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Velocity correlation functions and third order diffusion coefficients of ions moving in a buffer gas
under the influence of an electrostatic field are determined via molecular dynamics simulation. For
the closed shell system of'Kin Ar using a universal interaction model potential, the general form

of the third order correlation functions is found to be monotonically decaying in time except in the
cases of (Avz(0)Avx(t)?), (Avz(0)Avy(t)?), and (Av,(0)Av(t)?), with Av(t)=v(t)
—(v(t)) and the field in thez direction. These functions acquire positive slope at short times
showing enhancement of correlations between instantangocemponents of the ions and their
future kinetic energies or velocity measures. This feature is shown to quantify the dynamics of
correlations between velocity components suggested in the past by Ong, Hogan, Lam and Viehland
[Phys. Rev. A5, 3997(1992] in order to explain the form of an ion velocity distribution function
calculated through a Monte Carlo simulation method. In addition, within a stochastic analysis which
establishes a relation between velocity correlation functions and third order diffusion coefficients,
only two independent components of the diffusion ten€randQ, , are predicted. We thereby
calculate theQ, component, which has not been determined so far, over a wide field range. The
magnitudes of the resulting third order diffusion coefficients indicate that their contribution to the
ion transport in usual drift-tube measurements should be very smalll9%y American Institute of
Physics[S0021-960807)52617-1

I. INTRODUCTION ion-atom system$.Contrary to this, third order and higher
__diffusion coefficients have so far not been probed experi-

The transport of nonreactive ions in a gas under the Ir"mentally, due to the small effect they should induce on the

fluence of a homogeneous electrostatic field is characterizeﬁjme of flight spectra of drift-tube experiments. However
by a steady drift and a superposed diffusional motidine through molecular dynamics simulation of the ion motion we

rr nding ion flux may then Xpr :
corresponding ion flux may then be expressed as were able to calculate th®,,, component for K in Ar
J=nv4—D-Vn+Q:VVn+--- , (1)  using an accurate intermolecular potential.

wheren is the ion densityy, is the drift velocity, andD, Q In order to complete the determination of &l compo-

etc. are diffusion tensors of second, third etc. rank. Terms of€nts of K* in Ar we proceed by first establishing a method
the form (Vn)2 need not be included in cases where theOf calculation from third order velocity correlation functions.

density gradient is negligible, as we assume here. We, thus, employ here a stochastic procedure equivalent to
A|though the number Of Components Of the diffusion the one used at equ|l|br|l.ﬁmut extended so that tensorial
tensor increases quadratically with the rank, many of thengliffusion coefficients are accommodated in the anafysis.
vanish or coincide, due to the cylindrical symmetry of theBased on a generalized Onsager hypothesis for the regression
ion motion and the irrelevance of the order of differentiationof ion-density fluctuations towards the steady drift motion,
of n in Eq. (1). Thus,D has only two independent compo- we relateQ with correlation functions and find that only two
nents,D,=D,, and D, =Dyxx=Dyy, with the field,E, in  independent components are predict@g=Qzz; andQ, .
the z direction. Similarly,Q has only seven nonvanishing This result, depends on microscopic assumptions which must
components, three of which should be independent accordinigold at least for small and intermediate field strengths.
to a suggestion based on symmetries of the ion madtian. The obtained expressions for tkg coefficients depend
the following, however, we will show that this number is on third order correlation functions of the forml;j
reduced by one within a stochastic analysis of the ion-density= <AUiAUjAUk), with Av=v—(v) and the brackets refer-
fluctuations. Further, at low fields, due to the spherical symring to averages of a steady state ensemble. Assuming ergod-
metry of the ion motion close to equilibrium, the componentsicity to hold, the averages are determined from trajectories
of odd rank vanish and the remaining even order ones bejenerated by nonequilibrium molecular dynamitD)
come scalars. simulation of the ion motioR:” The method involves main-

_ Inthe past, drift velocities or mobilitie =v4/E, and  tenance of the buffer gas at constant temperature through the
Fickian diffusion coefficients have been measured for manynoguction of ‘iconical’ ion-neutral collisions in usual MD
methods. As an interaction potential betweenh Knd Ar
dElectronic mail: akoutsel@atlas.uoa.gr atoms we employ a universal interaction model which has
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7118 Andreas D. Koutselos: Diffusion coefficients of ions in electrostatic fields

