I, , ,,, denotes the modified Bessel function.!' Alternatively,
for ¢ > O the integral Eq. (3.12) can be expressed in terms of a
series of hypergeometric functions F(a,b;c;x):'?

2041 (2Dt)~“+v2>
224+ 0P (] 4 3/2)\ d?
i (= DT+ 1/2 +m)
o 22"(mOYT (1 + 3/2 +m)

2Dt\— "™
X(_) Fipmicv2—mivinn

CP) =

dz
(3.14)
and finally converted into the closed form
A —+1/2)
W) = 21+1(£) +
d2
T
a0 wt)—m
X J—
(-7
1 3.15
X I+1 ( ’ )
m(2l+1+4+m) H (4+m+x)
x=1
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which follows from the properties of the hypergeometric
functions of special argument, namely F(a,b;c;x=1)
=T(e)[(¢c—a— b)/F(c —a)T (¢ — b) where I" denotes
the Gamma function."!

Itis ev1dent from Eq. (3.12) or Eq. (3.15) that the time
decay of C (1) is governed by the ratio d 2/2D. In the case
of simple liquids D~10~° cm®/s and d~10~® cm, giving
the relaxation time 7 = d 2/2D ~ 10", at least an order of
magnitude greater than that associated with the total corre-
lation function C(#). However, as already mentioned recent
MD calculations®* have demonstrated that C (¢), in fact,
decays much more slowly than the total correlation func-
tion.

The model we discuss here qualitatively rationalizes this
slow time behavior of Cf,” (¢). A further prediction can be
made if we treat the molecules as rigid spheres of radius r. If
wetaked = 2rand for D the Stokes formula for translational
diffusion D = KT /6mnr, we find

r=d*/2D =9V, 5/KT, (3.16)

where V,, = 4wr*/3 is the molecular volume and 7 is the
viscosity of a fluid. The bigger the molecules involved are
and the greater the viscosity is, the slower is the translational
diffusion. This is expected to entail a slowing down of the
decay of the translational correlation function.

The temperature dependence of 7 is determined by the
ratio 7(T) ~5(T)/T. To our knowledge, there are no sys-
tematic, experimental studies of the » dependence of the in-
teraction-induced Rhenomena

At long times C {’ (¢) is proportional toz ~ '+ 1/? [see
Eq. (3.15)] giving a cusped appearance to the two-body,
translational spectrum 7 {® (w) in the low frequency region
which is characteristic of the diffusional relaxation.

_InFig. 1 an example is displayed of the one dependence
of CP(¢) for a hypothetical liquid with D = 3.0X 10~3
cm?/s and d = 4A. .

The correlation function C (P (¢) decays faster for the
higher-order than for the lower-order multipoles although
the one dependence of C D (¢) is not dramatic.

Finally, we makea preliminary attempt towards a quan-
titative verification of the discussed model. Up to date, the

10¢

A
tr

(t)

05}

t/ps

FIG. 1. The one dependence of the translational correlation function
c (1) for a hyphothetical liquid with D = 3.0X 10 %cm?/s and d = 4.0
A

only available molecular dynamics estimations of the trans-
lational contribution to C,(¢) in molecular liquids are due to
Steele® for N, and Samios et al.? for CS,. We must necessar-
ily rely upon these results, although both molecules, being
linear, are not ideal candidates for this purpose.

A. Liquid N,

In deriving the formula (3.12) we ignored the anisotro-
py of the polarizability tensor a and wrote a = a1 where 1is
the unit tensor. For a linear molecule a actually has the form
o =a[l 4+ »(3nn — 1)] where n is a unit vector along the
symmetric axis. The degree of anisotropy in a is measured by
the dimensionless parameter x = (a; —a,)/3a; for Ny,
x = 0.133.% Use of an anisotropic « is therefore expected to
change the computed correlation function by at most 1%.

