
J. Chem. Phys. 157, 084313 (2022); https://doi.org/10.1063/5.0094598 157, 084313

© 2022 Author(s).

The many-body expansion for metals. I. The
alkaline earth metals Be, Mg, and Ca
Cite as: J. Chem. Phys. 157, 084313 (2022); https://doi.org/10.1063/5.0094598
Submitted: 04 April 2022 • Accepted: 28 July 2022 • Accepted Manuscript Online: 29 July 2022 •
Published Online: 29 August 2022

 Joani Mato,  Demeter Tzeli and  Sotiris S. Xantheas

ARTICLES YOU MAY BE INTERESTED IN

Breaking covalent bonds in the context of the many-body expansion (MBE). I. The
purported “first row anomaly” in XHn (X = C, Si, Ge, Sn; n = 1–4)

The Journal of Chemical Physics 156, 244303 (2022); https://doi.org/10.1063/5.0095329

Local charge-displacement analysis: Targeting local charge-flows in complex
intermolecular interactions
The Journal of Chemical Physics 157, 084107 (2022); https://doi.org/10.1063/5.0095142

Assessing the performance of ΔSCF and the diagonal second-order self-energy
approximation for calculating vertical core excitation energies
The Journal of Chemical Physics 157, 084115 (2022); https://doi.org/10.1063/5.0100638

https://images.scitation.org/redirect.spark?MID=176720&plid=1857434&setID=378408&channelID=0&CID=683627&banID=520741325&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=56129c2c6549691b74cdb6aedd7be016bc03f88d&location=
https://doi.org/10.1063/5.0094598
https://doi.org/10.1063/5.0094598
https://orcid.org/0000-0003-4848-3489
https://aip.scitation.org/author/Mato%2C+Joani
https://orcid.org/0000-0003-0899-7282
https://aip.scitation.org/author/Tzeli%2C+Demeter
https://orcid.org/0000-0002-6303-1037
https://aip.scitation.org/author/Xantheas%2C+Sotiris+S
https://doi.org/10.1063/5.0094598
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0094598
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0094598&domain=aip.scitation.org&date_stamp=2022-08-29
https://aip.scitation.org/doi/10.1063/5.0095329
https://aip.scitation.org/doi/10.1063/5.0095329
https://doi.org/10.1063/5.0095329
https://aip.scitation.org/doi/10.1063/5.0095142
https://aip.scitation.org/doi/10.1063/5.0095142
https://doi.org/10.1063/5.0095142
https://aip.scitation.org/doi/10.1063/5.0100638
https://aip.scitation.org/doi/10.1063/5.0100638
https://doi.org/10.1063/5.0100638


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The many-body expansion for metals. I.
The alkaline earth metals Be, Mg, and Ca

Cite as: J. Chem. Phys. 157, 084313 (2022); doi: 10.1063/5.0094598
Submitted: 4 April 2022 • Accepted: 28 July 2022 •
Published Online: 29 August 2022

Joani Mato,1,a) Demeter Tzeli,2 ,3 and Sotiris S. Xantheas4 ,5,a)

AFFILIATIONS
1 Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Mississippi J7-10,
Richland, Washington 99352, USA

2Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens,
Panepistimiopolis Zografou, Athens 15784, Greece

3Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue,
Athens 11635, Greece

4Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard,
P.O. Box 999, Mississippi J7-10, Richland, Washington 99352, USA

5Department of Chemistry, University of Washington, Seattle, Washington 98195, USA

Note: This paper is part of the JCP Special Topic on Nature of the Chemical Bond.
a)Authors to whom correspondence should be addressed: joani.mato@pnnl.gov; sotiris.xantheas@pnnl.gov;
and xantheas@uw.edu

ABSTRACT
We examine the many-body expansion (MBE) for alkaline earth metal clusters, Ben, Mgn, Can (n = 4, 5, 6), at the Møller–Plesset second order
perturbation theory, coupled-cluster singles and doubles with perturbative triples, multi-reference perturbation theory, and multi-reference
configuration interaction levels of theory. The magnitude of each term in the MBE is evaluated for several geometrical configurations. We find
that the behavior of the MBE for these clusters depends strongly on the geometrical arrangement and, to a lesser extent, on the level of theory
used. Another factor that affects the MBE is the in situ (ground or excited) electronic state of the individual atoms in the cluster. For most
geometries, the three-body term is the largest, followed by a steady decrease in absolute energy for subsequent terms. Though these systems
exhibit non-negligible multi-reference effects, there was little qualitative difference in the MBE when employing single vs multi-reference
methods. Useful insights into the connectivity and stability of these clusters have been drawn from the respective potential energy surfaces
and quasi-atomic orbitals for the various dimers, trimers, and tetramers. Through these analyses, we investigate the similarities and differences
in the binding energies of different-sized clusters for these metals.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0094598

I. INTRODUCTION

The purpose of the molecular many-body expansion (MBE)
in quantum chemistry is twofold: in analysis, to understand the
composition of interatomic and intermolecular interactions, and
in practice, to facilitate calculations of large systems.1–12 While
computational chemistry has come far in both accuracy and effi-
ciency, the scaling of most correlated methods is prohibitive for
many practical applications. The MBE approach, on the other
hand, relies on a series of smaller calculations of increasing n-body

subsystems (i.e., dimers, trimer, tetramers) that aim to capture
the most important properties and interactions of larger struc-
tures. Various MBE-based approaches have been extensively used to
study many-water clusters,13–17 water–ion interactions,18,19 enzyme
activity,20 silicon nanowires,21 and much more. MBE-based meth-
ods are particularly attractive in situations when the many-body
expansion converges rapidly, allowing for the MBE to be trun-
cated to only the first few terms. This effectively reduces a large
(sometimes impossible) calculation into multiple smaller calcula-
tions that can be easily parallelized. Recently, the capability of
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performant MBE-driven Molecular Dynamics (MBE-MD) simula-
tions was also noted.22 Generally speaking, MBE methods are much
more prevalent in non-covalently bound systems as non-covalent
interactions can be straightforwardly decomposed into “bodies” and
the expansion is rapidly convergent due to the long-range nature of
their interactions.

The application of MBE in covalent structures, especially metal-
lic systems, is fraught with challenges due to the complex electronic
structure and short-range interactions exhibited by such systems.
Both dynamic and non-dynamic correlation may be necessary to
capture the multi-coordinated bonding of metals, in addition to con-
siderations of different spins among the intermediate structures of
open shell metals. For example, sodium clusters23–26 (or any alkali
metal) with an electronic configuration ns1 will be in either a singlet
or a doublet state at the various stages of the MBE (i.e., for the inter-
mediate subsystems), and that is without considering the effect of
additional states that might be relevant.24,25 Transition metals have
an even more complicated multi-state manifold27–29 that could make
identification of states challenging for intermediate terms on the
many-body expansion.

The present article is the first in a series focusing on the appli-
cation of the MBE in metallic systems. In this study, we focus on
the alkaline earth metals (Ben, Mgn, Can, n = 2, 3, 4, 5, 6). Alkaline
earth metals have an even number of electrons with a closed-shell
electronic configuration of ns2 and primarily form singlet ground
state clusters. Previous studies using density functional theory (DFT)
methods have found high-spin (triplet and quintet) ground states for
larger clusters of beryllium;30,31 however, this is likely an artifact of
DFT, as more accurate coupled-cluster calculations suggest a singlet
ground state up to at least the beryllium hexamer.32

Although alkaline earth metals have a helium-like closed-shell
electronic configuration, they exhibit markedly different bonding
interactions.33 Helium atoms interact primarily through weak van
der Waals (vdW) forces33,34 (noblesse oblige). Alkali earth com-
pounds, on the other hand, resemble helium only in their dimer
structures, which are also bound by weak vdW forces.35 Larger alkali
earth structures exhibit significantly stronger binding with large
cohesive energies.35–39 The large change from dimer to trimer has
been primarily attributed to the stabilizing effect of non-additive
many-body effect,37,40 further explained as the result of the promo-
tion of electrons from the s to the p orbitals in a multiconfigurational
wavefunction, i.e., sp hybridization.41,42

The literature on the binding of alkaline earth metals is quite
extensive (see Refs. 41 and 42 and references within them); however,
most studies seem to focus on the lowest energy (e.g., the tetrahe-
dral) geometries of these structures. In order to practically employ
MBE methods in the study of metallic systems (e.g., via MBE-driven
molecular dynamics simulations), it is important to quantify and
understand the behavior of the expansion in various geometrical
conformations. In this paper, we examine several different geome-
tries for the clusters of all three metals. Additionally, it is also worth
investigating the binding of alkaline earth metals from a molecular
orbital perspective, focusing particularly on the hybridized orbitals
and their interactions. The outline of the paper is as follows: The
computational methods used in this study are explained in detail in
Sec. II. In Sec. III, the equilibrium geometries, binding and MBE
energies, and the bonding analysis are presented and discussed.
Conclusions are summarized in Sec. IV.

