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Velocity correlation functions and third order diffusion coefficients of ions moving in a buffer gas
under the influence of an electrostatic field are determined via molecular dynamics simulation. For
the closed shell system of K1 in Ar using a universal interaction model potential, the general form
of the third order correlation functions is found to be monotonically decaying in time except in the
cases of ^DvZ(0)DvX(t)

2&, ^DvZ(0)DvY(t)
2&, and ^DvZ(0)DvZ(t)

2&, with Dv(t)5v(t)
2^v(t)& and the field in thez direction. These functions acquire positive slope at short times
showing enhancement of correlations between instantaneousvz components of the ions and their
future kinetic energies or velocity measures. This feature is shown to quantify the dynamics of
correlations between velocity components suggested in the past by Ong, Hogan, Lam and Viehland
@Phys. Rev. A45, 3997~1992!# in order to explain the form of an ion velocity distribution function
calculated through a Monte Carlo simulation method. In addition, within a stochastic analysis which
establishes a relation between velocity correlation functions and third order diffusion coefficients,
only two independent components of the diffusion tensor,Qi andQ' , are predicted. We thereby
calculate theQ' component, which has not been determined so far, over a wide field range. The
magnitudes of the resulting third order diffusion coefficients indicate that their contribution to the
ion transport in usual drift-tube measurements should be very small. ©1997 American Institute of
Physics.@S0021-9606~97!52617-1#
in
iz

s
he

n
e
he
on
-

g
di

is
si
m
nt
b

an

r
eri-
the
r,
e

d
s.
t to
l
is.
ssion
n,
o

ust

-
god-
ies

-
the

as
I. INTRODUCTION

The transport of nonreactive ions in a gas under the
fluence of a homogeneous electrostatic field is character
by a steady drift and a superposed diffusional motion.1 The
corresponding ion flux may then be expressed as

J5nvd2D•¹n1Q:¹¹n1••• , ~1!

wheren is the ion density,vd is the drift velocity, andD, Q
etc. are diffusion tensors of second, third etc. rank. Term
the form (¹n)2 need not be included in cases where t
density gradient is negligible, as we assume here.

Although the number of components of the diffusio
tensor increases quadratically with the rank, many of th
vanish or coincide, due to the cylindrical symmetry of t
ion motion and the irrelevance of the order of differentiati
of n in Eq. ~1!. Thus,D has only two independent compo
nents,D i[DZZ andD'[DXX5DYY, with the field,E, in
the z direction. Similarly,Q has only seven nonvanishin
components, three of which should be independent accor
to a suggestion based on symmetries of the ion motion.2,3 In
the following, however, we will show that this number
reduced by one within a stochastic analysis of the ion-den
fluctuations. Further, at low fields, due to the spherical sy
metry of the ion motion close to equilibrium, the compone
of odd rank vanish and the remaining even order ones
come scalars.

In the past, drift velocities or mobilities,K5vd /E, and
Fickian diffusion coefficients have been measured for m

a!Electronic mail: akoutsel@atlas.uoa.gr
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ion-atom systems.4 Contrary to this, third order and highe
diffusion coefficients have so far not been probed exp
mentally, due to the small effect they should induce on
time of flight spectra of drift-tube experiments. Howeve
through molecular dynamics simulation of the ion motion w
were able to calculate theQZZZ component for K

1 in Ar
using an accurate intermolecular potential.5

In order to complete the determination of allQ compo-
nents of K1 in Ar we proceed by first establishing a metho
of calculation from third order velocity correlation function
We, thus, employ here a stochastic procedure equivalen
the one used at equilibrium6 but extended so that tensoria
diffusion coefficients are accommodated in the analys5

Based on a generalized Onsager hypothesis for the regre
of ion-density fluctuations towards the steady drift motio
we relateQ with correlation functions and find that only tw
independent components are predicted,Qi5QZZZ andQ' .
This result, depends on microscopic assumptions which m
hold at least for small and intermediate field strengths.

