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ABSTRACT
We present a new, novel implementation of the Many-Body Expansion (MBE) to account for the breaking of covalent bonds, thus extending
the range of applications from its previous popular usage in the breaking of hydrogen bonds in clusters to molecules. A central concept of
the new implementation is the in situ atomic electronic state of an atom in a molecule that casts the one-body term as the energy required
to promote it to that state from its ground state. The rest of the terms correspond to the individual diatomic, triatomic, etc., fragments. Its
application to the atomization energies of the XHn series, X = C, Si, Ge, Sn and n = 1–4, suggests that the (negative, stabilizing) 2-B is by far
the largest term in the MBE with the higher order terms oscillating between positive and negative values and decreasing dramatically in size
with increasing rank of the expansion. The analysis offers an alternative explanation for the purported “first row anomaly” in the incremental
Hn−1X–H bond energies seen when these energies are evaluated with respect to the lowest energy among the states of the XHn molecules. Due
to the “flipping” of the ground/first excited state between CH2 (3B1 ground state, 1A1 first excited state) and XH2, X = Si, Ge, Sn (1A1 ground
state, 3B1 first excited state), the overall picture does not exhibit a “first row anomaly” when the incremental bond energies are evaluated with
respect to the molecular states having the same in situ atomic states.

Published by AIP Publishing. https://doi.org/10.1063/5.0095329

I. INTRODUCTION

The Many-Body Expansion (MBE) is a concept based on com-
binatorial mathematics that was first introduced over 300 years ago
and is usually employed to count the number of elements in the
union of finite sets.1 Its first application to chemical physics prob-
lems considered individual water molecules as “bodies” connected
via hydrogen bonds as it was used to estimate the non-additive
three-body term by partitioning the energy of a water trimer.2

Since then the MBE analysis based on the energies of distinct, non-
overlapping sub-fragments has been applied to hydrogen bonded
clusters by some of us3–9 and others10–27 to quantify the impor-
tance of non-additive terms in the binding energies of aqueous
clusters. Recently, the details of the MBE based on high level elec-
tronic structure calculations related to the size of the orbital basis
set and the level of electron correlation used in the expansion28–30

as well as a molecular dynamics protocol based on the MBE (MBE-
MD)31 were reported. This type of MBE for hydrogen bonded
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molecular systems (including ions), where the definition of a “body”
is straightforward and the system is partitioned in non-overlapping
sub-fragments (monomers, dimers, trimers, etc.) by just break-
ing hydrogen bonds, has laid the foundation for the development
of accurate, ab initio based, many-body interaction potentials for
water.32–53 This is to be contrasted to different partitions that are, for
instance, based on overlapping sub-fragments, such as the Molecu-
lar Tailoring Approach (MTA),54–59 or other fragmentation based
approaches.60–64 Note that the MBE has also been applied to incor-
porate molecular orbitals as “bodies” in order to extrapolate the total
correlation energy of molecules65–72 and solids.73–75

In this paper, we extend the general idea of the MBE to
the breaking of covalent bonds, that is, considering a polyatomic
molecule as consisting of a collection of atoms, diatomics, triatomics,
etc. A recent study76 of the carbon, silicon, and germanium hydrides,
XHn (n = 1–4) based on the spin-coupled generalized valence bond
theory has examined the qualitative changes between carbon and sil-
icon/germanium in the Hn−1X–H bond energies (De) on the context
of the “first raw anomaly”77 by expanding on Kutzelnigg’s argu-
ment78 based on the hybridization of the X atom bond orbitals due
to the increase in the spatial separation of the ns and np orbitals
between atoms in the first row and the following rows of the Peri-
odic Table. The results presented in our study offer (vide infra) an
alternative explanation for this result.

Our analysis is based on casting the atomization energy
(ΔEatomiz⋅) of a molecule of N atoms computed with respect to its
constituent atoms i (i = 1, . . ., N) in their respective ground states
(E0

i ) in the usual way4 as

ΔEatomiz⋅ = ΔE(1 − B) + ΔE(2 − B)
+ ΔE(3 − B) + ⋅ ⋅ ⋅ + ΔE(n − B), (1)

where

ΔE(1 − B) = ∑
N
i (E

p
i − E0

i ), (2)

ΔE(2 − B) = ∑
N
i,jΔ

2Eij = ∑
N
i,j(E

pq
ij − Ep

i − Eq
j ), (3)

ΔE(3 − B) = ∑
N
i,j,kΔ3Eijk

= ∑
N
i,j,k(E

pqr
ijk − Δ2Eij − Δ2Eik − Δ2Ejk − Ep

i − Eq
j − Er

k),
(4)

and Ep
i , Epq

ij , Epqr
ijk , Epqrs

ijkl , etc., are the energies of the in situ (ground
or excited) states of atom (i), dimer (ij), trimer (ijk), tetramer (ijkl),
etc., in the molecule. It is obvious that if the in situ state of an atom
in the molecule (Ep

i ) is the atom’s ground state (E0
i ), the 1-B term for

that atom, given by Eq. (2), is zero.
Since the concept of the in situ state of an atom in the molecule

is central to our analysis, we will further discuss it using Fig. 1, as
discussed by Heitler.79 Consider a carbon atom in its ground (3P)

FIG. 1. The in situ electronic structure of the carbon atom in CH4.

atomic state. The pairing of the four (2s22p2) valence electrons in
this electronic state is not appropriate to accommodate bonding
with four hydrogen atoms to form CH4. They should rather be pro-
moted to the 5S excited electronic state lying 4.18 eV above80 the 3P
ground state in order to form the 4 equivalent C–H bonds. In order
words, the 2s and the three 2p orbitals of the carbon atom should be
hybridized into four equivalent sp3 orbitals forming the atomic 5S
state, which is the in situ electronic state of the carbon atom in CH4.
Examples of the concept of in situ atomic states have been previously
discussed for molecules81,82 and metal aqueous clusters.83,84 As it is
evident from Eqs. (1)–(4), the choice of the in situ electronic state of
an atom will affect the MBE.