At both short and long range the N, intermolecular po-
tential U(r,,, ©,, ®,) is anisotropic, and our use of the
spherically symmetric potential U(r,,) introduces error of
somewhat uncertain magnitude. However, it is now the con-
sensus in the literature that the intermolecular potential in
N, is indeed ony very slightly anisotropic. Both computer
simulation'® and neutron scattering'® experiments have
demonstrated that the equilibrium and the dynamical struc-
ture factor of liquid nitrogen at the triple point are almost
identical to the structure factor of a system of spherical mol-

ecules. A computer simulation study’> of orientational mo-
tions in fluids consisting of slightly elongated molecules
shows that the orientational correlations between neighbor-
ing molecules are small. Moreover, a straightforward proof
of the weak anisotropy of U(7,,) for N, can be deduced from
Steele’s computer simulation of C,,(#)?% the simulated
C,, () is almost equal to zero, its contribution to the total
C,(t) is of the order of a few percent. Summarizing, the two
assumptions; the isotropy of the intermolecular potential
and of the molecular polarizability seem to be fairly well
fulfilled in the case of liquid nitrogen.

The molecular dynamics simulation of C 2(¢) for N,
(the dominant induction mechanism is quadrupolar, soonly
I = 2isinvolved) has been carried out” near the triple point,
at T=75.5 K at the density p = 0.814 g/cm>. The intermo-
lecular potential model used was that of Cheung and Pow-
less** and consisted of a (diatomic) Lennard-Jones site-site
interaction with site separation 1.09A, /K = 35.3 K and
o = 3.315 A, plus an ideal quadrupole—quadrupole interac-
tion.

Fortunately, Cheung and Pawles'® simulated the diffu-
sion coefficient of N, for the thermodynamic state point very
close to that of Steele’s; the density wasp = 0.827 g/ cm?, the
temperature 7=71.6 K and the calculated value of
D = 2.25x107% cm?/s. We accept this value of D as a repre-
sentative for the state point ( p = 0.814 g/cm?, T'=75.5K)
as well, although the correct value of D at this point could be
somewhat different, since D = D( p,T). In the same paper,'¢
the pair-correlation function g (7) for the molecular centers
of N, has been also simulated. g, (r) is a sharply peaked
function, being practically zero for r < o reaching quickly a
maximum at 1.25¢ then slowly decreasing to 1.

For the distance of closest approach d we used a value of
d = o = 3.315 A with a small error since the plot of g (r) in
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Ref. 16 does not leave a room for any substantial manipula-
tions of the value of d. .

The simulated correlation function C (¥’ (¢) is compared
in Fig. 2 with this theoretically calculated from the formula
(3.12) for D =2.25X10"% cm*/s and d = 3.315 A.

A remarkable similarity between the simulated and cal-
culated correlation function C{?(¢) can be seen [C{?(¢)
has been simulated for times up to 0.6 ps, which is the limit
up to which the data in Steele’s? computer experiment can be
considered to be reliable].

The discrepancies are quite large for short times, becom-
ing gradually smaller at longer times. It should be pointed
out that the diffusion equation is certainly valid for long
times and may fail to describe the short-time details of mo-
lecular translation to a larger extent.'” Therefore, while the
general equation (2.22) for C {’(¢) is correct for short as
well as for long times, the special approach based on the
diffusion equation to describe the translational motions puts
a restriction to the validity of the theory at too short times.
As a consequence, the model given here may be less accurate
when it comes to predicting the spectral behavior of I P (w)
at the far wings.

B. Liquid CS,

The two major assumptions; a = ¢, and U(r,,, o,
®,) = U(ry,) are violated in the liquid carbon disulphide to
a larger extent than in N,. The molecule CS, is highly polar-
izable; ¥ = (a; — @,)/3 a=0.4® comparing with x = 0.13
for N,.