II. COMPUTATIONAL METHODS
The geometries of the clusters examined in this study are shown

in Fig. 1. All geometries were optimized at the Møller–Plesset second
order perturbation theory (MP2)43,44 using the aug-cc-pVDZ basis
set.45–47 To ascertain the effects of the different basis sets on the equi-
librium cluster geometry, the tetramers were also optimized with
the aug-cc-pVQZ basis set. The non-augmented version of these
basis sets was used for the calcium clusters. The many-body energy
terms were computed for all systems at the MP2 level of theory with
the aug-cc-pVDZ and aug-cc-pVQZ45–47 basis and the Coupled-
cluster Singles and Doubles with perturbative Triples [CCSD(T)]48

method using the aug-cc-pVDZ basis set. Only valence electrons
were correlated with the MP2 and CCSD(T) methods. To test multi-
reference effects on the MBE, calculations at the Multi Reference
MP2 (MRMP2)49,50 and the internally contracted Multi Reference
Configuration Interaction (icMRCI)51 levels of theory were per-
formed for a limited subset of the structures examined. The active
space for the multi-reference calculations included all the valence s
and p orbitals, totaling two electrons in four orbitals per atom (e.g., 8
electrons in 16 orbitals for the tetramers). MRMP2 calculations were
also used to obtain potential energy surface (PES) scans of the dimers
and the trimers of D3h symmetry in order to analyze the evolution of
the MBE along different bond lengths. The CCSD(T) calculations
were performed using the NWCHEM quantum chemistry pack-
age,52 whereas all icMRCI calculations were performed with the
MOLPRO 2015.1 package.53,78 All other calculations were per-
formed using the General Atomic and Molecular Electronic Struc-
ture System (GAMESS).54–56

There is unfortunately no silver bullet regarding the meth-
ods best suitable for MBE calculations of metals. MRCI might be
the most accurate method; however, it is practically unfeasible for
all but a few small clusters of light atoms; furthermore, it suf-
fers from size-consistency and size-extensivity issues.57,58 MRMP2
suffers from the same shortcomings, in addition to the possibil-
ity intruder states51,59–62 (although this is rather unlikely in this
particular case). CCSD(T), on the other hand, is computation-
ally prohibitive for large systems. MP2 is perhaps more practical,
though its accuracy remains to be validated. Both MP2 and CCSD(T)
are single-reference methods, which may be inadequate in certain
cases.

The MBE for the atomic clusters was calculated using the
following formulas:3,14,28,63

E1B =
N

∑
i

Ei, (1)

E2B =
N C2

∑
i<j
[Eij − Ei − Ej], (2)

E3B =
N C3

∑
i<j<k
[Eijk − Eij − Ejk − Eik + Ei + Ej + Ej]. (3)

Higher order terms are similarly defined. For a system of N atoms,
E1B, E2B, and E3B, are the total one-body, two-body, and three-body
energies, respectively, of the N-particle system. In Eq. (1), Ei is the
total energy of atom i, Eij in Eq. (2) is the total energy of the ij dimer,
and so on. The dimer and trimer summations in Eqs. (2) and (3) run
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FIG. 1. Geometries optimized for the
various metal clusters.

over all possible combinations of dimers and trimers, represented by
the usual combination formula N Ck =

N!
k!(N−k)! .

The total binding energy, EB, of the cluster with respect to the
individual monomers (i.e., the separated atoms) is defined as

EB(N) = EN −
N

∑
i

Ei = E2B + E3B + ⋅ ⋅ ⋅ + ENB. (4)

Finally, we have performed a quasi-atomic bonding orbital
(QUAO) analysis64–67,77 to understand the interactions of the MBE
decomposition at the molecular orbital level. QUAOs are a type of
localized orbitals with atomic orbital characteristics that can provide
both qualitative and quantitative insight on the bonding patterns of
molecules. The QUAOs are then used to construct the one-particle
spin-averaged density,

ρ(1, 2) =∑
Aa
∑
Bb
∣Aa(1)⟩pAa,Bb∣Bb⟩. (5)

In Eq. (5), the term pAa,Bb is the bond order (BO) density matrix
computed in the basis of the QUAOs, denoted as ∣Aa⟩ (the nota-
tion means that orbital “a” is centered on atom “A”). The diagonal
elements of the density matrix are the occupation numbers of the
QUAO, while the interatomic off-diagonal terms represent the bond
orders between QUAOs. Another useful metric is the kinetic bond
order (KBO), defined as

kAa,Bb = 0.1 × pAa,Bb⟨Aa∣−
1
2
∇

2
∣Bb⟩. (6)

The kinetic bond order correlates with the strength of the interaction
between any two given QUAOs. It should be noted that the kinetic
bond order does not necessarily correspond to the absolute binding
energies between atoms—rather, it is a relative metric to compare
the different bonding interactions between the QUAOs of the same
molecule.

The QUAOs are computed at the full valence complete active
space self-consistent field (CASSCF) level of theory, which includes
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all valence s and p orbitals and, in the case of calcium, also the
d orbitals. Because of the computational cost and difficulty of full
valence calculations, we focus only on a few key structures that
help elucidate the binding of various MBE terms among these
metals.

III. RESULTS AND DISCUSSION
A. Equilibrium geometries

The geometrical parameters of the structures optimized for the
beryllium, magnesium, and calcium clusters are listed in Table I.
This collection of isomers is by no means exhaustive, but it repre-
sents a good sampling of one-, two-, and three-dimensional struc-
tures. Very often, only the lowest minima structures of alkaline earth
metals have been examined in the literature. However, since our
long-term goal is to employ the MBE in realistic applications (e.g.,
MBE-driven molecular dynamics), it is important to investigate its
efficacy in structures other than global minima. Nevertheless, it was
not possible to optimize all isomers for all three different metal
clusters. For example, the zigzag geometry in beryllium always con-
verged to either a linear or a pentagonal geometry, while the double
triangle in magnesium converged to the hexagon geometry. This is
reflected in the values presented in Table I.

Similarly, not all structures optimized correspond to local min-
ima. For instance, for Be4, only the tetrahedral and linear geometries
are minima at the MP2/aug-cc-pVDZ level of theory, with the
tetrahedral being the lowest energy structure. The rhombic and tri-
angular geometries are single order saddle points, while the square
is a fourth order saddle point. Interestingly, a minimum energy
path68 calculation of the square geometry leads to the tetrahedral
geometry. Magnesium and calcium clusters show similar behav-
ior, except that the square configuration is only a second order
saddle point. The trigonal and tetragonal bipyramid configurations
were the lowest energy minima for the pentamer and hexamer
structures. Previous studies30,31 have suggested that beryllium may
have a high spin minimum, but in all our calculations, the singlet
state was the lowest energy state at the MP2 or CCSD(T) levels of
theory.

As expected, the increase in atomic radius down the group
corresponds to a larger bond length (cf. Table I), although this
increase is not uniform. For instance, the bond of the square struc-
ture increases by 1.44 Å from Be4 to Mg4 but only by 0.46 Å from
Mg4 to Ca4. On average, the bond length increase from magnesium
to calcium is half that of the increase from beryllium to magne-
sium. Conversely, the bond does not appear to change significantly
as the cluster size increases from the tetramers to the pentamers and
hexamers.

TABLE I. Symmetry unique parameters of all the Be, Mg, and Ca clusters optimized in this study at the MP2/aug-cc-pVDZ level of theory. All bond distances are in Angstrom.
An asterisk (∗) denotes the lowest energy isomer for each cluster.