II. METHODOLOGY
The calculations for the ground states of the XHn hydrides,

X = C, Si, Ge, Sn and n = 1–4, were performed at the Coupled
Cluster Singles, Doubles and perturbative Triples [CCSD(T) and
RCCSD(T)]85,86 levels of theory. Additionally, two excited states for
CH and one for the remaining diatomic and all triatomic molecules
were computed. For the CHn series, we employed Dunning’s aug-
mented correlation consistent basis sets, aug-cc-pVxZ, x = D,
T, Q.87,88 For the SiHn, GeHn, and SnHn species, we employed
the aug-cc-pVQZ basis sets for H,87,88 Si,89 and Ge,90 and for
Sn Peterson’s91 aug-cc-pVQZ-PP augmented correlation consistent
basis sets, which employ accurate small-core (1s22s22p63s23p63d10;
28 electrons) relativistic pseudopotentials.

The atomization energies, the XHn−1–H dissociation energies,
and the individual many body terms were corrected for basis set
superposition error (BSSE)92,93 as described in Ref. 94. Note that
the deformation (or relaxation) energy in that reference that arises
from geometrical distortions due to the interaction is zero in the
present case since the atomization energy is computed with respect
to the atoms. The BSSE-corrected interaction energies (ΔE′atomiz.)
and the BSSE-corrected many-body terms, ΔE′(n-B), e given in
Eqs. (5)–(10),4

ΔE′atomiz⋅ = Exixj ⋅ ⋅ ⋅

XiXj ⋅ ⋅ ⋅
(XiXj ⋅ ⋅ ⋅) −∑

i
Exixj ⋅ ⋅ ⋅

XiXj ⋅ ⋅ ⋅
(Xi), (5)

ΔE′(1 − B) = ΔE(1 − B), (6)

ΔE′(2 − B) = ∑
i,j

Δ2E′ij, (7)
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Δ2E′ij = Ex1x2 ⋅ ⋅ ⋅
X1X2 ⋅ ⋅ ⋅

(XiXj) − {Ex1x2 ⋅ ⋅ ⋅
X1X2 ⋅ ⋅ ⋅

(Xi) + Ex1x2 ⋅ ⋅ ⋅
X1X2 ⋅ ⋅ ⋅

(Xj)}, (8)

ΔE′(3 − B) = ∑
i,j,k

Δ3E′ijk, (9)

Δ3E′ijk = Ex1x2 ⋅ ⋅ ⋅
X1X2 ⋅ ⋅ ⋅

(XiXjXk) − {E
x1x2 ⋅ ⋅ ⋅
X1X2 ⋅ ⋅ ⋅

(Xi) + Ex1x2 ⋅ ⋅ ⋅
X1X2 ⋅ ⋅ ⋅

(Xj)

+ Ex1x2 ⋅ ⋅ ⋅
X1X2 ⋅ ⋅ ⋅

(Xk)}

− {Δ2Ex1x2 ⋅ ⋅ ⋅
X1X2 ⋅⋅.(XiXj) + Δ2Ex1x2 ⋅ ⋅ ⋅

X1X2 ⋅ ⋅ ⋅
(XiXk)

+ Δ2Ex1x2 ⋅ ⋅ ⋅
X1X2 ⋅ ⋅ ⋅

(XjXk)}, (10)

etc., where Es
G(M) refers to the total energy of the molecule M

computed at the geometry G with basis set s.
In order to evaluate the appropriateness of RCCSD(T), which is

a single-reference method, we checked the single (t1) and the double
(t2) amplitudes95 as well as the T1 and D1 diagnostics.96,97 For all
calculations of the present study, the t1 and t2 amplitudes were small
and the T1 and D1 diagnostics were T1 < 0.02 and D1 < 0.04, expect
for the 4Σ− state of XH, for which the diagnostics were T1 ∼ 0.03
and D1 ∼ 0.07. We can, therefore, conclude that the single reference

RCCSD(T) method is an appropriate methodology to be employed
for the systems in this study. All calculations were carried out with
the MOLPRO suite of codes.98

An important detail of the above analysis is that, for each elec-
tronic state of the molecule, the two- and higher-body terms are
not necessarily computed at the diatomic, triatomic, etc., ground
electronic states but at the respective electronic states of these frag-
ments that are formed from the in situ electronic states of the
constituent atoms in the full molecule. We will further elaborate on
this important detail in Sec. III when we present the case of XH2.

III. RESULTS AND DISCUSSION
A. The MBE for the XHn series (X = C, Si, Ge, Sn;
n = 1–4)

The results in this subsection are presented in Figs. 2–13 and
Tables I–V. Below we will discuss the individual members of the
XHn series for each n as well as the trends with the atom identity.

