# On the ground states of CaC and ZnC: A multireference Brillouin–Wigner coupled cluster study

Ioannis S. K. Kerkines

Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, PO Box 64 004, 157 10 Zografou, Athens, Greece

Jiří Pittner and Petr Čársky<sup>a)</sup>

J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic

# Aristides Mavridis<sup>b)</sup>

Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, PO Box 64 004, 157 10 Zografou, Athens, Greece

#### Ivan Hubač

Department of Biophysics and Chemical Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84215 Bratislava, Slovakia

(Received 15 July 2002; accepted 3 September 2002)

We test the recently developed state-specific multireference Brillouin–Wigner coupled cluster (MRBWCCSD) method against the single reference CCSD method by examining theoretically the competing  $X^{3}\Sigma^{-}$  and  ${}^{5}\Sigma^{-}$  states of the (experimentally unknown) isovalent calcium and zinc carbide diatomics (CaC, ZnC). At the CCSD level, CaC is "incorrectly" predicted to have a ground  ${}^{5}\Sigma^{-}$  state; however, the MRBWCCSD treatment restores the correct state ordering, and improves significantly the energetics for both molecules. Further comparison with various single- and multireference treatments shows that the latter are absolutely necessary for obtaining meaningful results for the ground states in both molecules. © 2002 American Institute of Physics. [DOI: 10.1063/1.1516809]

## I. INTRODUCTION

Since our recent development of a state-specific (singleroot) multireference coupled cluster method based on the Brillouin–Wigner resolvent (MRBWCCSD),<sup>1–6</sup> we have been performing a series of tests by applying this method to a number of chemical problems of multireference nature, in order to assess its capability of providing quantitative results with less computational cost than other MRCC methods. So far, applications have included the geometrical and electronic structure of the ozone molecule,<sup>5</sup> the singlet O<sub>2</sub> system,<sup>6</sup> the automerization of cyclobutadiene,<sup>7</sup> the potential energy curves of the dihalogens  $F_2^8$  and IBr,<sup>9</sup> and the singlet–triplet splittings of CH<sub>2</sub>,<sup>5</sup> SiH<sub>2</sub>,<sup>5</sup> twisted ethylene,<sup>5</sup> and the tetramethyleneethane biradical.<sup>10</sup> In the present paper, we continue applying the MRBWCCSD method to a different case of multireference nature caused by "near-degeneracy" effects.

Such effects are expected to be observed in the cases of the closed-shell  $(ns^2)$  atoms of the 2nd (alkaline-earth metal) and 12th columns of the periodic table due to the near-degeneracy of their *n*s and *n*p orbitals. For the alkaline-earth metal carbide diatomics, the lack of proper account of this effect, together with the complete nonavailability of experimental data has led to some controversy in the past regarding the identity of their ground states.<sup>11–14</sup> BeC and MgC<sup>11,12</sup> have now been established theoretically to have a  ${}^{3}\Sigma^{-}$  ground state with a  ${}^{5}\Sigma^{-}$  state lying closely above,<sup>12</sup> but for

CaC the situation had been less clear. Early theoretical calculations by Canuto et al.<sup>13</sup> using the fourth-order manybody perturbation theory [MBPT(4)] postulated a ground state of  ${}^{3}\Sigma^{-}$  symmetry, originating from the Ca( ${}^{1}S$ )  $+C({}^{3}P;M_{I}=0)$  atomic fragments. A few years later, Da Silva *et al.* pointed out the existence of a low-lying  ${}^{5}\Sigma^{-}$ state, which actually stems from the  $Ca({}^{3}P) + C({}^{3}P)$  channel (vide infra), but was incorrectly considered to originate from the  $Ca(^{1}S) + C(^{5}S)$  fragments.<sup>12</sup> Apparently, due to a poor GVB description and a moderate-sized basis set, this state was claimed to be the ground state of the CaC molecule at the configuration interaction generalized valence bond (SDCI-GVB+Q) level of theory, with the  ${}^{3}\Sigma^{-}$  state lying 2.6 kcal/mol above.<sup>12</sup> A year later, Serrano and Canuto<sup>14</sup> revisited the ground-state problem of CaC by calculating the triplet-quintet splitting with different size-extensive singlereference methods including second and fourth-order MBPT, as well as spin-unrestricted coupled cluster without (UCCSD) and with [UCCSD(T)] the inclusion of the triple excitations in a perturbative way. Although at the MBPT and UCCSD levels of theory, the  ${}^5\Sigma^-$  was found to be the ground state, the ordering of the two states was reversed after including the triple excitations, predicting finally a  ${}^{3}\Sigma^{-}$ ground state, with the  ${}^{5}\Sigma^{-}$  lying 2.4 kcal/mol above.<sup>14</sup> Very recently, Papakondylis and Mavridis<sup>15</sup> have performed quantitative multireference configuration interaction (MRCI) calculations for the ground and several low-lying states of CaC; the  ${}^{3}\Sigma^{-}$  symmetry of the ground state was indeed confirmed,

a)Electronic mail: petr.carsky@jh-inst.cas.cz

b)Electronic mail: mavridis@chem.uoa.gr

with the  ${}^{5}\Sigma^{-}$  state located at least 4.2 kcal/mol above the  $X {}^{3}\Sigma^{-}$  state.<sup>15</sup>

The situation is less dramatic for the isovalent ZnC molecule. Boldyrev and Simons<sup>16</sup> after investigating 4 states of ZnC at the quadratic configuration interaction, QCISD(T) level of theory reported a  $X^{3}\Sigma^{-}$  state, with the  ${}^{5}\Sigma^{-}$  state lying now much higher ( $T_{e}=23.9$  kcal/mol) than in CaC, apparently due to the much higher atomic  ${}^{3}P(4s^{1}4p^{1})$  $\leftarrow {}^{1}S(4s^{2})$  energy separation in Zn (4.054 eV) than in Ca (1.892 eV).<sup>17</sup> Our very recent large calculations for the ground and several excited states of ZnC at the MRCI level<sup>18</sup> have confirmed these results. As will be shown later, the  ${}^{5}\Sigma^{-}\leftarrow X^{3}\Sigma^{-}$  gap is also underestimated (but not reversed in this case) in ZnC with various single reference methods. Similarly to CaC, we are also not aware of any published experimental data for ZnC.