Beryllium Magnesium Calcium

Tetramer

Linear R1 = 2.16 Linear R1 = 4.14 Linear R1 = 4.56
R2 = 2.14 R2 = 4.03 R2 = 4.46

Tetrahedral∗ R = 2.11 Tetrahedral∗ R = 3.07 Tetrahedral∗ R = 3.95

Rhomb R1 = 2.23 Rhomb R1 = 3.66 Rhomb R1 = 4.30
R2 = 2.09 R2 = 3.31 R2 = 4.00

Ext. triangle R1 = 2.25 Ext. triangle R1 = 3.74 Ext. triangle R1 = 4.41
R2 = 2.23 R2 = 3.38 R2 = 4.17

Square R = 2.69 Square R = 4.15 Square R = 4.61

Pentamer

Pentagon R = 2.17 Pentagon R = 3.18 Pentagon R = 4.19

Trigonal bipyramid∗ R1 = 2.11 Trigonal bipyramid∗ R1 = 3.30 Trigonal bipyramid∗ R1 = 4.06
R2 = 2.05 R2 = 2.98 R2 = 3.84

Tetragonal pyramid R1 = 2.17 Tetragonal pyramid R1 = 3.30 Tetragonal pyramid R1 = 3.87
R2 = 2.38 R2 = 3.49 R2 = 3.71

Ext. tetrahedral R1 = 3.43 Ext. tetrahedral R1 = 4.32
R2 = 3.06 R2 = 3.96

Zigzag
R1 = 3.45

Zigzag
R1 = 4.17

R2 = 3.37 R2 = 4.15
R3 = 3.40 R3 = 4.18

Hexamer

Tetragonal bipyramid∗
R1 = 2.21

Tetragonal bipyramid∗
R1 = 3.21

Tetragonal bipyramid∗
R1 = 4.01

R2 = 3.26 R2 = 4.75 R2 = 5.79
R3 = 2.24 R3 = 2.22 R3 = 3.06

Pent. pyramid R1 = 2.13 Pent. pyramid R1 = 3.15 Pent. pyramid R1 = 4.18
R2 = 2.18 R2 = 3.25 R2 = 4.06

Double triangle R = 2.13 Hexagon R = 3.94 Double triangle R = 3.68
Hexagon R = 2.45
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Table II compares the optimized geometries of the tetramers
computed at different basis and levels of theory. As expected, the
smaller double zeta quality basis set produces longer bond lengths,
though in most cases, the differences are quite small. For instance,
the bond distance of the tetrahedral structures (global minimum)
changes by at most 0.1 Å between basis and levels of theory.
Similarly, the difference between MP2 and numerically optimized
CCSD(T) geometries is trivial in most cases. The few exceptions
involve the square geometries, which differ by as much as 0.3 Å
in bond lengths compared with the double zeta (DZ) optimized
structures. This may be due to the strong multi-reference effects or
unstable nature of the square geometry, which is located on a high
order saddle point along the PES.

B. Binding energies and many-body decomposition
Tables III–V show the binding energies and MBE terms for

all geometric conformations of beryllium, magnesium, and cal-
cium clusters examined in this study. The convention that has been
previously used in the literature28,35,36,40 was to cast the energies nor-
malized with respect to the two-body term, while preserving the
original sign. Given that the three-body term is often the largest
component of the MBE (vide infra) in such systems, we have instead
chosen to normalize the MBE with respect to this largest three-body
term. In this way, the MBE is more stable as an expansion as even
small changes in the smaller two-body term due to electron correla-
tion or the size of the basis set do not have a large effect on the ratios
of the higher order terms. We, therefore, report the MBE as

TABLE II. Symmetry unique parameters of all the Be, Mg, and Ca clusters optimized at different levels of theory and basis sets. All bond distances are in Angstrom. The values
in parentheses represent the difference with respect to the MP2/aug-cc-pVDZ geometries.

MP2/aug-cc-pVDZ MP2/aug-cc-pVQZ CCSD(T)/aug-cc-pVDZ CCSD(T)/aug-cc-pVQZ

Beryllium

Linear R1 = 2.16 R1 = 2.13 (−0.03) R1 = 2.17 (+0.01) R1 = 2.15 (−0.01)
R2 = 2.14 R2 = 2.11 (−0.03) R2 = 2.15 (+0.01) R2 = 2.13 (−0.01)

Tetrahedral R = 2.11 R = 2.06 (−0.05) R = 2.10 (−0.01) R = 2.06 (−0.05)

Rhomb R1 = 2.23 R1 = 2.18 (−0.05) R1 = 2.27 (+0.04) R1 = 2.23 (0.00)
R2 = 2.09 R2 = 2.06 (−0.03) R2 = 2.08 (−0.01) R2 = 2.05 (−0.04)

Ext. triangle R1 = 2.25 R1 = 2.22 (−0.03) R1 = 2.24 (−0.01) R1 = 2.21 (−0.04)
R2 = 2.23 R2 = 2.19 (−0.04) R2 = 2.24 (+0.01) R2 = 2.19 (−0.04)

Square R = 2.69 R = 2.61 (−0.08) R = 2.50 (−0.19) N/A

Magnesium

Linear R1 = 4.14 R1 = 3.97 (−0.17) R1 = 4.14 (0.00) R1 = 3.80 (−0.34)
R2 = 4.03 R2 = 3.91 (−0.12) R2 = 4.03 (0.00) R2 = 3.70 (−0.33)

Tetrahedral R = 3.07 R = 3.03 (−0.04) R = 3.14 (+0.07) R = 3.10 (+0.03)

Rhomb R1 = 3.66 R1 = 3.55 (−0.11) R1 = 3.68 (+0.02) R1 = 3.5 (−0.12)
R2 = 3.31 R2 = 3.23(-0.08) R2 = 3.34 (+0.03) R2 = 3.24(-0.07)

Ext. triangle R1 = 3.74 R1 = 3.65 (−0.09) R1 = 3.75 (+0.01) R1 = 3.58 (−0.16)
R2 = 3.38 R2 = 3.32 (−0.06) R2 = 3.45 (+0.07) R2 = 3.32 (−0.06)

Square R = 4.15 R = 3.93 (−0.22) R = 4.06 (−0.09) R = 3.80 (−0.35)

Calcium

Linear R1 = 4.56 R1 = 4.37 (−0.19) R1 = 4.48 (−0.08) R1 = 4.24 (−0.32)
R2 = 4.46 R2 = 4.30 (−0.16) R2 = 4.38 (−0.08) R2 = 4.16 (−0.30)

Tetrahedral R = 3.95 R = 3.85 (−0.1) R = 3.99 (+0.04) R = 3.87 (−0.08)

Rhomb R1 = 4.30 R1 = 4.15 (−0.15) R1 = 4.30 (0.00) R1 = 4.10 (−0.20)
R2 = 4.00 R2 = 3.88 (−0.12) R2 = 4.02 (+0.02) R2 = 3.87 (−0.13)

Ext. triangle R1 = 4.41 R1 = 4.30 (−0.11) R1 = 4.37 (−0.04) R1 = 4.21 (−0.20)
R2 = 4.17 R2 = 4.03 (−0.14) R2 = 4.17 (0.00) R2 = 4.01 (−0.16)

Square R = 4.61 R = 4.42 (−0.19) R = 4.54 (−0.07) R = 4.31 (−0.30)
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TABLE III. MBE terms and binding energies (EB) for Be clusters computed at the CCSD(T)/aug-cc-pVDZ level of theory
from MP2/aug-cc-pVDZ geometries. Values are normalized according to Eq. (7). Energies (kcal/mol) are given for three-body
terms in parentheses and italics.

Ben Geometry EB E2′ E3′ (E3) E4′ E5′ E6′

Be4

Linear −31.91 0.31 −1.0 (−32.4) −0.29
Tetrahedral −70.14 0.25 −1.0 (−111.24) 0.13

Rhomb −30.15 0.18 −1.0 (−69.6) 0.38
Ext. triangle −27.06 0.14 −1.0 (−46.4) 0.27

Square −4.30 −0.08 −1.0 (−14.2) 0.77

Be5

Pentagon −59.35 0.20 −1.0 (−74.0) 1.35 −1.36
Trig. bipyramid −99.31 0.19 −1.0 (−246.5) 0.37 0.03
Tetr. pyramid −58.15 0.10 −1.0 (−148.1) 0.48 0.03

Be6

Tetr. bipyramid −96.20 0.11 −1.0 (−325.1) 0.64 −0.05 −0.0003
Pent. pyramid −104.2 0.13 −1.0 (−270.1) 0.73 0.15 −0.40

Double triangle N/A 0.14 −1.0 (−161.3) 0.95 −0.84 N/A
Hexagon −137.5 −0.06 −1.0 (−36.1) 0.44 −1.51 −1.67

E(N) = ±E3(N)[
E2(N)
E3(N)

+
E3(N)
E3(N)

+
E4(N)
E3(N)

+ ⋅ ⋅ ⋅ +
EN(N)
E3(N)

]

= ±E3(N)[E′2(N) + 1.0 + E′4(N) + ⋅ ⋅ ⋅ + E′N(N)]. (7)

A few properties of the MBE stand out immediately from
Tables III–V, as well as Tables VI and VII, which compare the
tetramer clusters at various levels of theory. For almost all cases and
levels of theory, the non-additive three-body term is the largest in
absolute energy and the most attractive term. Moreover, the change
of energy between terms is often oscillatory: It decreases from two-
body to three-body, increases from three-body to four-body, and so
on. This is evident in Fig. 2, which shows a graphical representation
of the MBE terms (in kcal/mol) for a few representative structures.