XH (X = C, Si, Ge, Sn): The analysis for the ground (2Π), first
(4Σ−), and second (2Δ) excited states of CH is shown in Fig. 2. Energy
differences are taken with respect to the ground state of the two
atoms, viz., C(3P) + H(2S). The 2Π ground state of CH correlates

FIG. 2. Many-body decomposition of
ΔEatomiz. for the 2Π, 4Σ−, and 2Δ states
of CH at the RCCSD(T)/aug-cc-pVxZ,
x = D, T, Q, level of theory.

FIG. 3. Many-body decomposition of
ΔEatomiz. for the 2Π and 4Σ− states of
the XH series (X = C, Si, Ge, Sn) at the
RCCSD(T)/aug-cc-pVQZ(-PP)Sn level of
theory.
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FIG. 4. Many-body decomposition of the
ΔEatomiz. for the X3B1 and a1A1 states
of CH2 at the RCCSD(T)/aug-cc-pVxZ,
x = D, T, Q, level of theory.

with the corresponding ground state atomic states, i.e., the in situ
atomic state of C in the ground state of CH is the atomic ground 3P
state. In other words, the 1-B term is zero since there is no need to
promote the ground 3P state of the C atom to form the C–H bond
in its ground 2Π state. In this case, the 2-B term is identical with

the atomization energy ΔEatomiz⋅ However, the situation is differ-
ent for the first and second excited states of the CH molecule. The
in situ electronic state of the C atom in the first 4Σ− excited state of
CH is the atomic 5S state, so the (positive) 1-B term is the energy
required to promote the C atom from 3P → 5S. Accordingly, the

FIG. 5. Many-body decomposition of the
ΔEatomiz. for the 3B1 and 1A1 states of
the XH2 series (X = C, Si, Ge, Sn) at
RCCSD(T)/aug-cc-pVQZ(-PP)Sn level of
theory.

FIG. 6. Many-body decomposition of the
ΔEatomiz. for the X2A1 state of CH3 at
the RCCSD(T)/aug-cc-pVxZ, x = D, T, Q,
level of theory.
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FIG. 7. Many-body decomposition of
the ΔEatomiz. for the X2A1 state of the
XH3 series (X = C, Si, Ge, Sn) at the
RCCSD(T)/aug-cc-pVQZ(-PP)Sn level of
theory.

FIG. 8. Many-body decomposition of the
ΔEatomiz. for the X1A1 state of CH4 at
the RCCSD(T)/aug-cc-pVxZ, x = D, T, Q,
level of theory.

2-B term is the energy difference between the C(5S) + H(2S) and
CH(4Σ−) energy levels, which is also the difference between the total
atomization energy (ΔEatomiz⋅) and the 1-B term. Similarly, the in
situ electronic state of the C atom in the second 2Δ state if CH
is the atomic 2D state and the 1-B and 2-B terms are computed
accordingly. The results with the various basis sets (AVDZ, AVTZ,

and AVQZ) are denoted with different colors for the different energy
levels obtained with the three basis sets in Fig. 2. The individual 2-
B terms for the ground (2Π), first (4Σ−), and second (2Δ) excited
states of CH are decreasing in that order (cf. Table I), and the pres-
ence of the repulsive 1-B term for the last two determines the overall
order in the atomization energies with respect to the atomic ground

FIG. 9. Many-body decomposition of
the ΔEatomiz. for the X1A1 state of the
XH4 series (X = C, Si, Ge, Sn) at the
RCCSD(T)/aug-cc-pVQZ(-PP)Sn level of
theory.
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FIG. 10. Summary of the MBE for the
ΔEatomiz. of the CHn species, n = 1–4,
at the RCCSD(T)/aug-cc-pVQZ level of
theory.

states, as shown in Fig. 2. The σ bond length of the 4Σ− state is
shorter than the corresponding value of the X2Π state by 0.03 Å,
showing that the bonding of the 4Σ− state is stronger than in the
X2Π state. The 2-B term of the 4Σ− state is significantly larger (dou-
ble) than the 2-B term of X2Π. This happens because the formation
of a σ bond with a highly open shell system, such as C(5S), signifi-
cantly stabilizes the carbon atom and consequently the whole C–H

system. On the contrary, the C(3P) is lower in energy than C(5S), it
has only two unpaired electrons, and, thus, even though the σ bond
stabilize the C–H molecule, this stabilization is not dramatically
large.

The situation for the ground (2Π) and the first (4Σ−) excited
states of SiH, GeH, and SnH is similar to that for CH; the results for
the XH series (X =C, Si, Ge, Sn) are graphically summarized in Fig. 3,

FIG. 11. Many-body decomposition for
the ΔEatomiz. of the SiHn species, n
= 1–4, at RCCSD(T)/aug-cc-pVQZ level
of theory.

FIG. 12. Many-body decomposition for
the ΔEatomiz. of the GeHn species, n
= 1–4, at RCCSD(T)/aug-cc-pVQZ level
of theory.
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FIG. 13. Many-body decomposition for
the ΔEatomiz. of the SnHn species, n
= 1–4, at RCCSD(T)/aug-cc-pVQZ(-
PP)Sn level of theory.

TABLE I. 1-B term (eV), 2-B term (eV), atomization energy ΔEatomiz. (eV) with respect
to ground state products, and dissociation energy ΔE (eV) with respect to the in situ
atomic state without and with BSSE correction (second lines) of the XH molecules,
X = C, Si, Ge, and Sn, at the RCCSD(T) level of theory.