The reason for the aforementioned difficulties in predicting correctly the  ${}^{5}\Sigma^{-} \leftarrow {}^{3}\Sigma^{-}$  energy difference, lies apparently in the multireference nature of the  $X {}^{3}\Sigma^{-}$  state contrasted to the, in essence, purely single reference nature of the high-spin  ${}^{5}\Sigma^{-}$  state. As mentioned before, the latter traces its lineage to the M( ${}^{3}P;M_{L}=0$ ) + C( ${}^{3}P;M_{L}=0$ ) components (M=Ca, Zn) and is adequately described by the configuration

$$|^{5}\Sigma^{-}\rangle \sim |1\sigma^{2}2\sigma^{1}3\sigma^{1}1\pi_{x}^{1}1\pi_{y}^{1}\rangle, \qquad (1)$$

where the numbers in front of the molecular orbitals (MOs) refer to the ordering within the valence space of each molecule. A qualitative view of the bonding can be captured by the following valence-bond-Lewis (vbL) icon



indicating that the M(Ca–Zn) and C atoms are "formally" kept together by three "half" (one-electron) bonds, although our Mulliken population analysis<sup>15,18</sup> has shown that charge transfer along the  $\pi$  frame is almost negligible. The configuration (1) is found to dominate the full-valence (fv) complete active space (CASSCF) wave function(s) of CaC and ZnC with a coefficient of 0.98 in both cases,<sup>15,18</sup> testifying to the single-reference nature of this state.

For the ground  $X^{3}\Sigma^{-}$  state however, emanating from the M(<sup>1</sup>S)+C(<sup>3</sup>P;M<sub>L</sub>=0) channel, the full-valence CASSCF wave function is composed by six significantly contributing determinants

$$\begin{aligned} |\mathbf{X}^{3}\Sigma^{-}\rangle \sim C_{0}|1\sigma^{2}2\sigma^{2}1\pi_{x}^{1}1\pi_{y}^{1}\rangle + C_{1}|1\sigma^{2}3\sigma^{2}1\pi_{x}^{1}1\pi_{y}^{1}\rangle \\ + C_{2}|1\sigma^{2}(\overline{2\sigma^{1}}3\sigma^{1}1\pi_{x}^{1}1\pi_{y}^{1} + 2\sigma^{1}\overline{3\sigma^{1}}1\pi_{x}^{1}1\pi_{y}^{1}) \\ + 2\sigma^{1}3\sigma^{1}\overline{1\pi_{x}^{1}}1\pi_{y}^{1} + 2\sigma^{1}3\sigma^{1}1\pi_{x}^{1}\overline{1\pi_{y}^{1}}\rangle. \end{aligned}$$
(3)

At the equilibrium M–C distance(s), the coefficients  $C_0$ ,  $C_1$ ,  $C_2$  are found to be 0.71, -0.48, 0.26 for CaC, and 0.87, -0.36, 0.17 for ZnC, while at infinity  $C_2=0$ , and the  $2\sigma$  and  $3\sigma$  MOs correspond to the 4s and  $4p_z$  atomic orbitals of M(=Ca–Zn). The qualitative features of the bonding can be depicted through the vbL icon.



The  $X^{3}\Sigma^{-}$  state owes its multireference character mainly to the doubly excited  $(2\sigma^{2}\rightarrow 3\sigma^{2})$  determinant  $|1\sigma^{2}3\sigma^{2}1\pi_{x}^{1}1\pi_{y}^{1}\rangle$  with coefficient  $C_{1}$  [Eq. (3)], or in other words to the "near degeneracy" of the 4*s* and 4*p*(4*p<sub>z</sub>*) orbitals of the M atom. Apparently, this can explain why almost all single reference theoretical treatments which do not account for nondynamical correlation (including CCSD) fail to describe the  $X^{3}\Sigma^{-}$  state quantitatively, thus underestimating (or even reversing) the  ${}^{5}\Sigma^{-}\leftarrow X^{3}\Sigma^{-}$  energy gap (see below).

Our primary aim in this work is not to predict the ground states of the two molecules, as we believe this to be an already resolved issue.<sup>15,18</sup> The motivation is rather to test the capability of the MRBWCCSD method to account for the nondynamical correlation effects and, hopefully, improve the single reference CCSD treatment which fails to predict the  ${}^{3}\Sigma^{-}$ ,  ${}^{5}\Sigma^{-}$  ordering for CaC and an accurate  ${}^{5}\Sigma^{-}\leftarrow X{}^{3}\Sigma^{-}$  energy separation for ZnC. To ensure their overall credibility, the MRBWCCSD results were monitored against comparable MRCI results.

# **II. THEORY AND COMPUTATIONAL DETAILS**

For both molecules, we have calculated the full potential energy curves of the  $X^{3}\Sigma^{-}$  and  ${}^{5}\Sigma^{-}$  states employing a variety of methods, including MRBWCCSD. We report dissociation energies  $(D_e)$ , spectroscopic constants  $(r_e, \omega_e, \omega_e x_e)$ , and the important  ${}^{5}\Sigma^{-} \leftarrow {}^{3}\Sigma^{-}$  energy splitting.

The reference space was optimized by distributing 4 electrons (the 2 valence  $e^-$  of M and the  $2 p_{\pi} e^-$  of C) in 4 orbitals  $(2\sigma, 3\sigma, 1\pi_x, 1\pi_y)$  using the CASSCF methodology. This calculation will subsequently be denoted as CASSCF(4,4). A full-valence CASSCF calculation, where all 6 valence electrons are distributed in the 8 valence orbitals corresponding asymptotically to the 4s + 4p and 2s + 2p valence orbital spaces of M(=Ca,Zn) and C, respectively, was also performed and will be denoted either as CASSCF(6,8) or as fvCASSCF.