Whether one considers an attractive or repulsive term in the MBE,
beryllium always exhibits the largest magnitude in energy, followed
by calcium and then magnesium. This order is also reflected in bind-
ing energies, in which calcium structures are often more strongly
bound than magnesium (though weaker than beryllium). This ener-
getic discrepancy in the trend between Be, Mg, and Ca is examined
in Sec. III C. Nevertheless, it is uncertain if this trend continues in
atoms below calcium, making beryllium a lone exception analogous
to the first-row anomaly in the case of p-block elements,69 or if a
trend is absent altogether.

The question of whether the many-body expansion converges
and at which rank is perhaps more complicated as different geome-
tries exhibit radically different behavior in the MBE. The three-body
term is unequivocally the largest term (in most geometries) and,

TABLE IV. MBE terms and binding energies (EB) for Mg clusters computed at the CCSD(T)/aug-cc-pVDZ level of theory
from MP2/aug-cc-pVDZ geometries. Values are normalized according to Eq. (7). Energies (kcal/mol) are given for three-body
terms in parentheses and italics.

Mgn Geometry EB E2′ E3′ (E3) E4′ E5′ E6′

Mg4

Linear 0.99 −3.13 −1.0 (−0.53) −0.03
Tetrahedral −18.7 0.45 −1.0 (−44.2) 0.13

Rhomb −5.83 −0.11 −1.0 (−6.42) 0.20
Ext. triangle −5.01 0.26 −1.0 (−6.92) 0.13

Square −3.04 −2.88 −1.0 (−0.95) 0.67

Mg5

Pentagon −8.22 0.69 −1.0 (−11.8) 0.96 −1.35
Trig. bipyramid −23.55 0.30 −1.0 (−68.6) 0.37 −0.02
Tetr. pyramid −13.18 0.15 −1.0 (−34.3) 0.43 0.03

Ext. tetrahedral −21.28 0.42 −1.0 (−48.7) 0.14 −0.007
Zigzag −9.37 0.17 −1.0 (−17.8) 0.38 −0.08

Mg6

Tetr. bipyramid −26.58 0.22 −1.0 (−86.4) 0.54 −0.07 −0.008
Pent. pyramid −23.04 0.28 −1.0 (−64.5) 0.76 −0.35 −0.04

Hexagon 26.24 1.45 −1.0 (−23.2) 0.91 −2.24 2.00
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TABLE V. MBE terms and binding energies (EB) for Ca clusters computed at the CCSD(T)/aug-cc-pVDZ level of theory from
MP2/aug-cc-pVDZ geometries. Values are normalized according to Eq. (7). Energies (kcal/mol) are given for three-body terms
in parentheses and italics.

Can Geometry EB E2′ E3′ (E3) E4′ E5′ E6′

Ca4

Linear 18.35 5.9 −1.0 (−3.89) −0.18
Tetrahedral −28.10 0.08 −1.0 (−38.2) 0.18

Rhomb −14.67 −0.33 −1.0 (−14.5) 0.32
Ext. triangle −12.45 −0.44 −1.0 (−8.90) 0.04

Square −8.18 −2.19 −1.0 (−3.34) 0.74

Ca5

Pentagon −19.45 −0.87 −1.0 (−7.34) 0.67 −1.45
Trig. bipyramid −38.48 0.04 −1.0 (−70.1) 0.46 −0.05
Tetr. pyramid −16.66 0.19 −1.0 (−78.3) 0.60 −0.003

Ext. tetrahedral −32.41 0.03 −1.0 (−42.2) 0.21 −0.01
Zigzag −23.21 −0.26 −1.0 (−25.09) 0.48 −0.14

Ca6

Tetr. bipyramid −32.69 0.21 −1.0 (−165.5) 0.75 −0.13 −0.02
Pent. pyramid −25.80 −0.14 −1.0 (−52.6) 0.69 −0.32 0.29

Double triangle −20.63 0.33 −1.0 (−72.7) 0.69 0.04 −0.35

therefore, must be included in any truncated application of the MBE.
In most cases, the expansion appears to converge after the three-
body term, though at substantially different rates (Tables III–V). For
example, the repulsive four-body term in the tetrahedral structures
of Be and Mg is smaller than the repulsive two-body term, but this is
not so in the calcium tetrahedral geometry. The MBE of the trig-
onal bipyramidal structure converges rapidly for all atoms, while
the pentagon is mostly non-convergent [at least at the CCSD(T)
level of theory]. The oscillatory nature of the expansion also means
that a truncated MBE can easily overestimate or underestimate the
binding energy depending on where the truncation occurs. There-
fore, the knowledge of the behavior of the MBE for a particular

geometry is pivotal before the application of truncation. We plan to
examine the application of truncated MBEs on alkaline earth metals
in a future study.

Tables VI and VII show the comparison of the tetramer MBE
between different computational methods [along with Tables III–V,
which contain the CCSD(T)/aug-cc-pVDZ values]. There are several
categories in which the data are compared: (1) MP2 vs CCSD(T),
(2) aug-cc-pVDZ vs aug-cc-pVQZ basis, (3) results obtained with
single- vs multi-reference methods, and (4) the effect of basis set
superposition error (BSSE) corrections.

MP2 generally appears to overestimate the repulsive two-body
and the attractive three-body terms (i.e., more positive two-body

TABLE VI. Comparison of MBE terms using different methods for tetratomic clusters. Values are normalized according to Eq. (7). Energies in kcal/mol are given for three-body
terms in parentheses and italics. The basis given after the “@” sign denote the basis in which the geometries were optimized.

MP2/aug-cc-pVDZ @ aug-cc-pVDZ MP2/aug-cc-pVQZ @ aug-cc-pVDZ MP2/aug-cc-pVQZ @ aug-cc-pVQZ

Geometry E2
′ E3

′ (E3) E4
′ E2

′ E3
′ (E3) E4

′ E2
′ E3

′ (E3) E4
′

Be

Linear 0.46 −1.0 (−32.08) −0.43 0.26 −1.0 (−32.84) −0.44 0.31 −1.0 (−34.7) −0.42
Tetrahedral 0.24 −1.0 (−166.1) 0.20 0.15 −1.0 (−169.3) 0.22 0.20 −1.0 (−183.2) 0.21

Rhomb 0.20 −1.0 (−99.9) 0.36 0.10 −1.0 (−101.1) 0.37 0.13 −1.0 (−108.9) 0.38
Ext. triangle 0.20 −1.0 (−59.3) 0.19 0.08 −1.0 (−60.2) 0.20 0.11 −1.0 (−65.2) 0.21

Square −0.08 −1.0 (−20.0) 0.83 −0.32 −1.0 (−19.3) 0.85 −0.24 −1.0 (−25.6) 0.87

Mg

Linear −3.16 −1.0 (−0.59) −0.03 −7.60 −1.0 (−0.43) −0.06 −5.42 −1.0 (−0.59) −0.07
Tetrahedral 0.43 −1.0 (−52.7) 0.11 0.31 −1.0 (−53.2) 0.12 0.34 −1.0 (−56.8) −0.13

Rhomb 0.09 −1.0 (−10.7) 0.28 −0.26 −1.0 (−10.6) 0.29 −0.09 −1.0 (−13.3) 0.31
Ext. triangle 0.27 −1.0 (−8.22) 0.01 −0.12 −1.0 (−8.14) 0.01 0.04 −1.0 (−9.60) 0.01

Square −2.64 −1.0 (−1.16) 0.71 −4.86 −1.0 (−0.99) 0.77 −2.58 −1.0 (−1.92) 0.79

Ca

Linear 7.15 −1.0 (−3.51) −0.17 6.01 −1.0 (−3.13) −0.21 −3.62 −1.0 (−1.94) −0.18
Tetrahedral 0.12 −1.0 (−43.9) 0.14 −0.10 −1.0 (−45.4) 0.16 0.01 −1.0 (−52.5) 0.17

Rhomb −0.24 −1.0 (−16.6) 0.30 −0.60 −1.0 (−16.9) 0.31 −0.35 −1.0 (−21.9) 0.33
Ext. triangle −0.31 −1.0 (−10.1) 0.03 −0.82 −1.0 (−10.0) 0.04 −0.53 −1.0 (−12.3) 0.04

Square −1.90 −1.0 (−3.89) 0.81 −2.87 −1.0 (−3.73) 0.84 −1.92 −1.0 (−5.68) 0.87
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TABLE VII. Comparison of MBE terms using CCSD(T), MRMP2 and MRCI methods for beryllium and magnesium tetratomic clusters. Values are normalized according to Eq. (7).
Energies (kcal/mol) are given for three-body terms in parentheses and italics.