Basis set Molecule 1-B 2-B ΔEatomiz. ΔE

AVDZ

CH (X2Π) 0.000 −3.350 −3.350 −3.350
0.000 −3.309 −3.309 −3.309

CH (A4Σ−) 4.000 −6.707 −2.707 −6.707
4.016 −6.679 −2.663 −6.679

CH (α2Δ) 1.557 −1.730 −0.173 −1.729
1.570 −1.713 −0.143 −1.713

AVTZ

CH (X2Π) 0.000 −3.571 −3.571 −3.571
0.000 −3.548 −3.548 −3.548

CH (A4Σ−) 4.096 −6.960 −2.864 −6.960
4.111 −6.950 −2.839 −6.950

CH (α2Δ) 1.419 −1.871 −0.452 −1.871
1.430 −1.864 −0.434 −1.864

AVQZ

CH (X2Π) 0.000 −3.616 −3.616 −3.616
0.000 −3.606 −3.606 −3.606

CH (A4Σ−) 4.139 −7.025 −2.886 −7.025
4.146 −7.022 −2.876 −7.022

CH (α2Δ) 1.391 −1.895 −0.504 −1.895
1.397 −1.891 −0.494 −1.891

SiH (X2Π) 0.000 −3.172 −3.172 −3.172
0.000 −3.165 −3.165 −3.165

SiH (A4Σ−) 3.907 −5.404 −1.497 −5.404
3.912 −5.402 −1.490 −5.402

GeH (X2Π) 0.000 −2.931 −2.931 −2.931
0.000 −2.925 −2.925 −2.925

GeH (A4Σ−) 4.394 −5.505 −1.111 −5.506
4.398 −5.503 −1.105 −5.504

AVQZ(-PP)Sn

SnH (X2Π) 0.000 −2.662 −2.662 −2.662
0.000 −2.658 −2.658 −2.658

SnH (A4Σ−) 4.061 −4.896 −0.835 −4.896
4.064 −4.894 −0.830 −4.894

and the individual numbers (including the ones corrected for BSSE)
are listed in Table I. The decrease of the individual 2-B terms for the
respective ground (2Π) and excited (A4Σ−) states in the XH series
monotonically follows the trends of increasing X–H separations (cf.
Table V) in an almost linear fashion.

XH2 (X = C, Si, Ge, Sn): The MBE analysis for the ground
(X3B1) and the first excited (a1A1) states of CH2 is schemati-
cally shown in Fig. 4, where the zero in the energy scale is taken
with respect to the C(3P) + 2 × H(2S) asymptote. The ground
(X3B1) state of CH2 correlates with the C(5S) + H(2S) + H(2S)
atomic states so the 1-B term is positive and corresponds to the 3P
→

5S promotion energy. The 2-B term is negative, whereas there is
a smaller positive 3-B term. The MBE based on the various frag-
ments allows for the further attribution of the individual terms to
specific interactions between the constituent atoms. As can be seen
from Table II, the main contribution to the total 2-B term (being the
sum of the individual interactions between C–H and H–H) comes
from the attractive (stabilizing) 2-BCH term with the remaining 2-
BHH term being quite small and repulsive (destabilizing), amounting
to just ∼4% of the total 2-B interaction. In contrast, for the first
(a1A1) excited state of CH2, also shown in Fig. 4, the 1-B term is
zero (since the in situ electronic state of C in the (a1A1) state of
CH2 is the atomic 3P state), and, in this case, both the 2- and 3-
B terms are negative. This is expected for the 3-B term for the 1A1
state of CH2 and for the rest of the XH2 molecules (see below)
because this state corresponds to a closed shell system, and, thus,
the simultaneous existence of the three atoms further stabilize it.
On the contrary, this not the case for the X3B1 state in which the
system is not closed shell and, thus, it follows the usual trend, i.e.,
the many-body terms oscillate between the positive and negative
values.

The analysis for the combined results for the XH2 series, X = C,
Si, Ge, Sn, are schematically shown in Fig. 5 and listed in Table II.
A notable difference between CH2 and the rest of the XH2 series
(X = Si, Ge, Sn) is that the order of the ground/first excited state is
reversed. Indeed, as can be seen from Figs. 4 and 5 and the results
of Table I, for CH2, the ground state is the 3B1 and the first excited
the 1A1 state, whereas, for X = Si, Ge, Sn, the ground state of XH2
is the 1A1 and the first excited the 3B1 state. Therefore, the in situ
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TABLE II. 1-B term (eV), 2-B term (eV), 3-B term (eV), atomization energy ΔEatomiz. (eV) with respect to ground state products,
and dissociation energy ΔE (eV) with respect to the in situ atomic state without and with BSSE correction (second lines) of
the XH2 molecules, X = C, Si, Ge, and Sn at the RCCSD(T) level of theory. States are listed in decreasing magnitude of
ΔEatomiz.