For technical reasons, instead of Eq. (3), we have used a slightly modified reference wave function for the subsequent BWCCSD calculations keeping the two  $\pi$  electrons triplet coupled while always utilizing the CASSCF(4,4) optimized active space. Thus, our model (projected) reference wave

TABLE I. Atomic energies E (hartree) for the ground states of Zn (<sup>1</sup>S), Ca (<sup>1</sup>S), and C (<sup>3</sup>P) and singlet-triplet (<sup>3</sup> $P \leftarrow {}^{1}S$ ) separations (eV) for Zn and Ca at different levels of theory.

|                           |                              | $^{3}P \leftarrow ^{1}S$     |             |       |       |
|---------------------------|------------------------------|------------------------------|-------------|-------|-------|
| Method                    | Ca ( <sup>1</sup> <i>S</i> ) | $\operatorname{Zn}({}^{1}S)$ | $C(^{3}P)$  | Ca    | Zn    |
| NHF <sup>a</sup>          | -676.758 186                 | -1777.848 12                 | -37.688 619 |       |       |
| saSCF <sup>b</sup>        | -676.758 159                 | -1777.847 31                 | -37.688330  | 1.076 | 2.644 |
| CISD                      | $-676.787\ 051$              | -1777.881 35                 | -37.784099  | 1.685 | 3.420 |
| CISD+Q <sup>c</sup>       |                              |                              | -37.7893    |       |       |
| ACPF <sup>d</sup>         |                              |                              | -37.785795  |       |       |
| RCCSD <sup>e</sup>        | -676.787051                  | -1777.881 35                 | -37.784586  | 1.685 | 3.420 |
| RCCSD(T) <sup>f</sup>     |                              |                              | -37.787 154 |       |       |
| BWCCSD <sup>g</sup>       |                              |                              | -37.784770  |       |       |
| CASSCF(2,2) <sup>h</sup>  | -676.769 741                 | -1777.86049                  |             | 1.320 | 2.949 |
| MRCI <sup>i</sup>         | -676.787043                  | -1777.87948                  |             | 1.681 | 3.359 |
| MRBWCCSD <sup>j</sup>     | -676.785 861                 | -1777.878 34                 |             | 1.649 | 3.327 |
| fvCASSCF <sup>k</sup>     | -676.785025                  | -1777.87877                  | -37.705 690 | 1.807 | 3.500 |
| fvMRCI                    | -676.787053                  | -1777.881 35                 | -37.785706  | 1.685 | 3.420 |
| fvMRCI+Q                  |                              |                              | -37.7887    |       |       |
| fvMRACPF                  |                              |                              | -37.787 234 |       |       |
| C-RCCSD <sup>1</sup>      | -676.988525                  | $-1778.349\ 80$              |             | 1.794 | 3.734 |
| C-RCCSD(T) <sup>1</sup>   | -676.993222                  | -1778.369 18                 |             | 1.842 | 3.849 |
| C-MRCI <sup>1</sup>       | -676.981 767                 | $-1778.322\ 00$              |             | 1.864 | 3.556 |
| C-MRCI+Q <sup>1</sup>     | -676.993 3490                | -1778.3494                   |             | 1.857 | 3.717 |
| C-MRBWCCSD <sup>j,1</sup> | -676.988055                  | -1778.349 58                 |             | 1.779 | 3.727 |
| Expt. <sup>m</sup>        |                              |                              |             | 1.892 | 4.054 |

<sup>a</sup>Numerical Hartree–Fock (Ref. 28).

<sup>b</sup>Spherically averaged SCF.

<sup>c</sup>CISD+Davidson correction.

<sup>d</sup>Averaged coupled-pair functional.

<sup>e</sup>Restricted coupled cluster singles and doubles.

<sup>f</sup>RCCSD+perturbative triples. <sup>g</sup>Brillouin–Wigner CCSD.

bailer CCSD

<sup>h</sup>Complete active space SCF; active space:  $4s + 4p_z$ .

<sup>i</sup>CASSCF+1+2.

<sup>j</sup>Four-reference BWCCSD.

<sup>k</sup>Full-valence CASSCF; active space:  $4s + 4p_{x,y,z}$  for Ca and Zn, and  $2s + 2p_{x,y,z}$  for C.

<sup>1</sup>The  $3s^23p^6$  and  $3d^{10}$  electrons of Ca and Zn, respectively, were included in the correlation treatment. <sup>m</sup>Experimental data (Ref. 17).

function for the  $X^{3}\Sigma^{-}$  state(s) of CaC and ZnC,  $\Psi_{0}^{P}$ , is a linear combination of the first four determinants of Eq. (3)

$$\Psi_0^P = \sum_{i=0}^3 C_i \Phi_i.$$
 (5)

This wave function is related to the "exact" ground-state wave function  $\Psi_0$  by means of the wave operator  $\hat{\Omega}_0$ 

$$\Psi_0 = \hat{\Omega}_0 \Psi_0^P, \tag{6}$$

and to the exact ground-state energy  $\mathscr{C}_0$  by means of the effective Hamiltonian,  $\hat{H}^{\mathrm{eff}}$ 

$$\hat{H}^{\text{eff}}\Psi_0^P = \mathscr{E}_0 \Psi_0^P \,. \tag{7}$$

The wave operator  $\hat{\Omega}_0$  is subject to the state-specific (singleroot) Brillouin–Wigner analogue of the Bloch equation

$$\hat{\Omega}_0 = 1 + \hat{B}_0 \hat{V} \hat{\Omega}_0, \qquad (8)$$

where  $\hat{V}$  is the perturbation operator within the Møller– Plesset *ansatz*, and  $\hat{B}_0$  the Brillouin–Wigner resolvent

$$\hat{B}_0 = \sum_{q>3} \frac{|\Phi_q\rangle \langle \Phi_q|}{\mathscr{E}_0 - E_q}.$$
(9)

The matrix elements of  $\hat{H}^{\text{eff}}$  in a basis of 4 references  $\{\Phi_i\}_{i=0}^3$ , have been given previously.<sup>3,6</sup> The MRBWCCSD energy  $\mathcal{E}_0$  is obtained by diagonalization of the 4×4  $\mathbf{H}^{\text{eff}}$  matrix. The resulting size-extensivity error is practically eliminated by applying the recently developed *a posteriori* size-extensivity correction.<sup>4,5</sup>