The influence of the anisotropy of the polarizability ten-
sor « on the two-, three-, and four-body components of C(¢)
[see Eq. (2.17)] in liquid CS, has been studied? by a molecu-
lar dynamics simulations. It was found that the three- and
four-body correlation functions are quite sensitive to the val-
ue of (20%-25%).

However, the two-body correlation function C,(¢) de-
pends only moderately on «; the differences between C,(z)
for « = 0 and « = 0.4 are about 1% for a short time (# <0.4

tips

FIG. 2. Comparison of the simulated (taken from Ref. 2) and theoretical
{formula (3.22) with D = 225X 107° ¢cm®/s, d = 0 = 3.315 A] transla-
tional correlation function C {»(#) for liquid nitrogen at the temperature
T =75.5K and density p = 0.814 g/cm>. The vertical bars indicate the er-
ror due to change of d by + 10%.

ps), up to 10% for ¢~ 1 ps. Taking into account an electron-
density map for CS,,'® a definite orientational dependence of
the intermolecular potential U(r,, ®,, ®,) must be expect-
ed.

Exploration of a less sweeping approximation U(r 5, ©,,
®,) = U(r,,) introduces an error of uncertain magnitude,
which cannot be objectively estimated at this stage. We can
only guess that the anisotropy of U(r,, ,, »,) might have a
weaker impact on the translational motions [Cie ()], then

~ on the molecular reorientations [C,, (¢), Cy (2)].

The molecular dynamics simulation of the interaction-
induced phenomena in liquid CS,(7=298 K, p = 1.26 g/
cm?, the atom-atom Lennard-Jones potential) has been re-
cently reported.? For a linear molecule with the dominant
quadrupole induction mechanism (CS,), the formula
(2.21) for C,(t) reduces to

C()y=C2(n) - C2(), (3.17)
Whelf eg:)(t) = (Py[cos 6,,(1)]). EOth (Py[cos 6,,(1)])
and C,(¢) have been simulated and C »’(r) obtained using
Eq. (3.17).

The simulated translational diffusion coefficient is
D = 4.0X 10~°cm?/s, in a good agreement with the experi-
mental value D, = 4.2 X 10~ °cm?/s and with the previous
molecular dynamics calculation.!® In Ref. 19, D = 3.85
1073 cm?/s for exactly the same potential and density, the
only difference was a temperature 7= 298 K in Ref. 3 and
T=294 K in Ref. 19.

We were not able to find for CS, convincing, preferable
molecular dynamics results to make an unbiased choice of d,
the closest distance between the molecular centers. Such a
study would be of value in the discussed context. The ab
initio calculations showed'® that CS, is 6.9 A long and 4.2 A
wide; the molecular centers separation can actually vary
between those values, depending on the configuration of the
neighboring molecules. What is really needed is an appropri-
ate average of this separation over all possible configurations
of molecules in dense media. Guided by some previous
work,>!° we can roughly estimate the value of 4 with CS,
model of a sphere of radius 7, which has the same volume as a
CS, molecule. It givesr = 2.75 Aandd =2,r=55A. Note
that the value d = 5.5 A is in excellent agreement with the
neutron diffraction study of the structure of liquid CS,.*!
They found a loose hexagonal arrangement as the most prob-
able configuration in which the axis of any two molecules are
preferentially oriented at ~ 60 ° rather than parallel and per-
pendicular orientation of the crystalline form. The distance
between intermolecular centers (C-C distance) is for this
most probable cgnﬁguration, d = 5.55 A. The model corre-
lation function C (?’(¢), calculated from Eq. (3.22) using
D=4.0x10"%cm?/sandd = 5.5 A, is compared in Fig. 3
with that obtained from the molecular dynamics simulation.