Basis set Molecule 1-B 2-BXH 2-BHH 2-B 3-B ΔEatomiz. ΔE

AVDZ
CH2 (X3B1) 4.000 −6.705 0.259 −13.151 1.404 −7.747 −11.747

4.031 −6.696 0.249 −13.142 1.449 −7.661 −11.692

CH2 (a1A1) 0.000 −3.348 0.527 −6.169 −1.127 −7.296 −7.296
0.000 −3.317 0.516 −6.117 −1.098 −7.214 −7.214

AVTZ
CH2 (X3B1) 4.096 −6.957 0.265 −13.650 1.429 −8.125 −12.221

4.122 −6.957 0.263 −13.650 1.446 −8.082 −12.204

CH2 (a1A1) 0.000 −3.570 0.534 −6.605 −1.105 −7.710 −7.710
0.000 −3.550 0.533 −6.567 −1.101 −7.668 −7.668

AVQZ

CH2 (X3B1) 4.139 −7.023 0.265 −13.780 1.443 −8.198 −12.337
4.152 −7.024 0.265 −13.782 1.451 −8.180 −12.332

CH2 (a1A1) 0.000 −3.614 0.534 −6.694 −1.102 −7.795 −7.795
0.000 −3.606 0.534 −6.678 −1.100 −7.778 −7.778

SiH2 (X1A1) 0.000 −3.171 0.146 −6.196 −0.425 −6.621 −6.621
0.000 −3.166 0.146 −6.185 −0.424 −6.609 −6.609

SiH2 (a3B1) 3.907 −5.403 0.050 −10.755 1.111 −5.737 −9.644
3.916 −5.403 0.050 −10.756 1.116 −5.725 −9.640

GeH2 (X1A1) 0.000 −2.930 0.109 −5.752 −0.359 −6.111 −6.111
0.000 −2.925 0.109 −5.742 −0.358 −6.100 −6.100

GeH2 (a3B1) 4.394 −5.502 0.034 −10.970 1.481 −5.094 −9.488
4.402 −5.502 0.033 −10.972 1.487 −5.083 −9.485

AVQZ(-PP)Sn

SnH2 (X1A1) 0.000 −2.662 0.049 −5.275 −0.262 −5.537 −5.537
0.000 −2.658 0.049 −5.267 −0.261 −5.528 −5.528

SnH2 (a3B1) 4.061 −4.892 0.012 −9.772 1.315 −4.397 −8.457
4.068 −4.893 0.011 −9.775 1.320 −4.387 −8.455

electronic state of the carbon atom in the ground 3B1 state of CH2
is C(5S), whereas the in situ electronic state of the Si/Ge/Sn in the
ground state of SiH2/GeH2/SnH2 is Si/Ge/Sn (3P) (see Figs. 4 and
5). The difference on the type of the ground state results from the
fact that the Si, Ge, and Sn atoms are larger than C, forming sig-
nificant larger X–H bond lengths and this favors the formation of
two X–H bonds from the X(3P) rather than from the X(5S) states
for X = Si, Ge, Sn. Note that the bond arising from the atomic 5S
state is stabilized via shorter X–H bond lengths than the one aris-
ing from the X(3P) atomic state. Additionally, the 2-BXH and 2-BHH
terms are decreasing in the series for both the ground and the excited
states, in line with the corresponding monotonic increase of the X–H
bond distance (cf. Table V). Note that the 3-B term for the ground
(X3B1) state is positive (destabilizing), whereas the one for the first
excited (a1A1) state is negative (stabilizing) in the series. For both
states, the 3-B is much smaller than the 2-B term, as seen from Fig. 5
and Table II.

In the following, we elaborate on an important detail of the
MBE analysis related to the electronic states used to compute the
energies of the fragments. As it can be seen from Figs. 2 and 3, the
2Π ground state of XH (X = C, Si, Ge, Sn) is formed from the respec-
tive X(3P) + H(2S) states, whereas the first excited (4Σ−) state from

the X(5S) + H(2S) states. The ground 3B1 state of CH2 is formed
(cf. Fig. 4) from the C(5S) + 2H(2S) states and, when evaluating
the MBE for that state, the two-body “CH” term is computed with
CH at its excited 4Σ− state [also formed from C(5S) + H(2S)]. In
contrast, the first excited a1A1 state of CH2 is formed (cf. Fig. 4)
from C(3P) + 2H(2S) and the two-body “CH” term for that state is
computed with CH at its ground 2Π state [also formed from C(3P)
+ H(2S)]. The calculation of the two-body “XH” term in XH2 for
X = Si, Ge, Sn is evaluated in a similar manner while also noting that
for these molecules the order of the ground and first excited states
flip with respect to CH2 (see Fig. 5 and Table II). This protocol is
also followed in the evaluation of the MBE for the larger molecules.

XH3 (X = C, Si, Ge, Sn): The MBE for the ground (X2A1) state
of CH3 is schematically shown in Fig. 6. The ground state of CH3
correlates with the C(5S) + H(2S) + H(2S) + H(2S) atomic states,
viz., there is a positive 1-B term corresponding to the promotion
3P → 5S for the carbon atom. The 3-B term is smaller than the
2-B and positive, whereas the 4-B is even smaller than the 3-B and
negative. The trends for the MBE of the XH3 series, X = C, Si, Ge,
Sn, schematically shown in Fig. 7 and listed in Table III, are similar
to the ones for CH3 with the terms oscillating between the positive
(destabilizing) and negative (stabilizing) values, whereas they overall
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TABLE III. 1-B term (eV), 2-B term (eV), 3-B term (eV), 4-B term (eV), atomization energy ΔEatomiz. (eV) with respect to ground state products, and dissociation energy ΔE (eV)
with respect to the in situ atomic state without and with BSSE correction (second lines) of the XH3 molecules, X = C, Si, Ge, and Sn at the RCCSD(T) level of theory.