The obtained expressions for theQ coefficients depend
on third order correlation functions of the formNi jk

5 ^Dv iDv jDvk&, with Dv5v2^v& and the brackets refer
ring to averages of a steady state ensemble. Assuming er
icity to hold, the averages are determined from trajector
generated by nonequilibrium molecular dynamics~MD!
simulation of the ion motion.5,7 The method involves main
tenance of the buffer gas at constant temperature through
introduction of ‘iconical’ ion-neutral collisions in usual MD
methods. As an interaction potential between K1 and Ar
atoms we employ a universal interaction model which h
711717/7/$10.00 © 1997 American Institute of Physics
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7118 Andreas D. Koutselos: Diffusion coefficients of ions in electrostatic fields
been found in the past to reproduce successfully the mo
ties and ion diffusion coefficients.

The velocity-correlation functions contain informatio
about the mean microscopic~mesoscopic! ion motion and
they can be studied for their own merit. For example, it h
been suggested in the past by Onget al.,8 in order to explain
the form of the velocity distribution of Na1 in Ne obtained
from Monte Carlo~MC! simulations, essentially that ions o
high vZ components should acquire with increased proba
ity also highvX andvY components. Such correlations an
their evolution in time, that is their dynamics, can be stud
through specific correlation functions, lik
^DvZ(0)uDvX(t)u&, or the ones we employ here for the ca
culation of diffusion coefficients, such aŝDvZ(0)
3$DvX(t)%

2& and ^DvZ(0)$DvY(t)%
2&. Indeed, the latter

functions are found not to decay at short times as norm
would be expected, but to increase, until a maximum
reached, before they start decaying exponentially at l
time values. This feature is studied further by calculat
correlation functions for rapidly moving ions in th
z-direction alone. It is thus confirmed that the observed n
monotonicity of the correlation functions is related direc
with the correlations suggested by Onget al.8 Even more,
the form of these functions reveal the dynamics of the m
soscopic ion motion.

In the next section we obtain a relation between th
order diffusion coefficients and velocity correlation functio
through a stochastic analysis and show that only two in
pendent components are predicted forQ. In Sec. III we cal-
culate correlation functions and diffusion coefficients f
K1 in Ar from an MD simulation of the motion of the ions
Finally, in the conclusions we summarize our results a
comment on the magnitude of the effects ofQ on the ion
transport in usual drift-tube spectrometers.

II. STOCHASTIC ANALYSIS

The transport of a trace amount of ions in a buffer g
under the influence of an external homogeneous electros
field has been studied in the past through a stochastic an
sis in order for the diffusion coefficients to be expressed
terms of velocity correlation functions.5 In this way, the ob-
tained third order diffusion coefficient has been expresse
terms of a third order tensorial product of spatial displa
ments of a tagged ion,Dr 5 r i(t)2^r i(t)&,

Qt5~1/3!!^DrDrDr &, ~2!

with t approaching infinity and where the brackets repres
a steady state ensemble average. The introduction of velo
correlation functions into the analysis is utilized by expre
ing Dr in terms of the velocity of the ion,v(t),

Dr5E
0

t

dt8 Dv~ t8!, ~3!

withDv(t) 5 v(t) 2 vd , wherevd5 ^v(t)& is thedrift velocity
of the ion. Substituting this expression into Eq.~2! we obtain
J. Chem. Phys., Vol. 106
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Q5~1/3!! lim
t→`

~1/t !E
0

t

dt1E
0

t

dt2

3E
0

t

dt3^Dv~ t1!Dv~ t2!Dv~ t3!&. ~4!

We can then integrate one of the time variables, liket1 ,
since the correlation function at steady state should dep
only on two time intervals, such ass15t22t1 and s25t3
2t1 . Therefore, we change variables to (t1 ,s1 ,s2) and de-
rive for the i jk component

Qi jk5~1/3!! lim
t→`

~1/t !E
0

t

dt1E
2t1

t2t1
ds1

3E
2t1

t2t1
ds2^Dv i~ t1!Dv j~s1!Dvk~s2!&. ~5!