For both CASSCF(4,4) and (6,8) reference spaces, we have also performed calculations at the MRCI, MRCI+Q (MRCI+multireference Davidson correction), and MRACPF (multireference averaged coupled-pair functional) levels of theory. Furthermore, our MRBWCCSD results are also compared against single reference methods like ROHF (restricted open-shell Hartree–Fock), CISD, CISD+Q, ROHF-RCCSD<sup>19</sup> and ROHF-RCCSD(T).<sup>19</sup> In most of our correlated calculations, we have kept "frozen" the  $1s^22s^22p^63s^23p^6$ ,  $1s^22s^22p^63s^23p^63d^{10}$ , and  $1s^2$  electrons of Ca, Zn, and C, respectively. To assess the effect of core/valence correlation, calculations were also performed

TABLE II. Total energies E (hartree), binding energies  $D_e$  (kcal/mol), bond lengths  $r_e$  (Å) and frequencies  $\omega_e$ ,  $\omega_e x_e$  (cm<sup>-1</sup>) of the CaC  $X^3\Sigma^-$  and  $5\Sigma^-$  states at different levels of theory. Unless otherwise noted, all results are from the present work.

|                                   | $X^{3}\Sigma^{-}$ |       |                |                | 5Σ-            |                 |       |                |            |                |         |
|-----------------------------------|-------------------|-------|----------------|----------------|----------------|-----------------|-------|----------------|------------|----------------|---------|
| Method <sup>a</sup>               | Ε                 | $D_e$ | r <sub>e</sub> | ω <sub>e</sub> | $\omega_e x_e$ | E               | $D_e$ | r <sub>e</sub> | $\omega_e$ | $\omega_e x_e$ | $T_{e}$ |
| ROHF                              | -714.448 459      | 1.2   | 2.838          |                |                | -714.524 469    | 72.1  | 2.332          | 490.2      | 2.5            | -47.6   |
| CISD                              | -714.611 729      | 30.0  | 2.361          | 451.1          | 4.3            | -714.640049     | 82.9  | 2.339          | 480.2      | 2.5            | -17.8   |
| CISD+Q                            | -714.654 2        | 49.0  | 2.357          | 533.4          | 3.1            | -714.647 2      | 83.6  | 2.343          | 476.4      | 2.5            | 4.4     |
| RCCSD                             | -714.628 183      | 35.5  | 2.368          | 464.0          | 3.7            | -714.642 142    | 83.0  | 2.340          | 479.2      | 2.5            | -8.8    |
| RCCSD(T)                          | $-714.647\ 670$   | 46.1  | 2.383          | 464.2          | 2.4            | -714.647 113    | 84.5  | 2.343          | 475.6      | 2.5            | 0.3     |
| CASSCF(4,4)                       | -714.526978       | 43.2  | 2.351          | 480.0          | 2.6            |                 |       |                |            |                | 3.3     |
| MRCI                              | -714.644 174      | 49.0  | 2.362          | 468.9          | 2.6            |                 |       |                |            |                | 2.6     |
| MRCI+Q                            | -714.6517         | 48.0  | 2.366          | 464.2          | 2.7            |                 |       |                |            |                | 2.8     |
| MRACPF                            | -714.649 391      | 48.0  | 2.365          | 465.1          | 2.6            | -714.644982     | 83.3  | 2.342          | 476.9      | 2.5            | 2.8     |
| MRBWCCSD                          | -714.643 528      | 45.8  | 2.357          | 468.3          | 2.1            | -714.642 595    | 83.2  | 2.339          | 479.3      | 2.9            | 0.6     |
| fvCASSCF                          | $-714.562\ 811$   | 44.0  | 2.380          | 458.7          | 2.4            | -714.559266     | 81.8  | 2.360          | 469.9      | 2.3            | 2.2     |
| fvMRCI                            | -714.649 964      | 48.6  | 2.364          | 462.4          | 2.4            | -714.645 3      | 85.0  | 2.341          | 473.7      | 2.5            | 2.9     |
| fvMRCI+Q                          | -714.6541         | 49.3  | 2.364          | 461.3          | 2.5            | -714.649 340    | 85.2  | 2.340          | 473.0      | 2.5            | 3.0     |
| fvMRACPF                          | $-714.652\ 876$   | 49.1  | 2.364          | 461.5          | 2.5            | -714.648 130    | 85.1  | 2.340          | 473.2      | 2.4            | 3.0     |
| SDCI-GVB <sup>b</sup>             | -714.5899         |       | 2.384          |                |                | -714.5950       |       | 2.357          |            |                | -3.2    |
| SDCI-GVB+Q <sup>b</sup>           | -714.5949         |       | 2.389          | 424.87         |                | -714.5990       |       | 2.359          | 474.06     |                | -2.6    |
| MRCI <sup>c</sup>                 | -714.65246        | 51.1  | 2.363          | 458.5          |                | -714.645 71     | 86.2  | 2.346          | 472.2      |                | 4.2     |
| $\text{RCCSD}(14e^{-})$           | -714.828 69       | 34.9  | 2.330          |                |                | -714.844 64     | 86.2  | 2.291          |            |                | -10.0   |
| $\text{RCCSD}(\text{T})(14e^{-})$ | -714.85275        | 45.4  | 2.330          |                |                | $-714.853\ 31$  | 88.2  | 2.287          |            |                | -0.4    |
| MRBWCCSD(14 $e^-$ )               | -714.84655        | 46.3  | 2.305          |                |                | -714.84506      | 86.3  | 2.291          |            |                | 0.9     |
| $MBPT(4)(14e^{-})^{d}$            | -714.798 152      |       | 2.306          |                |                | -714.812452     |       | 2.325          |            |                | -9.0    |
| $UCCSD(14e^{-})^{d}$              | -714.805 325      |       | 2.335          |                |                | $-714.807\ 152$ |       | 2.326          |            |                | -1.1    |
| $UCCSD(T)(14e^{-})^{d}$           | $-714.818\ 225$   |       | 2.348          |                |                | -714.814471     |       | 2.325          |            |                | 2.4     |
| $MRCI(14e^{-})^{e}$               | -714.823 35       | 45.9  | 2.346          | 468.6          |                | -714.81854      |       | 2.320          | 477.2      |                | 3.0     |
| $MRCI + Q(14e^{-})^{e}$           | -714.8464         | 47.3  |                |                |                | -714.8412       |       |                |            |                | 3.3     |

aSee Table I for explanation of the acronyms. All correlated calculations correlate the 6 valence electrons, unless otherwise noted.

 $[8s6p2d]_{Ca}/[6s4p2d]_{C}$  basis (Ref. 12).