CCSD(T)/aug-cc-pVDZ MRMP2/aug-cc-pVDZ MRCI/aug-cc-pVDZ

Geometry E2
′ E3′ (E3) E4′ E2

′ E3
′ (E3) E4

′ E2
′ E3

′ (E3) E4
′

Be

Linear 0.31 −1.0 (−32.4) −0.29 0.49 −1.0 (−27.7) −0.51 0.31 −1.0 (−29.5) −0.24
Tetrahedral 0.25 −1.0 (−112.4) 0.13 0.28 −1.0 (−123.4) 0.16 0.23 −1.0 (−113.4) 0.16

Rhomb 0.18 −1.0 (−69.6) 0.38 0.24 −1.0 (−76.5) 0.16 0.16 −1.0 (−69.6) 0.40
Ext. triangle 0.15 −1.0 (−46.4) 0.27 0.29 −1.0 (−39.6) 0.03 0.12 −1.0 (−45.3) 0.24

Square −0.08 −1.0 (−14.2) 0.78 1.18 −1.0 (−24.5) −0.34 −0.08 −1.0 (−14.3) 0.75

Mg

Linear −3.13 −1.0 (−0.53) −0.02 −0.88 −1.0 (−0.71) −0.05 −2.68 −1.0 (−0.22) −0.08
Tetrahedral 0.45 −1.0 (−44.2) 0.13 0.53 −1.0 (−46.4) 0.10 0.47 −1.0 (−43.6) 0.13

Rhomb −0.11 −1.0 (−6.42) 0.20 0.35 −1.0 (−8.19) 0.15 0.22 −1.0 (−9.16) 0.28
Ext. triangle 0.26 −1.0 (−6.92) 0.02 0.66 −1.0 (−5.02) −0.30 0.42 −1.0 (−6.67) 0.02

Square −2.88 −1.0 (−0.95) 0.67 −4.20 −1.0 (−0.41) 0.20 −1.14 −1.0 (−1.05) 0.58

FIG. 2. Variation of the 1–6 body terms (x axis) for several of the structures examined in this study. The plots on the top correspond to M4, the plots in the middle correspond
to M5, and the plots at the bottom correspond to M6.
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energies and more negative three-body energies) compared to
CCSD(T). This is consistent with previous observations in the lit-
erature.32 For example, the MP2 three-body term of the Be4 square
geometry is 5.8 kcal/mol larger than the corresponding CCSD(T)
energy, while the MP2 three-body term for the Be4 tetrahedral
geometry is 53.7 kcal/mol larger, and so on. Similar patterns are
observed for all magnesium and calcium structures. Because the
depictions of the MBE are normalized with respect to the three-body
terms, the normalized values remain relatively stable. In general,
a larger two-body energy also corresponds to a larger three-body
energy, a fact that maintains a proportional change among the MBE
terms. This is graphically demonstrated in Fig. 3, which shows the
correlation between the energy differences between the two-, three-,
and four-body terms with respect to the (often larger) three-body
energies. It is evident from the fitted lines that the relationship
between the MBE terms does not change much between the MP2
and the CCSD(T) calculated values. Both methods are fitted to
similar equations and accuracy (R2 value). In fact, even the avail-
able icMRCI data (red and green points in the right graph of Fig. 3)
follow the fitted lines quite well. This suggests that regardless of the
apparent differences between computational methods, the qualita-
tive behavior of the MBE (such as the ratio of the terms with respect
to the three-body term) remains the same.

On the other hand, the choice of basis set (Table VI) appears to
have a larger and more complicated effect on the MBE. For most
geometries optimized with the aug-cc-pVDZ basis set, the MBEs
obtained with the larger quadruple-zeta (aug-cc-pVQZ) basis set
show a decrease in the two-body energy while maintaining the three-
and four-body energies relatively constant (for a comparison of
unscaled MBE energies, see Table S2 and Figure S4). For example,
in the rhombic beryllium tetramer, the repulsive two-body energy
is nearly halved in the larger basis set, while the three-body and
four-body energies only change by a few kcal/mol (cf. Table VI).
In the tetrahedral geometries, for example, the three-body energies
in the QZ basis decrease only by 3.2 kcal/mol, 0.5 kcal/mol, and
1.5 kcal/mol for Be, Mg, and Ca respectively. Computing the MBE
with the aug-cc-pVQZ basis set for geometries also optimized with
the aug-cc-pVQZ basis set has a more significant effect, resulting in
a slight decrease in both the two- and three-body terms. Although in

most geometries, these changes are small enough to be qualitatively
similar, there are some substantial outliers (cf. Table VI). The three-
body energy of the tetrahedral geometry, for example, decreases by
∼17 kcal/mol with the aug-cc-pVQZ basis set at the aug-cc-pVQZ
geometry, considerably more than the changes in the two-body or
three-body energy (or the changes in any other geometry), despite
the very small change in bond length (see Table II). This is likely
because the tetrahedral structure has the shortest interatomic dis-
tances of all the geometries and, therefore, even a small change
in geometry can affect the bonding interactions of the hybridized
orbitals (discussed in Sec. III C).

It is clear that there is a basis set dependence of the MBE. This
effect is larger for the two-body energy terms because they are gen-
erally smaller in energy than the three-body and four-body terms
(Fig. 2). Thus, even a small change in energy can be a significant
portion of the total two-body energy. In geometries that are weakly
bound (or outright repulsive), such as the linear and square geome-
tries of magnesium and calcium, the two-body term can be the
largest portion of the MBE (see Table VI); therefore, it can be sig-
nificantly affected by the choice of basis set. In fact, the geometrical
differences of these structures can be explained by the dominance
of the attractive two-body term, which causes the reduction of the
bond lengths. Table II shows that geometries optimized with the
CCSD(T)/aug-cc-pVQZ level of theory can result in as much as a
0.3 Å reduction in the bond length. Considering the MBE of some of
these structures at the CCSD(T)/aug-cc-pVQZ level of theory,

E(N) = 0.71[−4.44 − 1.0 − 0.11] kcal/mol Mg(linear),

E(N) = 2.17[−2.33 − 1.0 + 0.78] kcal/mol Mg(square),

E(N) = 6.16[−2.11 − 1.0 + 0.88] kcal/mol Ca(square).

Despite the significant changes in the bond length, the
CCSD(T)/aug-cc-pVQZ MBE follows the same trend as the MBE
computed with the smaller basis set, albeit with a more attractive
two-body term. The three-body terms also become more attrac-
tive, no doubt a result of the shorter bond lengths. Nevertheless, we

FIG. 3. Correlation between the
three-body energies (in kcal/mol) and
the four-body/three-body and three-
body/two-body energy differences (in
kcal/mol). Each set of data is fitted with a
linear function. A few MRCI data points
are also included in the right panel.
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emphasize that the overall trend of the MBE remains qualitatively
the same in most cases (see the supplementary material for more
examples).

Even at the atomic level, alkaline earth atoms exhibit some
multi-reference character due to the symmetry allowed s–p dou-
ble excitations, and this effect increases for the larger clusters,
although this increase is not uniform among the different met-
als or the studied geometries. For instance, the highest occupied
natural orbital occupation numbers of the beryllium, magnesium,
and calcium atoms are 1.83, 1.85, and 1.83, respectively. In the
D3h trimer geometry, this occupation becomes 1.77, 1.83, 1.79 for
Be, Mg, and Ca respectively (note that these are doubly degener-
ate orbitals of E symmetry). The linear tetramer geometry becomes
more strongly multi-reference, with highest orbital occupation num-
bers of 1.11, 1.84, and 1.22, respectively. It is unclear what causes
the smaller multi-reference character of magnesium compared to
the other alkaline earth metals, as a visual inspection of the orbitals
shows no appreciable differences between the three metals. It is
likely that the larger core–core repulsion in magnesium dominates
over the bonding interactions of the 2s valence electrons. Never-
theless, despite the presence of multi-reference character for many
of the probed structures, the difference in the MBE composition
between single- and multi-reference methods appears to be minimal
(see Table VII). The CCSD(T), MRMP2, and icMRCI results follow
the same qualitative trend. While the exact energies differ [icMRCI
appears to be closer to CCSD(T) than MRMP2], the changes in ener-
gies are relatively similar. This is also shown in Fig. 3, where the
available icMRCI calculations are superimposed on the CCSD(T)
line. In many cases, the MRMP2 method appears to produce more
attractive three-body terms (and similarly, more repulsive two-body
terms), whereas the icMRCI results appear remarkably close to those
of CCSD(T). For example, the beryllium tetrahedral three-body
energy is −112.4 kcal/mol, −123.4 kcal/mol, and −113.4 kcal/mol

for CCSD(T), MRMP2, and icMRCI, respectively. Similar trends
are observed in the other geometries, except for the extended tri-
angular geometry in which the MRMP2 produces a less attractive
three-body energy (by ∼7 kcal/mol). Nevertheless, the differences
are still qualitatively minimal. This is even more the case in magne-
sium in which there’s a smaller difference between the three methods
(Table VII).