In order to perform the integration overt1 we follow the
procedure presented in the Appendix. Specifically, we fi
separate the integral into six contributions. Then, in the lim
of t approaching infinity, we obtain theQ components in
terms of six characteristic integrals,I i jk

(m) defined in the Ap-
pendix,

Qi jk5~1/6! (
m51

6

I i jk
~m!~s1 ,s2!, ~6!

with m taking values from 1 to 6 and where the time va
abless1 and s2 refer to the j and k velocity components,
respectively.

Further, symmetry considerations about the intercha
of the velocity components and the time variables show t
many of theI integrals are equal to one another and that
most four of them are independent, indicated byA, B, C,
andD. We also mention in advance that the calculatedC
andD integrals appear to be equal to each other within
statistical error of the simulation method. This may be due
an additional underling symmetry of theI integrals which we
have not been able to identify so far. Irrespective of this,
observed identities of theI integrals bring the nonvanishin
components, with indexesZXX, ZYY, XXZ, YYZ, XZX,
andYZY, into coincidence and equal to

Q'5~B1C1D !/3. ~7!

The six integrals of the remainingQi component are equal to
one another and thus we setQi5A.

The above prediction appears to be in variance with
analysis of third order diffusion coefficients in Cartesian te
sors that are irreducible under the three dimensional gro
from which three independentQ components are
predicted.2,9 However, this analysis is based on the symm
tries of the macroscopic ion motion, though our result d
pends on mesoscopic considerations about the regressio
ion-density fluctuations. Thus, whenever our assumptions
met in drift tube experimental conditions, as it is expect
especially at weak and intermediate field strengths, our p
dictions should be in compliance with experiment.
, No. 17, 1 May 1997
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7119Andreas D. Koutselos: Diffusion coefficients of ions in electrostatic fields
We proceed now to the determination and study of
locity correlation functions, as well as to the calculation
Q' .

III. RESULTS

In order to complete the calculation of theQ compo-
nents for a representative system and study its dynamics
mesoscopic level, we have chosen to simulate the motio
K1 in Ar in usual drift tube experimental conditions at va
ous field strengths via molecular dynamics. The meth
maintains constant gas temperature and steady drift for
ions through the use of iconical ion–atom interactions. T
is, each ion interacts only with images of the neutrals wh
are created and stored in the computer during every i
neutral encounter. Consistently, the ‘‘real’’ neutrals, whi
in a sense provide initial conditions for the exact scatter
of the ions, are simulated with a conventional equilibriu
MD method without allowing them to feel forces from th
ions. With this mechanism eventually the electric energy
the ions is dissipated without the real neutrals being p
turbed from equilibrium. This is in compliance with dri
tube experiments where the neutral molecules being in
cess provide a thermal bath for the ions. The additional
glect of ion–ion interactions and many body ion–neutral c
relations is reasonable at the low density experime
conditions where uncorrelated binary ion–atom collisio
prevail.

Since the method allows uninterrupted evolution of t
trajectories of the ions and atoms, we implement perio
boundary conditions and collect data for statistical analy
continuously. Results are derived from simulations of 5
ions in 108 neutral atoms using Verlet algorithm10 for the
integration of the equations of motion. During each ru
which involves 73105 steps of 10214 s time interval each,
about 106 ion–atom collisions take place. More details of t
method have been presented in the past.5,7

At the present ideal gas conditions we use an effici
Lennard–Jonespotential,V(R) 5 4e@(s/R)122 (s/R)6#, for
the interactions of Ar atoms,11 with s56.4345a0 and
e53.79131024e2/a0 . For K

1–Ar we use an accurate un
versal interaction model12 which consists of a short-rang
exchange part and a long-range Coulombic part

V~r !5y@A exp~2aR/r!2B exp~2bR/r!#

2~C4 /R
41C6 /R

61C8 /R
8!h~R,Rm!, ~8!