<sup>c</sup>Based on CASSCF(6,13) results,  $[7s5p4d3f]_{Ca}/[6s5p4d3f2g]_{C}$  basis (Ref. 15).

 $^{d}[8s6p2d1f]_{Ca}/[6s4p2d1f]_{C}$  basis (Ref. 11).

eBased on CASSCF(6,8) results,  $[7s5p4d3f]_{Ca}/[6s5p4d3f2g]_{C}$  basis (Ref. 15).

around equilibrium for both  ${}^{3}\Sigma^{-}$  and  ${}^{5}\Sigma^{-}$  states including the  $3s^{2}3p^{6}$  (Ca) and  $3d^{10}$  (Zn) electrons in the correlation process.

We have used the same basis sets as in our recent work on CaC15 and ZnC,18 but now employing Cartesian Gaussian functions. Thus, for the Ca atom the primitive set consists of the (23s15p) Gaussian set of Partridge<sup>20</sup> augmented by an extra p function (a = 0.05) to assist the proper description of the very important  ${}^{3}P \leftarrow {}^{1}S$  gap. To this set we have added a 8d6f polarization set taken from Bauschicher's ANO (Atomic Natural Orbital) basis set of Sc<sup>21</sup> which was subsequently optimized. For Zn, the augmented ANO-triple- $\zeta$ (21s15p10d6f4g) basis set of Roos and co-workers was used.<sup>22</sup> Finally, for the C atom we have chosen the augmented quadruple- $\zeta$  correlation-consistent basis set of Dunning and coworkers, aug-cc-pVQZ (13s7p4d3f2g).<sup>23</sup> The use of the diffuse functions is necessary because carbon was observed to acquire significant negative charge in both molecules.<sup>15,18</sup> Our final generalized contracted basis sets are [7s5p4d3f] for Ca, [8s7p5d3f2g] for Zn, and [6s5p4d3f2g] for C, comprising 181 (CaC) and 224 (ZnC) Cartesian Gaussians (6d, 10f, and 15g). For our purposes, we consider these basis sets adequate, thus no attempt was made to consider basis set superposition errors.

Bond lengths for each state were determined by fitting the three lowest energy points of each potential energy curve. Related spectroscopic constants ( $\omega_e, \omega_e x_e$ ) were calculated by solving the one-dimensional nuclear Schrödinger equation employing a Numerov technique.<sup>24</sup>

For the MRBWCCSD calculations we have used our own modified implementation<sup>3</sup> of the ACES II program<sup>25</sup> which, at present, supports the use of reference configurations which are no more than doubly excited among each other. All other calculations have been performed with the GAUSSIAN 98<sup>26</sup> and MOLPRO 2000<sup>27</sup> suite of codes.

## **III. RESULTS AND DISCUSSION**

#### A. The Ca, Zn, and C atoms

Table I lists ground state total energies of Ca, Zn, and C at various levels of theory needed for proper dissociation description, as well as the calculated  ${}^{3}P \leftarrow {}^{1}S$  energy gap for Ca and Zn. In the case of Ca, and for both CCSD (1.685 eV) and MRBWCCSD (1.649 eV), there is acceptable agreement with the experimental  $T_e$  value of 1.892 eV.<sup>17</sup> For Zn however, when the Zn  $3d^{10}$  "semicore" correlation is not taken into account the same gap is underestimated compared to experiment by 0.5–0.7 eV, even at the full-valence MRCI



FIG. 1. Potential energy curves of the  $X^{3}\Sigma^{-}$  and  ${}^{5}\Sigma^{-}$  states of the CaC molecule at selected levels of theory. Energies have been shifted by +714 hartree.

level of theory. Including core correlation effects, the above Ca and Zn  ${}^{3}P \leftarrow {}^{1}S$  splittings at the RCCSD and MRB-WCCSD level, improve significantly.

### B. The CaC molecule

Table II summarizes our results for the  $X^{3}\Sigma^{-}$  and  ${}^{5}\Sigma^{-}$ states of CaC at different levels of theory, including the  ${}^{5}\Sigma^{-}\leftarrow X^{3}\Sigma^{-}$  energy gaps. Previous calculations for the two states are also listed in Table II. Potential energy curves for both states at selected levels of theory are depicted in Fig. 1. Notice that due to the electron donating bond character in the two states [Schemes (2) and (4)], one configuration is adequate for proper dissociation, thus it was indeed possible to construct full potential energy curves at all levels of theory included in Table II.

In accordance with previous calculations,<sup>12,14</sup> the ground state is predicted to be of  ${}^{5}\Sigma^{-}$  symmetry at the ROHF, CISD, and RCCSD levels of theory. The failure of these single reference treatments in describing quantitatively the  $X {}^{3}\Sigma^{-}$  state is indicated by both CISD+Q and RCCSD(T) results which recover part of the missing nondynamical correlation with a concomitant reversing of the  ${}^{3}\Sigma^{-} {}^{-5}\Sigma^{-}$  ordering, caused by the dramatic increase in the  $D_{e}$  of the  ${}^{3}\Sigma^{-}$ state, 49.0 and 46.1 kcal/mol, respectively, as contrasted to

the CISD and RCCSD D<sub>e</sub> values of 30.0 and 36.5 kcal/mol, respectively (Table II). When nondynamical valence correlation is included via the CASSCF(4,4) or the full-valence CASSCF(6,8) reference space, the subsequent dynamical correlation treatment (including MRBWCCSD) predicts undoubtedly the  ${}^{3}\Sigma^{-}$  as the ground state, the  ${}^{5}\Sigma^{-}$  located about 3 kcal/mol higher (Table II). The MRBWCCSD treatment improves significantly the RCCSD  $D_{e}$  value of the  $X^{3}\Sigma^{-}$  state (45.8 vs 35.5 kcal/mol respectively, Table II) bringing it in close agreement with the RCCSD(T) and MRCI  $D_e$  results, even though the MRBWCCSD method neglects the effect of triple excitations. At the same time, the ordering of the  ${}^{3}\Sigma^{-}$  and  ${}^{5}\Sigma^{-}$  states predicted with MRBWCCSD and RCCSD(T),  $T_e = 0.6$  and 0.3 kcal/mol, respectively, is at variance with the RCCSD ordering,  $T_e$ = -8.8 kcal/mol, but in agreement with all multireference treatments (Table II, Fig. 1). This situation holds even after shifting the  ${}^5\Sigma^-$  curve to match the experimental Ca  $({}^{3}P \leftarrow {}^{1}S)$  gap;<sup>17</sup> the respective RCCSD, RCCSD(T), MRBWCCSD and full-valence MRCI shifted  $T_e$  values then become -4.0, 5.1, 6.2, and 7.7 kcal/mol respectively, in other words, the  ${}^{3}\Sigma^{-}$ ,  ${}^{5}\Sigma^{-}$  ordering remains unchanged. in all four methods. However, it is interesting to observe that including the  $3s^23p^6$  core electrons of Ca, the  ${}^{5}\Sigma^{-} \leftarrow X {}^{3}\Sigma^{-}T_{e}$  values obtained at the CCSD, CCSD(T), MRBWCCSD, and MRCI $(+Q)^{15}$  level are -10.0, -0.4, 0.9,and 3.0(3.3) kcal/mol, respectively.