been found in the past to reproduce successfully the mobili- t t
ties and ion diffusion coefficients. Q=(1/3!)Iim(1/t)f dtlf dt,
The velocity-correlation functions contain information o ° 0
about the mean microscopienesoscopicion motion and t
they can be studied for their own merit. For example, it has Xf dtz(Av(ty) Av(tz)Av(ty)). (4)
been suggested in the past by Geigl.? in order to explain 0
the form of the velocity distribution of Nain Ne obtained \We can then integrate one of the time variables, like
from Monte Carlo(MC) simulations, essentially that ions of since the correlation function at steady state should depend
high vz components should acquire with increased probabilonly on two time intervals, such as=t,—t; ands,=t;
ity also highvyx andvy components. Such correlations and —t, . Therefore, we change variables tq 5;,s,) and de-
their evolution in time, that is their dynamics, can be studiedive for theijk component
through specific correlation functions, like
(Avz(0)|Avx(1)]), or the ones we employ here for the cal-
culation of diffusion coefficients, such agAvz(0)
x{Avx(t)}?) and (Avz(0){Avy(1)}?). Indeed, the latter
functions are found not to decay at short times as normally =t
would be expected, but to increase, until a maximum is Xf . ds{Avi(ty) Avj($1)Avk(S2)). ®)
reached, before they start decaying exponentially at long
time values. This feature is studied further by calculatingln order to perform the integration oveéy we follow the
correlation functions for rapidly moving ions in the procedure presented in the Appendix. Specifically, we first
z-direction alone. It is thus confirmed that the observed nonseparate the integral into six contributions. Then, in the limit
monotonicity of the correlation functions is related directly of t approaching infinity, we obtain th@ components in
with the correlations suggested by Oegal® Even more, ~ terms of six characteristic integralky’ defined in the Ap-
the form of these functions reveal the dynamics of the mependix,
soscopic ion motion. 6
In the next section we obtain a relation between third _ (m)
order diffusion coefficients and velocity correlation functions Q= (1/6)m§="1 lijic (S1:82). ©
through a stochastic analysis and show that only two inde-
pendent components are predicted @@rin Sec. Ill we cal- with m taking values from 1 to 6 and where the time vari-
culate correlation functions and diffusion coefficients forabless, ands, refer to thej andk velocity components,
K* in Ar from an MD simulation of the motion of the ions. espectively.
Finally, in the conclusions we summarize our results and  Further, symmetry considerations about the interchange
comment on the magnitude of the effects@fon the ion of the velocity components and the time variables show that
transport in usual drift-tube spectrometers. many of thel integrals are equal to one another and that at
most four of them are independent, indicated AyB, C,
and D. We also mention in advance that the calculatd
andD integrals appear to be equal to each other within the
Il. STOCHASTIC ANALYSIS statistical error of the simulation method. This may be due to

The transport of a trace amount of ions in a buffer gas;:% additional underling symmetry of thentegrals which we

under the influence of an external homogeneous electrostat9 ercggﬁgggtazlse (t)(f) tiﬁs?r:itfggsrgl;atr).rilr:;efr?ee?g:vgz;{Qrimsiﬁ;he
field has been studied in the past through a stochastic analy- e
sis in order for the diffusion coefficients to be expressed incogl\p;c%nfn_ts, W'th u_](;jeerXX(,j ZYY’l XXZ, YYZ XZX,
terms of velocity correlation functiorsln this way, the ob- an » Into coincidence and equal to
tained third order diffusion co_efficient has been gxprgssed in Q,=(B+C+D)/3. )
terms of a third order tensorial product of spatial displace-
ments of a tagged iom\r = r;(t) —(r;(t)), The six integrals of the remaining, component are equal to
| one another and thus we s@j=A.
Qt=(1/3!)(ArArAr), 2 The above prediction appears to be in variance with an

with t approaching infinity and where the brackets represenffmalySiS of third orde_r diffusion coefficients _in Car_tesian ten-
a steady state ensemble average. The introduction of veIocitP)Prs that are irreducible under the three dimensional group,

correlation functions into the analysis is utilized by express!0M whigh three  independentQ ~ components  are
ing Ar in terms of the velocity of the iony(t) predictec®® However, this analysis is based on the symme-

tries of the macroscopic ion motion, though our result de-
t o, , pends on mesoscopic considerations about the regression of
Ar:fodt Av(t’), 3) ion-density fluctuations. Thus, whenever our assumptions are
met in drift tube experimental conditions, as it is expected
with Av(t) = v(t) — v4, wherevy = (v(t)) isthedriftvelocity  especially at weak and intermediate field strengths, our pre-
of the ion. Substituting this expression into ER) we obtain  dictions should be in compliance with experiment.

t t—t
Qijk=(1/3!)|im(1/t)f dtlf "ds,
t—o 0 _tl
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We proceed now to the determination and study of ve-A. Correlation functions

locity correlation functions, as well as to the calculation of The relative scarcity and uniformity of interactions lead

Q.. to uncorrelated binary collisions between ions and buffer gas
atoms at the usual drift tube experimental conditions. This
. RESULTS simple picture leads one to expect that the ion velocity cor-