where

h~R,Rm!5 Hexp@2~1.28Rm /R21!2# for R<1.28Rm

1 for R>1.28Rm
,

is a damping function andA5146.98, B570.198,
a51.5024,b51.4041. The remaining parameters in atom
units are: y51.202, r5.9478, Rm55.87, C455.540,
C6566.04, C851007.4. This potential has been foun
through kinetic theory calculations12 as well as through
Monte Carlo13,14 and MD simulations5,7 to reproduce suc-
cessfully the experimental mobilities and ion-diffusion co
ficients.
J. Chem. Phys., Vol. 106
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A. Correlation functions

The relative scarcity and uniformity of interactions lea
to uncorrelated binary collisions between ions and buffer
atoms at the usual drift tube experimental conditions. T
simple picture leads one to expect that the ion velocity c
relation functions have the form of an exponentially deca
ing function irrespective of the field strength. However,
has been inferred, for example, from an MC simulation
Na1 in Ne at high fields thev distribution function acquires
an egglike cylindrical form which is inseparable as a prod
of functions that depend on differentv components.8 This
inseparability has been attributed to correlations betw
vZ andvX or vY .

To investigate these correlations and their dynamic
havior, one can study the form of the correlation functio
^DvZ(0)uDvX(t)u& and ^DvZ(0)uDvY(t)u& or the qualita-
tively similar functions CZXX5^DvZ(0)$DvX(t)%

2& and
CZYY5^DvZ(0)$DvY(t)%

2&, since the squared velocity com
ponents differ from the measures only in magnitude. T
latter functions constitute special cases of the correla
function needed for the calculation of third order diffusio
coefficients, and therefore we examine these here, first.

The correlation functions are calculated from averag
of 1900 such functions which are determined consecutiv
each starting 300 time steps after the previous one. Du
the simulation, values for the correlations are collected ev
200 steps. Their accuracy is best at intermediate fi
strengths, where, for example, at 150 Td, at time values
75 and 210 ps, the standard deviation ofCZXX is found to be
25%, 22%, and 28% of the mean, respectively. Similarly,
relevant errors forCZZZ are 20%, 20%, and 29%. At weake
and stronger fields the error increases gradually until it
most doubles at the limits of the employed field range. Ho
ever, the corresponding diffusion coefficients acquire be
accuracy due to the fact that they are calculated through t
integration of these correlation functions.

In contrast to what one would anticipate at low densiti
the calculatedCZXX and CZYY acquire a positive slope a
short times and reach a maximum, between 70 and 100
depending on the field strength, before they start decay
exponentially~Fig. 1!. Also their extension is quite large
since they attain again their initial value between 200 a
300 ps. To our surprise evenCZZZ5^DvZ(0)$DvZ(t)%

2& had
a similar shape, as depicted in Fig. 2, but only at interme
ate and high field strengths. In order to elucidate furthe
this behavior stems primarily from ions with highVZ com-
ponents in conformity to the observation of Onget al.,8 we
have calculated the same correlation functions but w
DvZ(0)5vZ 2 ^vZ& lying in one of the four segments:
(v0 ,1`!, II (0, v0), III ~2v0 , 0), and IV~2`,2v0), where
V0 is a convenient velocity limit.

Although the shapes of the obtained correlation fun
tions vary from region to region, a general conclusion ab
the origin of the nonmonotonicity of these functions can
drawn beyond the uncertainty of the calculations. Spec
cally, in the case ofCZZZ , ~Fig. 3! we observe that all the
ions contribute to the nonmonotonic behavior except th
, No. 17, 1 May 1997
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7120 Andreas D. Koutselos: Diffusion coefficients of ions in electrostatic fields
with high initial vZ component. This behavior should be d
to the persistence of the instantaneous ion motion cause
the action of the electric field. This ordered motion lasts
a few collisions with the neutrals before randomization of
velocity sets in. The latter process, however, seems to
dominant in the case of energetic ions in the direction of
field, region I, where the correlation function decays mon
tonically.