Overall, the agreement is surprisingly good, given the
number of assumptions of the model and its simplicity. How-
ever, before any definite conclusion about the quantitative
validity of the discussed model can be drawn from Fig. 3, the
influence of anisotropy of the intermolecular potential on
c 2 (¢) has to be clarified. Also, the calculation of d should
be established on a more firm basis.
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FIG. 3. Comparison of the simulated (taken
from Ref. 3) and theoretical [formula (3.22)
with D = 4.0x 10~*cm?/s,d = 5.5 A] trans-
lational correlation function C ¥ (¢) for lig-
uid carbon disulphide (CS,) at the tempera-
ture 7= 298 K and density p = 1.29 g/cm’.
The vertical bars indicate the error due to
change of d by + 10%.
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IV. CONCLUSIONS

We have shown that if molecular translation is de-
scribed by the diffusion equation the two-body correlation
function C {(¢), associated with the pure translational mo-
tions of the dipole moment of a pair of interacting (via per-
manent multipoles of order / molecules, decays very slowly
in dense media. The relaxation time 7 of C {’(¢) in liquid
phase is at least an order of magnitude greater than that
associated with the correlation function of the total induced
dipole moment which can be calculated from infrared band
shape. The linear viscosity dependence of 7 is predicted
(7~m) and the temperature dependence of 7 is governed by
the ratio 7(T) ~n(T)/T.

The possibility to critically compare the present theo-
retical model with MD data set is limited. It would be useful
to work with molecules belonging to the thetrahedral point
group T,. For reasons of symmetry the polarizability tensor
a is isotropic for these molecules. Moreover, for some of
those, the anisotropy of intermolecular potential is actually
quite small.

To obtain C,(z) or possibly even C,(t), in the liquid
phase, high-pressure far-infrared measurements of 4 (@) as
a function of density should be carried out.

There are a number of ways in which our present pre-
liminary treatment could be improved and extended. They
include:

(1) Inclusion of the anisotropy of the translational mo-
tions for a nonspherical molecule. This could be done by
using, instead of Eq. (3.4), the anisotropic diffusion equa-
tion with the two (D, D, ) or even three different diffusion
coefficients. It may be essential for the study of interaction-
induced phenomena in ordered liquids like, e.g., liquid crys-
tals and polymers.

(2) Extension of the calculations we have carried out
for C,(1), in view of estimating a translational contribution
to the three- and four-body correlation functions C;(#) and
C,(D).

(3) Inclusion of some nondiffusive modes (short-time
correction). It is important to stress once more, that the
proposed model must fail for very short time, because of the

peculiar behavior of the factor (87Dt) ~3/ in the condition-

al probability (3.6) when the time gets short enough. The
calculation of C { (¢) may be also improved by applying the
more sophisticated theories of diffusion, such as that of
Hwang and Freed,?* where the dynamical effect of the mean
force between the two diffusing molecules is explicitly taken
into account.?

The proposed formalism might find some applications
in NMR spectroscopy?® and to the interpretation of the in-
termolecular light scattering.**

APPENDIX

We outline here the derivation of Eq. (2.13) of Sec. II.
Differentiating the integral (2.12) in x with respect to ¢ and
then integrating over x gives

dC(y  @I41)

dt 2t
Xexp( —d?*/4DN)I,, ,,,(d*/4Dx) .
(A1)

Taking the Laplace transform of Eq. (A1) we have,
CP(2)=2Z {1 - 2+ DK, ,,[d(z/2D)"?]
X110 [d(z/ZD)l/z]}, (A2)

where
C¥(2) =f dt CP(r)e—*
(4]

and X, , ,,, is the modified Bessel function.'' The inverse
Laplace transform of Eq. (A2) gives

com=1- 21 fa't’(t')"
2 o
Xexp( —d¥/4Dt")I, ,,(d?*/4Dt') .  (A3)

After a simple transformation of the integration variables in
the above integral, one can readily obtain the equivalent ex-
pressions for C {(1);

21

Com =1~

1 oo
;- fd’ dxx"e_x11+1/2(x), (A4)

4Dt
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2041

CP=1- >

X f dxx e /AP, |, (xd?/4ADt) .
1
(A5)
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