Basis set Molecule 1-B 2-BXH 2-BHH 2-B 3-BXHH 3-BHHH 3-B 4-B ΔEatomiz. ΔE

AVDZ CH3 (2A1) 4.000 −6.704 0.352 −19.056 1.380 −0.199 3.942 −1.453 −12.567 −16.567
4.045 −6.715 0.341 −19.120 1.435 −0.197 4.108 −1.475 −12.441 −16.486

AVTZ CH3 (2A1) 4.096 −6.958 0.362 −19.786 1.406 −0.212 4.006 −1.443 −13.128 −17.224
4.130 −6.965 0.360 −19.814 1.428 −0.212 4.073 −1.460 −13.071 −17.201

AVQZ

CH3 (2A1) 4.139 −7.023 0.363 −19.980 1.420 −0.213 4.048 −1.451 −13.244 −17.383
4.156 −7.027 0.362 −19.995 1.430 −0.213 4.078 −1.459 −13.220 −17.376

SiH3 (2A1) 3.907 −5.402 0.068 −16.003 1.117 −0.028 3.322 −1.052 −9.826 −13.733
3.918 −5.405 0.068 −16.013 1.124 −0.028 3.343 −1.058 −9.809 −13.727

GeH3 (2A1) 4.394 −5.501 0.049 −16.356 1.495 −0.019 4.467 −1.400 −8.895 −13.289
4.405 −5.505 0.049 −16.367 1.503 −0.019 4.490 −1.407 −8.879 −13.284

AVQZ(-PP)Sn SnH3 (2A1) 4.061 −4.892 0.020 −14.618 1.337 −0.006 4.006 −1.260 −7.811 −11.872
4.070 −4.896 0.019 −14.629 1.344 −0.006 4.026 −1.266 −7.799 −11.869

decrease in magnitude with rank k after the 2-B term, as can also be
seen from Table III. The MBE, therefore, seems to be “converging”
albeit in a slow, oscillating manner. Again, the total 2-BXH (sum of
three identical components) is the major contributor to the 2-B term
with the 2-BHH term being quite small and repulsive as in the XH2
series; they both decrease in magnitude in the series. With regard to
the 3-B term, the signs of the individual components are reversed
when compared to the 2-B term: the 3-BXHH is positive, whereas the
3-BHHH is very small and negative.

XH4 (X = C, Si, Ge, Sn): The in situ atomic state of carbon in
the ground (X1A1) state of CH4 is 5S, giving rise to a positive 1-B
energy. The negative (stabilizing) 2-B term is the largest one among
the higher order terms, which are oscillating between the positive
and negative values and are decreasing in size after the 2-B term as

can be seen from Fig. 8. The same trends are observed for the rest of
the XH4 series (X = C, Si, Ge, Sn) as shown in Fig. 9 and Table IV.
The 3-BXHH and 3-BHHH terms are similar in sign, magnitude, and
trend across the XH4 series as in the XH3 series. The same behavior
is seen for the 4-BXHHH and 4-BHHHH terms (cf. Table IV). A notable
difference is that the total (positive) 3-B term almost cancels the total
(negative) 4-B term. The 5-B term is small (∼10% of the atomization
energy).

Trends in the MBE of XHn (X = C, Si, Ge, Sn): The MBE for the
XHn series is summarized in Figs. 10–13 for X = C, Si, Ge, and Sn,
respectively. The trends in both the sign and magnitude of the indi-
vidual MBE terms are similar across the series, namely, that the 1-B
term is zero for n = 1 and positive (energy for the 3P → 5S pro-
motion of the carbon atom) for n = 2–4 with the 2-B term being

TABLE IV. 1-B term (eV), 2-B term (eV), 3-B term (eV), 4-B term (eV), 5-B term (eV), atomization energy ΔEatomiz. (eV) with respect to ground state products, and dissociation
energy ΔE (eV) with respect to the in situ atomic state without and with BSSE correction (second lines) of the XH4 molecules, X = C, Si, Ge, and Sn at the RCCSD(T) level of
theory.

Basis set Molecule 1-B 2-BXH 2-BHH 2-B 3-BXHH 3-BHHH 3-B 4-BXHHH 4-BHHHH 4-B 5-B ΔEatomiz. ΔE

AVDZ CH4 (1A1) 4.000 −6.707 0.451 −24.124 1.463 −0.267 7.711 −1.625 0.157 −6.343 1.511 −17.244 −21.244
4.036 −6.729 0.439 −24.283 1.522 −0.264 8.074 −1.658 0.160 −6.471 1.537 −17.108 −21.143

AVTZ CH4 (1A1) 4.096 −6.960 0.461 −25.070 1.488 −0.282 7.804 −1.615 0.171 −6.290 1.500 −17.961 −22.057
4.131 −6.976 0.460 −25.147 1.515 −0.281 7.963 −1.634 0.171 −6.363 1.519 −17.897 −22.028

AVQZ

CH4 (1A1) 4.139 −7.025 0.463 −25.322 1.502 −0.284 7.880 −1.620 0.173 −6.307 1.507 −18.104 −22.243
4.157 −7.033 0.462 −25.357 1.515 −0.284 7.953 −1.630 0.173 −6.346 1.516 −18.078 −22.234