Contrary to this, the feature ofCZXX , ~or CZYY!, func-
tion is found indeed to stem mainly from ions with highvZ
component though ions from the other regions contrib
also to the effect~see Fig. 4!. It thus appears that the fast ion
in the direction of the field in their near future acquire wi
increased probability high velocity components in transve
directions until their motion is randomized even more by
ion–atom collisions. This observation, further, elucidates
dynamic behavior of the correlations betweenvZ andvX or
vY components. We turn now to the calculation of the th
order diffusion component perpendicular to the field.

FIG. 1. Third orderCZXX correlation functions for K
1 in Ar at various field

strengths.

FIG. 2. Third orderCZZZ correlation functions for K
1 in Ar at various field

strengths.
J. Chem. Phys., Vol. 106
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B. Third order diffusion coefficients

To obtainQ' we have to integrate the correspondin
correlation function of one of the nonvanishingQi jk , over
six different regions of the time variables. Instead, since
exampleQ'5~1/3!~B1C1D! and by using the identities o
the Appendix, we can as well obtainQ'5(1/6)SnI n

(5) ,
wheren represents all sixi jk components. In this expressio
the space of integration is restricted to half of the first qua
rant of the (s1 ,s2) plane, though the calculation of all six
correlation functions is required. These functions, howev
are easily determined simultaneously through the simulat
procedure.

In order to extend the integration of the correlation fun
tions to infinity we separate the integration into two par
The first part, which includes the short-time region, is calc
lated arithmetically during the simulation and the second p
analytically by first fitting the correlations below their inve
sion points with a two-time exponential function

FIG. 3.CZZZ correlation functions of K
1 in Ar at 300 K at different velocity

regions~I!–~IV ! defined in withv0 5 2300 m/s. During the simulation the
mean number of the 500 ions in the regions were 93.14, 133.8, 172.7
100.3, respectively.

FIG. 4. Similar to Fig. 3 forCZXX .
, No. 17, 1 May 1997
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7121Andreas D. Koutselos: Diffusion coefficients of ions in electrostatic fields
Ci jk~s1 ,s2!5~e2a1s12b12e2a2s12b2!s2 /s11e2a2s12b2.
~9!

The fitting is found to be quite accurate and leads to fi
errors less than 1%–2%.

The resulting diffusion coefficients for different fiel
strengths are presented in Table I asN2Q' in order for an
expected inverse quadratic dependence on the gas dens
be removed. We also present drift velocities as well as
three elementary integrals which contribute to the diffus
coefficient. The dependence ofN2Q' on the field is shown
in Fig. 5 together withN2Qi , which has been calculate
earlier via our procedure using the same interact
potential,5 for comparison.

The dominant contribution to the third order diffusio
coefficients comes from theB integral as can be inferre
by inspection of the magnitude of the relevant correlat
functions that determine the integrals. Thus,B, C, and
D are calculated from I (5) integrals involving
^DvZ(0)DvX(t1)DvX(t2)&, ^DvX(0)DvZ(t1)DvX(t2)& and
^DvX(0)DvX(t1)DvZ(t2)&, respectively. The first of thes
functions at specific time values is larger than the other t
because it involves a product of similar velocity compone

TABLE I. Drift velocities, elementary velocity-correlation integrals an
third order transverse diffusion coefficients of K1 in Ar at 300 K.

E/N~Td!a yd~m/s! N2Bb N2Cb N2Db N2Q'
b

30 213.6 0.1604 0.04508 0.1039 0.1031
60 462.8 1.327 0.3209 0.3728 0.6736
80 645.3 2.721 0.7269 0.8096 1.419
100 849.3 5.579 1.368 1.724 2.890
150 1314 10.113 2.516 2.474 5.034
200 1680 12.220 3.782 3.768 6.590
300 2314 18.205 4.525 4.371 9.034
400 2832 32.634 4.717 4.184 13.84
600 3617 65.830 6.956 6.366 26.38

a1 Td510221 V m2.
bIn units of 1033 cm23 s21.