Finally, Table VIII shows the BSSE corrected energies for the
MP2/aug-cc-pVDZ and MP2/aug-cc-pVQZ levels of theory. Coun-
terpoise corrected MBE energies differ by as much as 1 kcal/mol
from their uncorrected counterparts (naturally more for the aug-
cc-pVDZ than for the aug-cc-pVQZ basis set), though the BSSE
correction is not significant enough to make a qualitative difference
in the normalized many-body terms.

C. Bonding and quasi-atomic orbital analysis
Beryllium is unique among the alkaline earth metals because

its overall binding energy is known to be stronger than that of
magnesium and calcium,33,39 a result that was also confirmed by
our calculations. For instance, the binding energies of tetrahedral
(Be4), trigonal bipyramidal (Be5), and tetragonal bipyramidal (Be6)
are −70.14 kcal/mol, −99.31 kcal/mol, and −104.2 kcal/mol, respec-
tively. These are two to three times stronger than their magnesium or
calcium counterparts (see Tables III–V). Figure 4 shows the poten-
tial energy surfaces of the dimers and the D3h trimers (symmetric
stretch) at the MRMP2/aug-cc-pVQZ level of theory (except for
Ca, which used the cc-pVDZ basis) for all three metals examined
here. The beryllium dimer is weakly bound with a binding energy of
−974 cm−1 (∼2.8 kcal/mol, including zero-point energy) at an equi-
librium distance of 2.42 Å. These values compare reasonably well
with previous experimental measurements (energy of 750–930 cm−1

and distance of 2.45–2.54 Å, depending on the experiment).76 The

TABLE VIII. Comparison of BSSE corrected vs uncorrected MBE energies at two levels of theory: MP2/aug-cc-pVDZ and MP2/aug-cc-pVQZ for tetratomic clusters. All energies
are given in kcal/mol.

DZ/no-BSSE DZ/BSSE QZ/no-BSSE QZ/BSSE

Geometry E2 E3 E4 E2 E3 E4 E2 E3 E4 E2 E3 E4

Be

Linear 15.0 −32.1 −13.8 15.5 −31.2 −13.7 8.63 −32.8 −14.3 8.89 −32.6 −14.3
Tetrahedral 40.2 −166.1 33.1 41.2 −165.8 33.8 26.8 −169.3 36.6 27.4 −169.2 36.6

Rhomb 20.4 −99.9 36.3 21.2 −99.7 37.0 10.5 −101.1 38.0 11.0 −101.1 38.1
Ext. triangle 11.9 −59.3 11.5 12.7 −58.4 11.4 4.54 −60.2 12.2 4.87 −59.9 12.2

Square −1.7 −20.0 16.6 −1.05 −19.5 16.5 −6.30 −19.3 16.5 −6.06 −19.2 16.5

Mg

Linear −1.87 −0.59 −0.02 −1.78 −0.33 −0.02 −3.23 −0.43 −0.03 −3.16 −0.37 −0.03
Tetrahedral 22.7 −52.7 5.92 23.1 −52.2 6.15 16.5 −53.2 6.42 16.8 −53.1 6.45

Rhomb 0.93 −10.7 3.00 1.19 −10.4 3.00 −2.77 −10.6 3.06 −2.58 −10.6 3.07
Ext. triangle 2.26 −8.22 0.10 2.50 −7.82 0.06 −0.95 −8.14 0.11 −0.78 −8.07 0.11

Square −3.06 −1.16 0.82 −2.79 −1.00 0.76 −4.82 −0.99 0.76 −4.69 −0.99 0.76

Ca

Linear 25.1 −3.51 −0.58 25.2 −2.50 −0.49 18.8 −3.13 −0.65 19.0 −2.95 −0.64
Tetrahedral 5.26 −43.9 6.05 5.53 −43.1 6.29 −4.48 −45.4 7.30 −4.30 −45.1 7.38

Rhomb −4.00 −16.6 5.01 −3.60 −16.1 5.09 −10.2 −16.9 5.34 −10.0 −16.7 5.36
Ext. triangle −3.19 −10.1 0.29 −3.00 −9.33 0.27 −8.23 −10.0 0.40 −8.09 −9.83 0.38

Square −7.35 −3.88 3.14 −6.83 −3.61 3.08 −10.7 −3.73 3.16 −10.6 −3.60 3.15
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FIG. 4. Potential energy surfaces for the dimer, trimers (D3h), as well as the two-body and three-body terms for trimer structures: (a) beryllium, (b) magnesium, (c) calcium.
The surfaces in (d)-(f) are given in reduced distances and reduced energies. Surfaces were computed at the MRMP2/aug-cc-pVQZ (for Be and Mg) and MRMP2/cc-pVDZ
(for Ca) level of theory. The counterpoise correction was applied to the surface of the Be dimer.

binding energy increases nearly tenfold for the trimer and even
more so for the tetramer (not shown in the graph). This trend
holds true for magnesium and calcium as well, though the trimers
of those systems are not as strongly bound. For instance, the Mg
trimer has a binding energy of 4.8 kcal/mol (8-fold increase from
the dimer energy), while the Ca trimer has a binding energy of 6.15
kcal/mol (20-fold increase from the dimer energy). Beryllium clearly
shows a much stronger three-body interaction compared to the met-
als below it in the Periodic Table, followed by calcium and then
magnesium.

Similarly, Figs. 4(a)–4(c) document the repulsiveness of the
two-body term at the corresponding trimer equilibrium distances.
As the dimer minimum is located at larger metal–metal distances
than the trimer (or tetramer, not shown in the graph), at the trimer
equilibrium separation the two-body energy falls along the repulsive
wall of the dimer PES. In the case of calcium, the two-body energy
is almost 0 kcal/mol at the trimer equilibrium separation. This effect
has been previously reported for the sodium trimer.24,25

To compare the differences between the PES of the clusters, we
examine the potential energy surfaces in reduced forms (expressed
as a ratio with respect to the distances and energies at the equi-
librium geometry of each respective structure)70,71 shown in the

second row of Figs. 4(d)–4(f). In these reduced coordinate forms,
there is little difference between the dimer and total two-body sur-
faces of beryllium, magnesium, and calcium clusters. This is evident
in the reduced coordinate surfaces [Fig. 4(d)], which shows sur-
faces virtually overlapping at equilibrium and long-range distances.
The dimers of all three systems are bound equally weakly, a factor
that explains their similarity in the reduced plots. In the short-range
regions of the dimers, there is a clear progression from Be to Mg to
Ca in which the energy becomes more repulsive down the Periodic
Table. This behavior is typical of the increase in core–core repulsion
and atomic radius with atomic number, analogous to the differences
of ionic radii that have been previously reported.71 Note that for the
D3h trimer, the two-body energy is exactly three times that of the
dimer; therefore, the reduced two-body curve would overlap that of
the dimer.

On the other hand, the trimer reduced PESs are markedly dif-
ferent from each other without exhibiting much overlap between the
three metals. The reduced three-body terms of magnesium and cal-
cium are fairly closer together, while the reduced three-body energy
of beryllium is noticeably smaller (i.e., more attractive). This is
reflective of the stronger three-body term of beryllium. The short-
range region of the curves follows the same pattern, with magnesium
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showing a higher repulsion than calcium and beryllium. We spec-
ulate that the presence of virtual d-orbitals in the valence space
of the calcium atom enables it to form stronger attractive interac-
tions than magnesium, counteracting the strong core–core repulsion
(discussed below). Unlike the dimer curves, there is no a priori rea-
son that the reduced trimer or three-body curves will overlap in
the same manner as they do reflect different behavior among the
metals.

A better understanding of these interactions from a molecu-
lar orbital perspective can be achieved via a quasi-atomic orbital
(QUAO) analysis. Figures 5–11 display the most important QUAOs
for the dimer, trimer, and tetramer of the tetrahedral geometry for
Be Mg, and Ca metals, i.e., all interatomic distances are those of
the respective tetrahedral arrangements. In addition to the density
plots of each respective QUAO (shapes), several useful quantitative
values emerge from the density matrix in the QUAO basis: the
orbital occupation number (Occ), the bond order (BO), the kinetic
bond order (KBO), and the atomic-orbital hybridization decompo-
sition (percentage of s, p, or d mixing in the orbitals). The naming
convention used in the figures below is as follows: QUAOs cen-
tered on atom X and directed toward atom Y are labeled as XY-c,
where “c” represents the character of the orbital, such as s, p, d, sp
(hybridized s and p), and lp (lone pairs). For example, an sp orbital
centered on the one beryllium atom (Be1) and directed toward
another beryllium atom (Be2) is denoted as Be1Be2-sp. Conversely, if

an orbital is centered on an atom X but not directed toward another,
it is simply labeled as X-c. Note that the labels used are merely a
descriptive convenience—that is, a QUAO labeled “lp” (lone pair) is
not necessarily a doubly occupied nonbonding orbital.