SiH4 (1A1) 3.907 −5.402 0.074 −21.164 1.124 −0.032 6.620 −1.083 0.013 −4.318 0.961 −13.994 −17.901
3.919 −5.407 0.074 −21.185 1.133 −0.031 6.671 −1.090 0.013 −4.347 0.968 −13.974 −17.893

GeH4 (1A1) 4.394 −5.500 0.054 −21.675 1.503 −0.021 8.933 −1.432 0.008 −5.721 1.311 −12.758 −17.152
4.406 −5.506 0.054 −21.699 1.512 −0.021 8.989 −1.441 0.008 −5.755 1.319 −12.740 −17.146

AVQZ(-PP)Sn SnH4 (1A1) 4.061 −4.890 0.021 −19.434 1.334 −0.007 7.979 −1.260 0.002 −5.039 1.177 −11.255 −15.316
4.071 −4.895 0.021 −19.456 1.343 −0.007 8.029 −1.268 0.002 −5.069 1.185 −11.240 −15.312
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TABLE V. Bond distances RXH (Å) and angles φHχH (degrees) for the various states of XHn, (X = C, Si, Ge, Sn; n = 1–4) at
the RCCSD(T) level of theory.

CHn SiHn GeHn SnHn

AVDZ AVTZ AVQZ AVQZ AVQZ AVQZ

XH(χ2Π) RXH 1.1400 1.1219 1.1203 1.5242 1.6028 1.7901
XH(A4Σ−) RXH 1.1066 1.0908 1.0894 1.4969 1.5694 1.7550
XH(α2Δ) RXH 1.1229 1.1069 1.1056

XH2(3B1) RXH 1.0943 1.0791 1.0775 1.4815 1.5449 1.7281
φHχH 66.53 66.78 66.81 59.19 59.70 59.31

XH2(1A1) RXH 1.1271 1.1107 1.1088 1.5184 1.5963 1.7841
φHχH 50.57 50.94 51.00 46.14 45.82 45.60

XH3(X2A1) RXH 1.0932 1.0795 1.0780 1.4810 1.5443 1.7289
φHχH 120.00 120.00 120.00 107.59 107.68 109.21

XH4(X1A1) RXH 1.1027 1.0899 1.0883 1.4803 1.5414 1.7289
φHχH 109.47 109.47 109.47 109.49 109.47 109.21

the largest one in the MBE and the rest of the terms oscillating in
sign and diminishing after that. The behavior of the MBE is similar
across the series. The correlation between the X–H distances and the
magnitude of the individual 2-BXH terms, discussed earlier, is shown
in Fig. 14 for the XHn series. The linear correlation across the XHn
series for each n confirms that the X–H distance is a descriptor of
the magnitude of the individual 2-BXH terms. Note the difference in
the magnitude of the 2-B terms for the XH series due to the absence
of a 1-B term for this case. This is because the individual 2-B terms
are determined with respect to the C(3P) + H(2S) for XH and with
respect to the C(5S) + n × H(2S) for the XHn, n = 2, 3, 4 series. It
is interesting that this descriptor is independent of n, i.e., the size of
the XHn molecules. The linear fits corresponding to the same in situ
atoms are almost identical as shown in Fig. 14

The variation of the individual 2-BHH and 2-BXH terms for the
XHn series, X = C, Si, Ge, Se and n = 2–4 is shown in Fig. 15. In the
left panel, which shows the variation of the 2-BHH across the series,
the filled symbols trace states in which X is at the in situ 5S atomic
state, whereas the open symbols denote states in which X is at the
in situ 3P atomic state. The larger relative increase in the 2-BHH term
across the CHn series is due to the fact that the hydrogen atoms are
closer to one another with increasing n as the result of the shorter
C–H distances being in the 1.08–1.12 Å range (cf. Table V). In con-
trast, the 2-BHH terms for XHn, where X = Si, Ge, and Sn, are almost
the same for n = 2–4, a result of the longer X–H distances (1.50
–1.80 Å range, cf. Table V) that bring the hydrogen atoms further
apart. The variation of the 2-BXH term across the series is shown on
the right panel of Fig. 15, where the two different curves refer to the
calculation when the heavy atom is at the in situ 5S and 3P atomic
states in the molecule. As a general trend, when X is at the atomic
3P state in the molecule, we observe a monotonic decrease of the 2-
BXH term with the size of the X atom. This is consistent with the fact
that the X–H bond distance, already being identified as a descriptor
of the 2-BXH term (cf. Fig. 14), increases across the series. When X
is at the in situ atomic 5S state, the 2-BXH is also decreasing across
the series, except for Ge. This “anomaly” is attributed to the fact that

the 3P → 5S energy is the largest one for Ge (cf. Tables I–IV). It is
6.1% larger than C, 12.5% larger than Si, and 8.2% larger than Sn,
resulting in the 2-BGe-H term of Ge(5S) to be further stabilized.