FIG. 5. Third orderN2Qi andN2Q' diffusion coefficients of K1 in Ar at
various field strengths with 7% and 10% error bars, respectively.
J. Chem. Phys., Vol. 106
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as functions of time which are more strongly correlated th
DvZ(t1)DvX(t2) or DvX(t1)DvZ(t2), especially aroundt1
5t2 .

Likewise, the accuracy ofN2Q' depends mostly on the
accuracy ofB which consists of two parts each calculat
with different accuracy. The first part, which involves th
short time correlations, is calculated numerically with sta
dard deviations equal to a few percent of the mean val
and the second part which includes long time correlation
calculated through an interpolation with higher errors. R
peated calculations using variable length simulations and
ferent initial conditions indicate that the overall relative err
of the diffusion coefficient is about 10% at intermediate fie
strengths, which almost doubles at very small and la
fields. This is because, at weak fields the mean values of
correlations vanish but the magnitudes of their fluctuatio
remain high. At strong fields, however, fluctuations beco
high due to frequent exchange of large amounts of ene
during ion–neutral collisions. In general, the accuracy of
procedure can be improved with the use of longer runs
smaller time step in the simulation, though with the cost
high amount of computer time.

IV. CONCLUSIONS

We have shown that within our stochastic analysis o
two independent components can be established for the
order diffusion coefficient of ions drifting in gases under t
influence of a homogeneous electrostatic field. To comp
the determination ofQ components for the representativ
system of K1 in Ar, we determined theQ' from third order
velocity correlation functions. The other third order comp
nent,Qi , has been determined similarly in the past using
same interaction potential.

The order of magnitude of our results and the fact t
these coefficients contribute to the ion transport only at
very early relaxing stages, where high ion density gradie
prevail, indicate thatQ should interfere negligibly with drift
tube experimental results in the case of K1 in Ar.

The correlation functions were determined first from
nonequilibrium MD simulation of the motion of the ions. I
general, the form of the derived correlation functions appe
exponentially decaying except in the cases of^DvZ(0)
3$DvX(t)%

2&, ^DvZ(0)$DvY(t)%
2&, and ^DvZ(0)

3$DvZ(t)%
2&, where a nonmonotonic behavior at sho

times has been observed. This behavior is in complia
with the observed correlations between velocity compone
of Na1 in Ne through analysis of the results of a Mon
Carlo simulation in the past.8 In this sense, the present co
relation functions quantify the dynamic behavior of the p
viously suggested correlations.

Although the systems studied so far involve ions a
atoms of comparable mass, the observed effects shoul
general and thus present in other systems as well.
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APPENDIX

In order to integrate thet1 variable of the integral of Eq
~5!, we first split the integration of (t1 ,s15t2 2 t1 ,s25t3
2t1) in six contributions so thatQi jk 5 (n51

6 Ji jk
(n) , with

Ji jk
~1!5 lim

t→`

1

t E2t

0

ds1E
0

t1s1
ds2E

2s1

t2s2
dt1Ni jk , ~A1!

Ji jk
~2!5 lim

t→`

1

t E2t

0

ds1E
s1

0

ds2E
2s1

t

dt1Ni jk , ~A2!

Ji jk
~3!5 lim

t→`

1

t E2t

0

ds1E
2t

s1
ds2E

2s2

t

dt1Ni jk , ~A3!

Ji jk
~4!5 lim

t→`

1

t E0
t

ds1E
s1

t

ds2E
0

t2s2
dt1Ni jk , ~A4!

Ji jk
~5!5 lim

t→`

1

t E0
t

ds1E
0

s1
ds2E

0

t2s1
dt1Ni jk , ~A5!