In order to complete the calculation of tf@ compo-  relation functions have the form of an exponentially decay-
nents for a representative system and study its dynamics atiag function irrespective of the field strength. However, as
mesoscopic level, we have chosen to simulate the motion dfas been inferred, for example, from an MC simulation of
K™ in Ar in usual drift tube experimental conditions at vari- Na" in Ne at high fields the distribution function acquires
ous field strengths via molecular dynamics. The methodin egglike cylindrical form which is inseparable as a product
maintains constant gas temperature and steady drift for thef functions that depend on different component§. This
ions through the use of iconical ion—atom interactions. Thainseparability has been attributed to correlations between
is, each ion interacts only with images of the neutrals whichv, andvy or vy .
are created and stored in the computer during every ion— To investigate these correlations and their dynamic be-
neutral encounter. Consistently, the “real” neutrals, whichhavior, one can study the form of the correlation functions
in a sense provide initial conditions for the exact scattering Avz(0)|Avx(t)|) and (Av,(0)|Avy(t)|) or the qualita-
of the ions, are simulated with a conventional equilibriumtively similar functions Cxx=(Avz(0){Avx(t)}?) and
MD method without allowing them to feel forces from the C,yy=(Avz(0){Avv(t)}?), since the squared velocity com-
ions. With this mechanism eventually the electric energy ofponents differ from the measures only in magnitude. The
the ions is dissipated without the real neutrals being pertatter functions constitute special cases of the correlation
turbed from equilibrium. This is in compliance with drift function needed for the calculation of third order diffusion
tube experiments where the neutral molecules being in excoefficients, and therefore we examine these here, first.
cess provide a thermal bath for the ions. The additional ne-  The correlation functions are calculated from averages
glect of ion—ion interactions and many body ion—neutral cor-of 1900 such functions which are determined consecutively,
relations is reasonable at the low density experimentagach starting 300 time steps after the previous one. During
condit.ions where uncorrelated binary ion—atom collisionsthe simulation, values for the correlations are collected every
prevail. 200 steps. Their accuracy is best at intermediate field

Since the method allows uninterrupted evolution of thestrengths, where, for example, at 150 Td, at time values 30,
trajectories of 'ghe ions and atoms, we implgm_ent periodi_c,75 and 210 ps, the standard deviatiorOgfy is found to be
boundary conditions and collect data for statistical analysi$so, 2204 and 28% of the mean, respectively. Similarly, the
continuously. Results are derived from simulations of 500g|evant errors foC,,, are 20%, 20%, and 29%. At weaker
ions in 108 neutral atoms using Verlet algor_|ﬂﬁ’nﬁor the  and stronger fields the error increases gradually until it al-
integration of the equations of motion. During each run,jsst doubles at the limits of the employed field range. How-
which involves <10 steps of 10™" s time interval each, gyer the corresponding diffusion coefficients acquire better
about 16 ion—atom collisions take place. More details of the accuracy due to the fact that they are calculated through time
method have been presented in the Past. __integration of these correlation functions.

At the present |de§1I gas condmonsl\éve use ag efficient | contrast to what one would anticipate at low densities,
Lenn_ard—Jo_nes potential(R) = 46[.(0/R) — (0/R)?], for the calculatedC,xx and C,yy acquire a positive slope at
the Interactions 2°f Ar ator:r%l, with 0=6.434% and gt times and reach a maximum, between 70 and 100 ps
'5:3'791X10 € lag. FoOr K_ —Ar We use an accurate uni- depending on the field strength, before they start decaying
versal interaction mod& which consists qf a short-range exponentially (Fig. 1). Also their extension is quite large
exchange part and a long-range Coulombic part since they attain again their initial value between 200 and

V(r)=1[A expg(—aR/p)—B exp(—bR/p)] 300 ps. To our surprise evéy,,=(Avz(0){Av,(t)}?) had

4 6 8 a similar shape, as depicted in Fig. 2, but only at intermedi-
~(C4/R*+Ce/R°+Cg/RPN(R,Ryy), (8) ate and high field strengths. In order to elucidate further if
where this behavior stems primarily from ions with high, %om—
ponents in conformity to the observation of Oagal.,” we
exfl ~ (1.28Ry/R-1)?] for Rsl.za?m, have calculated the same correlation functions but with
1 for R=1.28Rp Av,(0)=vz — (vz) lying in one of the four segments: |
is a damping function andA=146.98, B=70.198, (vo,*%), I (0, vy), lll (—vy, 0), and IV(—%,—vg), where
a=1.5024,b=1.4041. The remaining parameters in atomicV, is a convenient velocity limit.
units are: v=1.202, p=.9478, R,=5.87, C,=5.540, Although the shapes of the obtained correlation func-
Cs=66.04, Cg=1007.4. This potential has been found tions vary from region to region, a general conclusion about
through kinetic theory calculatiofs as well as through the origin of the nonmonotonicity of these functions can be
Monte Carld®'* and MD simulationd’ to reproduce suc- drawn beyond the uncertainty of the calculations. Specifi-
cessfully the experimental mobilities and ion-diffusion coef-cally, in the case oC,,,, (Fig. 3) we observe that all the
ficients. ions contribute to the nonmonotonic behavior except those