B. Incremental bond energies: is there a “first row
anomaly?”

The incremental Hn−1X–H bond energies for X = C, Si, Ge, Sn
are shown in Fig. 16. In the left panel of that figure, the energies
are computed with respect to the lowest in energy (ground states) of
the Hn−1X molecule. Following our previous discussion in Sec. III A,
these are 3B1 for CH2 and 1A1 for SiH2, GeH2, and SnH2 (indicated

FIG. 14. Correlation between the individual 2-BXH term and the X–H distance for
the XHn series, X = C, Si, Ge, Se and n = 1–4. Note the different magnitude for
the XH species due to the fact that the energy difference is taken with respect to
the ground state atoms (consistent with the absence of the 1-B term) for that case.
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FIG. 15. Variation of the individual 2-BHH and 2-BXH terms for the XHn series, X = C, Si, Ge, Se and n = 2–4 at the RCCSD(T)/AVQZ(-PP)Sn level of theory. In the left panel,
solid/open symbols denote the states in which X is at the 5S/3P atomic states.

FIG. 16. The incremental Hn−1X–H bond energy, X = C, Si, Ge, Sn. Left panel: energies with respect to the lowest in energy of the Hn−1X molecule. Right panel: energies
with respect to the Hn−1X molecule, where X is at the 5S state (solid line) and at the 3P state (dotted line). All energies are computed at the RCCSD(T)/AVQZ(-PP)Sn level
of theory.

on the left panel of Fig. 16 for n = 2). The left panel of Fig. 16 is
the same as the right panel of Fig. 9 of Ref. 76, but extended for
X = Sn. As discussed in this earlier publication and reproduced by
our results, the trend in the incremental bond energies with respect
to the lowest in energy states is qualitatively different between the
CHn and the rest of XHn series: indeed, there exists a “peak” for CH3
(the bond energy for CH3 is larger than the ones for CH2 and CH5),
whereas there is a “dip” for the XHn, X = Si, Ge, Sn, series (the bond
energy for XH3 is lower than that for XH2 and XH5 when X = Si,
Ge, Sn).

However, when the bond energies are computed with respect to
the molecular states having the same in situ atomic state (i.e., not nec-
essarily the lowest energy ones but the ones correlating with the same
atomic states), the situation is different as shown in the right panel
of Fig. 16. In that panel, the various states, with respect to which
the individual incremental energies were computed, are noted. The
Hn−1X–H incremental bond energies are obtained with respect to
the Hn−1X molecule, where X is at either the 5S (solid line) or at the
3P (dotted line) atomic states. When this protocol is followed, the
variation of the bond energies with n is qualitatively similar across

the series and the concept of the “first row anomaly” is not justi-
fied. One can nevertheless argue that the (first row) carbon atom can
be still considered different than the (second and subsequent rows)
Si, Ge, and Sn atoms in lieu of the “flipping” of the ground/excited
states for n = 2 in the series (CH2 vs SiH2/GeH2/SnH2). However,
this qualitative change is not a property of the individual atoms per
se but rather their different behavior in just the XH2, but not the rest
of the hydrides.

IV. CONCLUSIONS
We have described a novel decomposition scheme for the MBE

in molecules and applied it to the XHn series (X = C, Si, Ge, Sn; n
= 1–4). The protocol allows for the decomposition of the atomiza-
tion energy in terms of atoms, dimers, trimers, etc. In the present
implementation of the MBE that is based on the breaking of cova-
lent bonds to define subsystems, the 1-B term is both qualitative and
quantitatively different than the analogous 1-B term that has been
popularized in the MBE of aqueous ionic systems. When breaking
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hydrogen bonds to define the various subsystems, the 1-B term rep-
resents the geometrical distortion94 of the individual fragments from
their gas phase geometries due to the interaction with other neigh-
boring molecules or ions. It amounts to a few kcal/mol and it can be
indirectly probed experimentally by infrared (IR) spectroscopy,99,100

which records the change in the position of the individual vibra-
tional bands from the gas phase as a result of the change in the
fragment’s geometry from the isolated species. In contrast, when
breaking covalent bonds, the 1-B represents the electronic excitation
of an individual atom101 to bring it to its in situ electronic state in
the molecule, and it amounts to a few eV (i.e., it is about two orders
of magnitude larger) and can be probed by Ultraviolet–Visible (UV)
spectroscopy.

We have found that the MBE in the XHn series is oscillat-
ing between positive and negative values, and it is converging with
increasing rank of the expansion. Among the individual terms, the
2-B is by far the largest one in the MBE. The X–H distance is a good
descriptor of the strength of the 2-BXH term, and its variation across
the series can be attributed to the respective geometrical changes.
The analysis can offer an alternative explanation for the purported
“first row anomaly” that is based upon the different variation of the
incremental bond energies for CHn compared to XHn, X = Si, Ge,
Sn, when these bond energies are evaluated with respect to the low-
est energies (ground states) of the members in the series. However,
there is a “flipping” between the ground and the first excited state in
CH2 (ground is the 3B1 and excited is the 1A1 states) compared to
XH2, where X = Si, Ge, and Sn (ground is the 1A1 and excited is the
3B1 state). When these incremental binding energies are evaluated
with respect to the molecular states that have the same in situ atomic
state, their variation is the same with n for all X (C, Si, Ge, Sn) in the
XHn series and the concept of the “first row anomaly” is, thus, not
justified.

Note that the present analysis is simplified due to the presence
of just one heavy atom (C, Si, Ge, Sn) in each of the systems studied
and can be much more complex when more than one heavy atom
is involved. Nevertheless, it provides a straightforward extension
of the popular MBE for hydrogen bonded systems to incorporate
the breaking of covalent bonds and offers valuable insights into the
chemical bonding of chemical systems.
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