Ji jk
~6!5 lim

t→`

1

t E0
t

ds1E
2t1s1

0

ds2E
2s2

t2s1
dt1Ni jk , ~A6!

with Ni jk5^Dv i(t1)Dv j (s1)Dvk(s2)& and Dv(t)5v(t)
2^v(t)&. The integrations overt1 can now be performed in
the limit of t going to infinity leading to six elementary in
tegrals

I i jk
~1!5 lim

t→`
E

2t

0

ds1E
0

t1s1
ds2Ni jk , ~A7!

I i jk
~2!5 lim

t→`
E

2t

0

ds1E
s1

0

ds2Ni jk , ~A8!

I i jk
~3!5 lim

t→`
E

2t

0

ds1E
2t

s1
ds2Ni jk , ~A9!

I i jk
~4!5 lim

t→`
E
0

t

ds1E
s1

t

ds2Ni jk , ~A10!

I i jk
~5!5 lim

t→`
E
0

t

ds1E
0

s1
ds2Ni jk , ~A11!

I i jk
~6!5 lim

t→`
E
0

t

ds1E
2t1s1

0

ds2Ni jk , ~A12!

where here we can setNi jk5^Dv i(0)Dv j (s1)Dvk(s2)&, with
s1 ands2 defined relative to the time origin ofDv i(0).

We can now utilize symmetries of the correlation fun
tions and the (s1 ,s2) coordinates to prove that all nonvan
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ishing components of diffusion coefficients, except t
QZZZ component, are equal to one another. First, the sim
taneous interchange ofs1 with s2 and j with k in the above
equations leads to identicalI ’s,

I XZX
~k! 5I XXZ

~k8! ,I ZXX
~k! 5I ZXX

~k8! and I ZZZ
~k! 5I ZZZ

~k8! , ~A13!

when the pair (k, k8) takes values from$~1, 6!, ~2, 3!, ~4, 5!%
and vice versa for interchangedk and k8. These identities
hold also withY in the position ofX.

With the use of the above identities we can obtain th
independent components forQ in compliance with a previ-
ous suggestion.2 However, one more set of relations betwe
elementary integrals can be identified reducing the num
of independentQ components to two. Specifically, the inte
change of the origin of time,t1 , with s1 andi with j leads to
analogous identities,

I ZXX
~k! 5I XZX

~k8! ,I XXZ
~k! 5I XXZ

~k8! and I ZZZ
~k! 5I ZZZ

~k8! , ~A14!

with (k, k8) taking values from$~1, 4!, ~2, 5!, ~3, 6!% and
vice versa for interchangedk and k8. Similarly, these rela-
tions hold also withY in the position ofX. The proof of
these identities is not as obvious as is in the previous c
Eq. ~A13!, and we present it in detail.

Without loss of generality we present the proof of one
the above identities,

I ZXX
~2! 5I XZX

~5! ,

or

E
2t

0

ds1E
s1

0

ds2^Dvz~r !Dvx~r1s1!Dvx~r1s2!&

5E
0

t

ds18E
0

s18ds28^Dvx~r 8!Dvz~r 81si8!Dvx~r 81s28!&,

~A15!

with t approaching infinity and wherer and r 8 are arbitrary
time variables since the correlations do not depend on
time origin. It is now possible through a linear transform
tion of the time variables,

r5r 81s18 ,s152s18 and s25s282s18 , ~A16!

to transformI (2) to I (5). The first of the above equation re
lates the reference times over which thes-time variables are
defined and the remaining two constitute a linear transform
tion rule. The same rule can be used also for the proof of
remaining identities of Eqs.~A14!.

As a result, both sets of the above identities, Eqs.~A13!
and ~A14!, render all the components ofQ, other than
QZZZ , equal to one another and in addition equal to

Q'[ 1
3~B1C1D !, ~A17!

where for exampleB5I ZXX
(4) , C5I ZXX

(1) , andD5I ZXX
(2) . For

theQZZZ component all sixI integrals are equal to one an
other and thus we setQi5QZZZ5A, with for example
A5I ZZZ

(5) .
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