On the other hand, the single reference  ${}^{5}\Sigma^{-}$  state is welldescribed at almost all levels of theory as revealed from Table II, with a dissociation energy in the range of 83–86 (88, including the core  $e^{-}$ ) kcal/mol and a bond length of ~2.34 (2.29, including the core  $e^{-}$ ) Å. We believe that inclusion of connected triple excitations in the MRBWCCSD treatment would certainly improve the 0.6 (0.9) kcal/mol  ${}^{5}\Sigma^{-} \leftarrow X {}^{3}\Sigma^{-}$  gap (Table II) towards the splitting of about 3 kcal/mol predicted by other multireference methods.

#### C. The ZnC molecule

Similar arguments hold for the  $X^{3}\Sigma^{-}$  and  ${}^{5}\Sigma^{-}$  states of the ZnC molecule, the results of which are presented in Table III and Fig. 2. As mentioned earlier, the  ${}^{3}P \leftarrow {}^{1}S$  gap of Zn (4.054 eV) is much larger as compared to the corresponding gap in Ca (1.892 eV, Table I).<sup>17</sup> As a result, the  ${}^{5}\Sigma^{-}$  $\leftarrow X^{3}\Sigma^{-}$  energy splitting is much larger (Table III) and leaves no doubt as to the  ${}^{3}\Sigma^{-}$  symmetry of the ground state; indeed only the ROHF  $T_e$  value is so much underestimated that a wrong ground state is predicted at that particular level of theory (Table III). As in the case of CaC (vide supra), the single reference treatments underestimate the well depth of the  $X^{3}\Sigma^{-}$  state, leading subsequently to an underestimated  ${}^{5}\Sigma^{-} \leftarrow X^{3}\Sigma^{-}$  gap. For instance, the full-valence MRCI  $T_{e}$ value is more than twice as large as the respective CISD value (20.6 vs 9.1 kcal/mol, respectively). Here, the large Davidson correction (CISD+Q) and the RCCSD(T) results indicate, as in CaC, the inadequacy of the single reference treatments.

The multireference approaches increase the  $D_e$  value for the  $X^{3}\Sigma^{-}$  state, and also the  ${}^{5}\Sigma^{-} \leftarrow X^{3}\Sigma^{-}$  energy gap. In particular, the MRBWCCSD treatment improves the quanti-

TABLE III. Total energies E (hartree), binding energies  $D_e$  (kcal/mol), bond lengths  $r_e$  (Å) and frequencies  $\omega_e$ ,  $\omega_e x_e$  (cm<sup>-1</sup>) of the ZnC  $X^3\Sigma^-$  and  $5\Sigma^-$  states at different levels of theory. Unless otherwise noted, all results are from the present work.