The quasi-atomic orbitals for beryllium reveal an increasing
degree of hybridization with increasing size of the cluster (Fig. 5).
The beryllium dimer exhibits an approximate 50/50 mixture of s
and p orbitals (sp hybridization). This increases to approximately
an averaged sp2 hybridization for the trimer and an averaged sp3

hybridization for the tetramer. The increase in hybridization cer-
tainly allows for more interactions in the larger structures (and
stronger binding energies), but it may not be the only cause
for the larger binding energies. It has been suggested in the
literature that the sp hybridization is responsible for the binding of
beryllium clusters.41,42 The occupation numbers of the hybridized
orbitals shown in Fig. 5 also support this finding as the occupa-
tion number seems to correlate significantly with the degree of
hybridization. The pure p orbitals of the dimer and trimer are virtu-
ally unoccupied, while the sp-hybridized ones have large occupation
numbers.

Examining the interactions between the beryllium QUAOs in
Fig. 6 shows that the dimer is primarily bound by the interaction of
two sp QUAOs and a much weaker lp–lp interaction. It is tempt-
ing to consider the sp–sp interaction as a σ bond; but, as shown
in Fig. 4, this is a much weaker interaction than a conventional

FIG. 5. Symmetry Unique QUAO orbitals
for the two-atom, three-atom, and four-
atom structures of the beryllium tetrahe-
dral.
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FIG. 6. Most important interactions
between the beryllium QUAOS of the
dimer, trimer, and tetramer measured
through the bond order and kinetic bond
order in the QUAO basis.

sigma bond of, say, a carbon atom. Similarly, there is no interac-
tion whatsoever between the p orbitals perpendicular to the diatomic
bond.

Unlike the dimer, the beryllium trimer and tetramer bene-
fit from the availability of more interactions between the QUAOs.
Figure 6 shows not only the direct sp–sp interaction between the
Ca1Ca2-sp and Ca2Ca1-sp orbitals (one of which also exists in
the dimer) but also a significant interaction between orbitals not
directed toward their respective centers, viz., the interaction between
Ca1Ca3-sp and Ca2-lp orbitals. The second interaction is inevitably
absent from the dimer and important to the stability of the trimer.
Though energetically weaker than the sp–sp interaction by the KBO
metric (−90.3 kcal/mol vs 2 × −15.7 kcal/mol per atom pair), it con-
tains most of the bond order for the molecule (0.69 vs2 × 0.47 per
atom pair). The same holds true for the tetramer, in which the sp–lp
interactions contain most of the bond order. Therefore, it is very
likely that the presence of these indirect sp–lp interactions, more so
than the sp–sp interactions, contributes to the stability in the trimer,
which, as Fig. 4 suggests, is much lower in energy than that of the
dimer. The QUAO interactions in the trimer also help demonstrate
the non-additivity of three- and higher-body terms. The sp–lp inter-
action between two beryllium atoms can only exist in the presence
of a third atom.

On the other hand, the magnesium QUAOs tell a different
story. As Fig. 7 clearly shows, the hybridization of magnesium is
considerably smaller than that of beryllium. While the dimer of the
two elements is more or less the same (sp-hybridized), the trimer
and tetramer structures of magnesium show virtually no hybridiza-
tion whatsoever. For example, in the trimer, the highest occupied
QUAO (1.37 occupation number) has 96% s character and only 4%
p character. Moreover, the virtually pure p orbitals have an occupa-
tion of 0.586, which is non-negligible but considerably lower than
the hybridized orbitals for beryllium. Instead, most of the electron
occupation is in the s orbital. The tetramer exhibits similar proper-
ties as the trimer, but with the p orbitals having a larger share of the
occupation number.

The interactions between the QUAOs in the magnesium struc-
tures (Fig. 8) are also different from those in beryllium. Since there
is not any appreciable sp hybridization in the trimer and tetramer
structures, there are not any sp–sp interactions or sp–lp interac-
tions equivalent to those of Be. Additionally, the s–s interaction is
negligible. Instead, the predominant interactions are of s–p and
adjacent p–p types, which also demonstrate the non-additive nature
of the trimer interactions (though the energy difference between
the Mg dimer and trimer are considerably smaller than those
of Be).
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FIG. 7. Symmetry Unique QUAO orbitals
for the two-atom, three-atom, and four-
atom structures of the magnesium tetra-
hedral.

The difference between magnesium and beryllium encountered
here can be explained, at least partially, by the competition between
the binding interaction of the valence electrons and the core–core
repulsion. Although both Be and Mg (as well as Ca, discussed below)
have two valence electrons, beryllium has only two core electrons,
while magnesium has ten core electrons, allowing for a stronger
repulsion between the atoms. This is evident from the increase in
bond length of Mg compared to Be. The fact that the atomic radii
and the average metal–metal bond length increase down the Peri-
odic Table is well known,72 and in the case of magnesium, the
electronic repulsion overcomes the valence–valence interactions. In
beryllium, the repulsion of the two core electrons is not enough to
counterbalance the valence–valence interactions.

The distance dependence of the interatomic interactions
becomes evident once the QUAOs are computed at various points in
the PES, as shown in Figs. 12 and 13. In the case of beryllium, even
a slight increase of bond length leads to a loss of hybridization. Con-
versely, reducing the distance of Mg3 introduces hybridized orbitals.
In other words, at comparable distances both Be and Mg show
considerable sp hybridization, which, in principle, leads to similar
valence–valence interactions. However, the larger core and elec-
tronic repulsion of Mg pushes the atoms further apart, thus reducing
the bonding interactions in comparison to beryllium. Note that
optimizing the geometries with larger basis sets or different com-
putational methods can result in slightly shorter bond lengths for
the clusters examined here (Table II). In most cases, however, these

changes are not enough to significantly affect the binding between
atoms (such as the changes in the Mg or Ca structures). It is possi-
ble that the interactions between QUAOs can be affected appreciably
with large changes of the atomic distances as a result of using larger
basis sets (see Table II).

Computing the QUAOs for the square geometry (Fig. 9), one
arrives at a similar conclusion. The bond distance of the square
geometry is longer than that of the tetrahedral geometry (in the case
of Be, it is longer by 0.7 Å at the aug-cc-pVDZ basis set, and 0.55 Å
at the aug-cc-pVQZ basis). The QUAOs between the two systems
are virtually the same (no sp hybridization), a fact also mirrored by
comparable binding energies [−4.30 kcal/mol and −3.04 kcal/mol
for Be and Mg, respectively, at the CCSD(T)/aug-cc-pVDZ level
of theory]. Indeed, this behavior is quite revealing, as the distance
dependence of sp hybridization appears to correlate strongly with
the increased attractiveness of the three-body energy of the trimer
(cf. Fig. 4). As the sp hybridization increases at shorter distances
(Figs. 11 and 12), so does the three-body energy. This is a strong
indicator of the importance of hybridization on the stability of these
clusters.

Initially, one would expect calcium to follow the same trend as
magnesium. Indeed, calcium has a larger atomic radius and stronger
core–core repulsion, leading to larger equilibrium distances (see
Table I and Fig. 4). However, the binding energy of calcium calcu-
lated here and in the literature36 is larger than that of magnesium
for all geometries and levels of theory. The main difference between
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FIG. 8. Most important interactions
between the magnesium QUAOS of the
dimer, trimer, and tetramer measured
through the bond order and kinetic bond
order in the QUAO basis.

FIG. 9. Symmetry unique QUAOs
for beryllium and magnesium square
geometries.
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FIG. 10. Symmetry Unique QUAO
orbitals for the two-atom and three-atom
structures of the calcium tetrahedral.

calcium and beryllium or magnesium is the presence of low-lying d
orbitals, which can actively participate in the bonding interactions
(Ca has a 4s2 configuration). This poses a significant computational
challenge for the purpose of computing the QUAOs. Including d
orbitals in the CASSCF calculation would require an active space of
nine orbitals per atom (1s + 3p + 5d), which would be computa-
tionally feasible only for the small clusters. To sidestep this issue, we
used the Occupation Restricted Multiple Active Spaces SCF method
(ORMAS-SCF)73,74 in order to partition the active space into two
subspaces: one containing the s and p orbitals and another contain-
ing the virtual d orbitals. All possible configurations are generated

in the s–p subspace (i.e., a full CI), but only single and double exci-
tations are allowed in the d subspace. Double excitations into the
d space should be sufficient to capture the contributions of the d
orbitals into the interatomic interactions.