|                                   | $X^{3}\Sigma^{-}$ |         |                    |            | <sup>5</sup> Σ <sup>-</sup> |                 |         |                    |                |                |                    |
|-----------------------------------|-------------------|---------|--------------------|------------|-----------------------------|-----------------|---------|--------------------|----------------|----------------|--------------------|
| Method <sup>a</sup>               | Е                 | $D_{e}$ | r <sub>e</sub>     | $\omega_e$ | $\omega_e x_e$              | Е               | $D_{e}$ | r <sub>e</sub>     | ω <sub>e</sub> | $\omega_e x_e$ | $T_{e}$            |
| ROHF                              | b                 | b       | b                  |            |                             | -1815.556 03    | 72.5    | 1.976              | 590.0          | 3.3            | -19.8 <sup>c</sup> |
| CISD                              | -1815.67905       | 12.4    | 2.158              | 359.5      | 6.6                         | -1815.66451     | 78.6    | 2.061              | 560.2          | 3.3            | 9.1                |
| CISD+Q                            | -1815.7011        | 19.0    | 2.118              | 435.9      | 6.1                         | -1815.671 5     | 79.3    | 2.073              | 554.7          | 4.2            | 18.6               |
| RCCSD                             | -1815.68753       | 13.6    | 2.153              | 377.8      | 6.0                         | -1815.66666     | 79.1    | 2.064              | 559.2          | 3.5            | 13.1               |
| RCCSD(T)                          | -1815.697 69      | 18.3    | 2.131              | 418.2      | 5.1                         | -1815.67150     | 80.5    | 2.072              | 553.3          | 3.8            | 16.4               |
| CASSCF(4,4)                       | -1815.577 31      | 17.8    | 2.024              | 507.2      | 4.9                         |                 |         |                    |                |                | 13.4               |
| MRCI                              | -1815.69492       | 21.9    | 2.120              | 470.0      | 5.7                         |                 |         |                    |                |                | 19.1               |
| MRCI+Q                            | -1815.7037        | 22.1    | 2.135              | 458.5      | 5.7                         |                 |         |                    |                |                | 20.2               |
| MRACPF                            | -1815.70098       | 22.0    | 2.130              | 462.0      | 5.9                         | -1815.669 23    | 79.0    | 2.070              | 554.8          | 4.0            | 19.9               |
| MRBWCCSD                          | -1815.696 23      | 20.8    | 2.096              | 460.5      | 6.7                         | -1815.66883     | 80.3    | 2.045              | 568.4          | 7.4            | 17.2               |
| fvCASSCF                          | -1815.61962       | 20.8    | 2.043              | 493.7      | 5.2                         | -1815.59373     | 84.1    | 2.005              | 559.2          | 3.0            | 16.2               |
| fvMRCI                            | -1815.70857       | 26.2    | 2.039              | 487.6      | 4.1                         | -1815.675 73    | 84.4    | 2.006              | 553.1          | 3.2            | 20.6               |
| fvMRCI+Q                          | -1815.7127        | 26.8    | 2.041              | 484.6      | 4.6                         | -1815.679 14    | 84.4    | 2.008              | 550.6          | 3.0            | 21.1               |
| fvMRACPF                          | -1815.711 45      | 26.7    | 2.040              | 485.4      | 4.4                         | -1815.67808     | 84.4    | 2.007              | 551.4          | 3.2            | 20.9               |
| $QCISD(T)(16e^{-})^{d}$           | -1815.948 395     | 21.3    | 1.992 <sup>e</sup> |            |                             | -1815.910256    | 85.3    | 1.942 <sup>e</sup> |                |                | 23.9               |
| $\text{RCCSD}(16e^{-})$           | -1816.16442       | 18.8    | 2.000              |            |                             | -1816.136 15    | 87.2    | 1.939              |                |                | 17.7               |
| $\text{RCCSD}(\text{T})(16e^{-})$ | -1816.195 61      | 24.6    | 1.973              |            |                             | -1816.157 97    | 89.8    | 1.935              |                |                | 23.6               |
| MRCI(16 <i>e</i> <sup>-</sup> )   | -1816.12240       | 24.1    | 1.986              |            |                             | -1816.091 24    | 85.2    | 1.936              |                |                | 19.6               |
| $MRCI + Q(16e^{-})$               | -1816.1690        | 24.2    | 1.988              |            |                             | -1816.134 43    | 87.4    | 1.935              |                |                | 21.7               |
| MRACPF(16e <sup>-</sup> )         | -1816.17185       | 22.9    | 1.992              |            |                             | -1816.136 59    | 87.4    | 1.940              |                |                | 22.1               |
| MRBWCCSD(16e <sup>-</sup> )       | -1816.17224       | 23.9    | 1.988              |            |                             | -1816.13678     | 87.3    | 1.935              |                |                | 22.3               |
| $fvMRCI(16e^{-})^{f}$             | -1816.138 12      | 24.5    | 1.983              | 512.9      | 4.7                         | $-1816.102\ 64$ | 88.7    | 1.948              |                |                | 22.3               |
| $fvMRCI + Q(16e^{-})^{f}$         | -1816.176 5       | 24.9    | 1.975              | 510.5      | 4.8                         | -1816.138 5     | 89.3    | 1.918              |                |                | 23.8               |

<sup>a</sup>See Table I for explanation of the acronyms. All correlated calculations correlate the 6 valence electrons, unless otherwise noted. <sup>b</sup>Repulsive at the ROHF level.

<sup>c</sup>Vertical separation.

 $^{d}6-311++G(2d,2f)$  basis (Ref. 16).

<sup>e</sup>QCISD/6-311++G(d, f) level of theory (Ref. 16).

 $[8s7p5d3f2g]_{7n}/[6s5p4d3f2g]_{C}$  basis (Ref. 18).

tative description of the ground state with respect to the CCSD results, while it compares favorably with the MRCI, MRCI+Q, and MRACPF results (Table III). When using a larger CASSCF(6,8) reference space, the energetics and bond lengths become now substantially improved, compared to CaC. Inclusion of the  $Zn 3d^{10}$  electron correlation is followed by an even larger decrease in bond lengths, while its effect on the binding energy is not very clear. For most single reference and the multireference treatments out of the smaller CASSCF(4,4) reference space (including MRBWCCSD),  $3d^{10}$  correlation increases the dissociation energies by about 2 to 3 kcal/mol. On the other hand, the respective full-valence MRCI and MRCI+Q D<sub>e</sub> values from our recent work<sup>18</sup> decrease by approximately 2 kcal/mol. In any case, MRBWCCSD performs much better than the single reference RCCSD, being in fair agreement with all other multireference methods [and RCCSD(T)]. An interesting remark that can be made though from the data on Table III is, that, in almost all cases where the  $3d^{10}$  correlation is included,  $D_e$  is predicted to lie in the range of 24-25 kcal/ mol, while the  ${}^{5}\Sigma^{-} \leftarrow X {}^{3}\Sigma^{-}$  gap is predicted to lie around 22-24 kcal/mol.

Observing the practically method-independent nature of the  ${}^{5}\Sigma^{-}$  state, and after shifting our calculated minima and respective  $T_{e}$  values (Table III,  $3d^{10}$  correlation included) to

match the experimental  $\text{Zn}^{3}P \leftarrow {}^{1}S$  gap (Table I), we reach our final (shifted) CCSD, MRBWCCSD, and full-valence MRCI+Q  $T_{e}$  values of 26.4, 31.2, and 33.0 kcal/mol, respectively.

### **IV. CONCLUDING REMARKS**

The low-lying  $X^{3}\Sigma^{-}$  and  $5\Sigma^{-}$  states of the (experimentally unknown) calcium and zinc carbide diatomics (CaC, ZnC) were studied employing a variety of methods including recently developed state-specific multireference the Brillouin-Wigner coupled cluster (MRBWCCSD) method. Our purpose was to test and compare this method with more conventional single and multireference treatments, particularly with the single reference coupled cluster (CCSD) method which, for both systems, fails to properly describe the energetics of their  $X^{3}\Sigma^{-}$  states. This becomes more pronounced in the case of CaC, resulting to a reversed order of the two states, thus leading to an erroneous ground-state prediction. The MRBWCCSD description improves the energetics of the  $X^{3}\Sigma^{-}$  states for both molecules, restoring at the same time the correct state ordering for CaC. Comparison with other levels of theory reveals the inadequacy of routine single reference methods in describing quantitatively the  ${}^{3}\Sigma^{-}$  states. The problem is cured by employing multirefer-



FIG. 2. Potential energy curves of the  $X^{3}\Sigma^{-}$  and  ${}^{5}\Sigma^{-}$  states of the ZnC molecule at selected levels of theory. Energies have been shifted by +1815 hartree.

ence approaches based on either a small (4,4) or a fullvalence (6,8) CASSCF reference space to account for the multireference nature of the  $X^{3}\Sigma^{-}$  state, which in turn stems from the "near-degeneracy" of the 4*s* and 4*p* atomic orbitals of Ca and Zn. The MRBWCCSD results are in satisfactory agreement with rigorous multireference variational (MRCI) results. Inclusion of triple excitations in the MRBWCCSD treatment in a noniterative manner should further improve the description of these systems and the overall performance of the method.

### ACKNOWLEDGMENTS

This work has been supported by the European Community by a Marie Curie Fellowship IHP under contract number HPMT-CT-2000-00022 and by the COST D23 Action (together with Grant No. OC D23.001 of the Czech Ministry of Education). We acknowledge also the support by the Grant Agency of the Academy of Sciences of the Czech Republic (J.P. and P.Č. for Grant No. A404010), and the Grant Agency of the Czech Republic (J.P. for Grant No. 203/99/D009, and I.H. for Grant No. 202/98/1028). I.S.K.K. expresses his gratitude to Hellenic State Scholarships Foundation for continuous financial support. The ample computer time provided by the National Center for Scientific Research, DEMOKRITOS, is greatly appreciated.

- <sup>1</sup>P. Čársky, V. Hrouda, V. Synchrovský, I. Hubač, P. Babinec, P. Mach, J. Urban, and J. Mášik, Collect. Czech. Chem. Commun. **60**, 1419 (1995).
- <sup>2</sup>J. Mášik and I. Hubač in *Quantum Systems in Chemistry and Physics: Trends in Methods and Applications*, edited by R. McWeeny, J. Maruani, Y. G. Smeyers, and S. Wilson (Kluwer Academic, Dodrecht 1997), pp. 283–308, and references therein.
- <sup>3</sup>J. Pittner, P. Nachtigall, P. Čársky, J. Mášik, and I. Hubač, J. Chem. Phys. **110**, 10275 (1999).
- <sup>4</sup>I. Hubač and S. Wilson, J. Phys. B 33, 365 (2000).
- <sup>5</sup>I. Hubač, J. Pittner, and P. Čársky, J. Chem. Phys. **112**, 8779 (2000).
- <sup>6</sup>J. Pittner, P. Čársky, and I. Hubač, Int. J. Quantum. Chem. **90**, 1031 (2002).
- <sup>7</sup>J. C. Sancho-García, J. Pittner, P. Čársky, and I. Hubač, J. Chem. Phys. **112**, 8785 (2000).
- <sup>8</sup>J. Pittner, J. Šmydke, P. Čársky, and I. Hubač, J. Mol. Struct.: THEOCHEM **547**, 239 (2001).
- <sup>9</sup>J. Pittner, O. Demel, P. Čársky, and I. Hubač, Int. J. Mol. Sci. **2**, 281 (2002).
- <sup>10</sup> J. Pittner, P. Nachtigall, P. Čársky, and I. Hubač, J. Phys. Chem. A **105**, 1354 (2001).
- <sup>11</sup>C. W. Bauschlicher, Jr., S. R. Langhoff, and H. Partridge, Chem. Phys. Lett. **216**, 341 (1993).
- <sup>12</sup>C. O. Da Silva, F. E. C. Teixeira, J. A. T. Azevedo, E. C. Da Silva, and M. A. C. Nascimento, Int. J. Quantum Chem. **60**, 433 (1996), and references therein.
- <sup>13</sup> M. A. Castro, S. Canuto, and F. Müller-Plathe, Phys. Rev. A 46, 4415 (1992).
- <sup>14</sup>A. Serrano and S. Canuto, Chem. Phys. Lett. 269, 193 (1997).
- <sup>15</sup>A. Papakondylis and A. Mavridis (unpublished).
- <sup>16</sup>A. I. Boldyrev and J. Simons, Mol. Phys. 92, 365 (1997).
- <sup>17</sup>C. E. Moore, *Atomic Energy Levels*, NRSDS-NBS Circular No. 35, U.S. GPO: Washington, DC, 1971.
- <sup>18</sup>A. Tsouloucha, I. S. K. Kerkines, and A. Mavridis (unpublished).
- <sup>19</sup>K. Ragavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. **157**, 479 (1989); R. J. Bartlett, J. D. Watts, S. A. Kucharski, and J. Noga, *ibid.* **165**, 513 (1989); **167**, 609E (1990); P. J. Knowles, C. Hampel, and H.-J. Werner, J. Chem. Phys. **99**, 5219 (1993); **112**, 3106 (2000).
- <sup>20</sup>H. Partridge, J. Chem. Phys. **90**, 1043 (1989).
- <sup>21</sup>C. W. Bauschlicher, Jr., Theor. Chim. Acta **92**, 183 (1995).
- <sup>22</sup>R. Pou-Amerigo, M. Merchan, I. Nebot-Gil, P. O. Widmark, and B. O. Roos, Theor. Chim. Acta **92**, 149 (1995).
- <sup>23</sup> T. H. Dunning, Jr., J. Chem. Phys. **90**, 1007 (1989); R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, *ibid.* **96**, 6796 (1992).
- <sup>24</sup>ROVIB is a program for solving the rovibrational Schrödinger equation written by A. Papakondylis and developed in the present laboratory.
- <sup>25</sup> ACES II is a program product of Quantum Theory Project, University of Florida, J. F. Stanton, J. Gauss, J. D. Watts, *et al.* Integral packages included are VMOL (J. Almlöf and P. R. Taylor); VPROPS (P. R. Taylor); and ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen, and P. R. Taylor).
- <sup>26</sup> M. J. Frisch, G. W. Trucks, H. B. Schlegel *et al.*, GAUSSIAN 98, Revision A.9, Gaussian, Inc., Pittsburgh, PA, 1998.
- <sup>27</sup> MOLPRO is a package of *ab initio* programs written by H.-J. Werner and P. J. Knowles, with contributions from R. D. Amos, A. Bernhardsson, A. Berning *et al.*
- <sup>28</sup>C. F. Bunge, J. A. Barrientos, A. V. Bunge, and J. A. Cogordan Phys. Rev. A 46, 3691 (1992).