The calcium QUAOs shown in Fig. 10 indicate considerable
mixing of the d orbitals with the s and p orbitals, especially in
the trimer. The orbitals in the calcium dimer look no different
than those of beryllium, except for a small amount of d mixing in
the Ca1Ca2-sp orbital. The highest occupied orbital of the trimer
structure, Ca1-s, has as much as ∼10% d-character (i.e., more than
p-character), while the Ca1Ca2-πd orbital has 21% d-character and

J. Chem. Phys. 157, 084313 (2022); doi: 10.1063/5.0094598 157, 084313-16

© Author(s) 2022

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 11. Most important interactions
between the calcium QUAOS of the
dimer and trimer measured through the
bond order and kinetic bond order in the
QUAO basis.

an occupation of 0.30 electrons. The presence of d orbitals in the
space of QUAOs likely “expands” their range and, unlike Be or Mg,
enables interactions to occur at larger distances.

Figure 11 shows the most important interactions (measured
by BO and KBO) between the QUAOs of calcium. Again, there
is little difference between the calcium, beryllium, or magnesium
dimers. However, the difference in the trimers is considerable.
Unlike magnesium, there is a small s–s type interaction between
atoms, likely due to the presence of d orbitals in the Ca1-s QUAOs
(the Mg1-s QUAO had 96% s character). The most dominant inter-
actions are s–p (BO = 0.59), s–πd (BO = 0.53), and p–πd (BO = 0.27).
These interactions are also non-additive in nature (they are com-
posed of orbitals present only in the trimer) and serve to stabilize
the three-body energies of the trimer.

Unfortunately, the KBOs used here are unable to quantitatively
distinguish between the QUAO interactions of different atoms (e.g.,
Mg vs Ca), but they do so for interactions only within the same

cluster. However, the presence of d orbitals in the valence hybridiza-
tion of calcium allows for more interactions than magnesium. Thus,
the d orbitals are unequivocally involved in the bonding of the cal-
cium trimer (unlike beryllium or magnesium), likely explaining the
larger binding energy of calcium clusters.

D. Factors affecting the MBE
It has been well known in the literature that beryllium struc-

tures have a stronger binding energy than magnesium and calcium,
and the QUAO analysis presented here links this property directly to
the strong hybridization in conjunction with the smaller core–core
repulsion of the beryllium atom. However, this raises the question
about the potential presence of atoms in their excited states in the
cluster, a fact that will affect the MBE. So far, all energies needed
for the MBE have been calculated strictly with respect to the ground
states. While these clusters do dissociate to the atomic 1S ground
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FIG. 12. Beryllium QUAOs of the D3h
trimer at various points in the potential
energy surface. The QUAOs are com-
puted at 2.1 Å (the tetrahedral bond dis-
tance), at the equilibrium geometry, and
at 2.8 Å.

states (see PES graph in the supplementary material, Fig. 1), work
by Kalemos75 makes the case for the presence of 3P states at the
equilibrium geometries of the beryllium dimer and trimer, based
on the results of the atomic populations. Indeed, our QUAO anal-
ysis shows the significant presence of sp hybridization that increases
with increasing cluster size and decreasing bond lengths (see Figs. 5,
12 and S3). This could be the result of the increasing multi-reference
character of beryllium structures rather than an excited atomic state,
though the precise determination of atomic states merits a separate

study of its own and will not be examined here. Nevertheless,
it is important to mention this factor, and for completeness, we
present a few alternative MBE calculations of the beryllium trimer
in Fig. 14.

It becomes clear from Fig. 14 that by considering intermediates
in the MBE where the atoms are in their excited states, the deter-
mination of the MBE becomes increasingly complicated. In addition
to the many possible combinations of states, one must also ensure
that the correct selection rules and mixing of terms are observed. For

FIG. 13. Magnesium QUAOs of the D3h
trimer at various points in the potential
energy surface. The panel in the right
shows QUAOs computed at R = 2.06,
well into the repulsive wall of the Mg3
surface.
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FIG. 14. Alternative schemes for calcu-
lating of the two- and three-body terms
of Be3 at the D3h geometry at the
MRMP2(6,12)/aug-cc-pVDZ level of the-
ory. All energies are in kcal/mol (units not
shown in the figure). Distances are not to
scale.

instance, a 1Σ+g can result from 1S + 1S or 3P + 3P states, but not from
a 1S + 3P combination. Additionally, both 1S→ 3P and 1Σ+g→3Σ+u
transitions are spin forbidden (though dipole allowed), but they may
be allowed under the influence of a perturbation that breaks the
symmetry (i.e., the presence of another atom).

In accordance with Eqs. (1)–(3), the diagrams in Fig. 14 indi-
cate the states of the monomers and dimers used to compute each
two-body and three-body terms. While the dimer with respect to
the ground state is repulsive, when considered with respect to the
3P asymptotic states of the atoms, it is attractive by −121.4 kcal/mol.
However, considering a two-body term composed of 3P states results
in a repulsive three-body energy (as the equation for the three-body
contains the energies of monomers and dimers). In other words, a
repulsive two-body term is required to obtain an attractive three-
body term, with the magnitude of the energy depending on the state
of the monomers—i.e., more 3P monomers correlate with a lower
three-body energy.

Conversely, one may consider the first excited dimer of state
3Σ+u , which lies 19.5 kcal/mol above the dimer ground state. This
state dissociates to the 1S + 3P atomic states, though such a state can

TABLE IX. Comparison of different schemes for calculating the two-body and three-
body energies of the D3h beryllium trimer, as illustrated in Fig. 14. One-body terms
are computed with respect to the 1S state of atomic beryllium, which is taken as the
0 energy. All energies are in kcal/mol.

Scheme EB One-body Two-body Three-body

Ground state (d) −13.5 0.0 17.4 −30.9
Scheme (a) −13.3 127.2 −114.6 −25.9
Scheme (b) −12.8 190.8 −114.6 −89.0
Scheme (c) −13.2 0.0 −114.6 101.4
Scheme (e) −13.3 127.2 −364.2 223.7
Scheme (f) −13.5 127.2 17.4 −158.1
Scheme (g) −13.6 190.8 17.4 −221.8
Scheme (h) −13.3 190.8 −364.2 160.1

also result from a 3P + 3P atomic combination (this is not consid-
ered in Fig. 14). This dimer state results in two attractive and one
repulsive three-body term, with the latter deriving from ground state
monomers.

For convenience, the various schemes of calculating the two-
and three-body terms of the D3h Be trimer are summarized in
Table IX. Note that the binding energies for each of these schemes
are the same (minus rounding errors) as they all start and end at
the same states. The beryllium trimer is in the 1Ag state at equilib-
rium geometry and dissociates into the three 1S states; therefore, that
is the correct binding energy for the system. It is obvious how rad-
ically the terms of the MBE can change when considering excited
intermediate states, and how this could affect the convergence of
the MBE.

IV. CONCLUSIONS
In this study, we examined the interactions and the MBE of

three alkaline earth metals, beryllium, magnesium, and calcium, for
several geometry conformations and levels of theory. Our results
confirm earlier reports that the non-additive three-body term is
the largest and most important attractive term, followed by oscil-
latory and decreasing in magnitude higher order terms. However,
the behavior of the MBE differed significantly among the geometries
tested, showing different rates of convergence or non-convergence
at all in some cases. Our results indicate that the qualitative trends of
the MBE, such as the energy differences from one term to another,
do not change significantly between levels of theory, with the biggest
effect arising from the basis set, which in some geometries resulted
in shorter bond lengths. Though these differences were not large
enough to change the overall trend of the MBE, significant reduc-
tions in the bond lengths can lead to more attractive two-body or
three-body terms. The inclusion of dynamic correlation was also
important in being able to locate a minimum on the dimer PES in
all three metals. Similarly, single reference methods appear adequate
at describing the MBE, even though the multi-reference character of
these systems was found to be non-negligible.
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A detailed analysis of the dimers, trimers, and tetramers using
quasi-atomic molecular orbitals helps provide an understanding of
the many-body interactions in alkaline earth metals. As previously
speculated, the QUAO analysis reveals that sp hybridization is cru-
cial at stabilizing the three-body term of beryllium. This is absent
in magnesium at equilibrium distances due to the large core–core
repulsion forces that extend the average bond length compared to
beryllium. This is also true for calcium; however, the presence of
d-orbitals (in the form of hybridized s–p–d orbitals) facilitate
stronger interactions in the Ca clusters.

Finally, the possibility of excited state intermediates in the
many-body expansion of beryllium is also briefly considered, stem-
ming from the sp hybridization of the beryllium structures. Different
monomer and dimer states can lead to radically different three-body
energies, and this certainly complicates MBE as it is far from triv-
ial to determine which states may be relevant in a given term of
the expansion. However, a more detailed examination of this issue
is beyond the scope of this article and will be examined in a future
study.

SUPPLEMENTARY MATERIAL

All structures optimized in this study are included in the
supplementary material in xyz format. Also see the supplementary
material for additional potential energy surfaces of the Be and Mg
dimer and for population analyses.
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