h(R,Ry,) =
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FIG. 1. Third ordeiC,yy correlation functions for K in Ar at various field ~ FIG. 3. C;,; correlation functions of K in Ar at 300 K at different velocity
strengths. regions(l)—(IV) defined in withvg = 2300 m/s. During the simulation the

mean number of the 500 ions in the regions were 93.14, 133.8, 172.7 and
100.3, respectively.

with high initial v; component. This behavior should be due

to the persistence of the instantaneous ion motion caused b

the action of the electric field. This ordered motion lasts forB: Third order diffusion coefficients

a few collisions with the neutrals before randomization of the To obtain QJ_ we have to integrate the Corresponding

velocity sets in. The latter process, however, seems to bgorrelation function of one of the nonvanishi;, , over

dominant in the case of energetic ions in the direction of thesix different regions of the time variables. Instead, since for

field, region I, where the correlation function decays mono-exampleQ, =(1/3)(B+C+D) and by using the identities of

tonically. the Appendix, we can as well obtai®, =(1/6)3 .1,
Contrary to this, the feature @zyx, (or Czyy), func-  \yheren represents all siik components. In this expression

tion is found indeed to stem mainly from ions with high  the space of integration is restricted to half of the first quad-

component though ions from the other regions contributgant of the 6;,S,) plane, though the calculation of all six

also to the effectsee Fig. 4. It thus appears that the fast ions correlation functions is required. These functions, however,

in the direction of the field in their near future acquire with are easily determined simultaneously through the simulation
increased probability high velocity components in transversgyocedure.

directions until their motion is randomized even more by the | order to extend the integration of the correlation func-

ion—atom collisions. This observation, further, elucidates thejons to infinity we separate the integration into two parts.

dynamic behavior of the correlations betwagnandvy or  The first part, which includes the short-time region, is calcu-

vy components. We turn now to the calculation of the third|ated arithmetically during the simulation and the second part

order diffusion component perpendicular to the field. analytically by first fitting the correlations below their inver-
sion points with a two-time exponential function
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FIG. 2. Third ordeIrC,, correlation functions for K in Ar at various field
strengths. FIG. 4. Similar to Fig. 3 forCxx.
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TABLE 1. Drift velocities, elementary velocity-correlation integrals and as functions of time which are more strongly correlated than
third order transverse diffusion coefficients of Kn Ar at 300 K. Av,(t)Avy(t,) or Avy(ty)Av,(t,), especially around;

E/NTd®  vy(m/9  N?BP N2C®  N?DP  N2Q,° =t ,
Likewise, the accuracy dii“Q, depends mostly on the

28 iég-g 2-;234 g-ggggs 8-3233 g-égg’é accuracy ofB which consists of two parts each calculated
80 6453 2791 0.7269 0.8096 1419 with dl_fferent accqracy._The first part, wh|c_h mvolyes the
100 849 3 5.579 1368 1.724 2890 Short time correlations, is calculated numerically with stan-
150 1314 10.113 2.516 2.474 5.034 dard deviations equal to a few percent of the mean values
200 1680 12.220 3.782 3.768 6.590  and the second part which includes long time correlations is
300 2314 18.205 4525 4.371 9.034  calculated through an interpolation with higher errors. Re-
400 2832 32.634 4717 4.184 13.84

peated calculations using variable length simulations and dif-

600 3617 65.830 6.956 6.366 26.38 e " L9 ;
ferent initial conditions indicate that the overall relative error
3 Td=10"2'V m2 of the diffusion coefficient is about 10% at intermediate field
°In units of 16° cm™*s™*. strengths, which almost doubles at very small and large

fields. This is because, at weak fields the mean values of the
correlations vanish but the magnitudes of their fluctuations
Cijk(s1,Sp) = (e 41517 P1—g %17 P2)g, /5 472517 P2 remain high. At strong fields, however, fluctuations become
9 high due to frequent exchange of large amounts of energy
The fitting is found to be quite accurate and leads to finaduring ion—neutral collisions. In general, the accuracy of the
errors less than 1%—2%. procedure can be improved with the use of longer runs and
The resulting diffusion coefficients for different field Smaller time step in the simulation, though with the cost of
strengths are presented in Table IN&Q, in order for an  high amount of computer time.
expected inverse quadratic dependence on the gas density to
be removed. We also present drift velocities as well as théV. CONCLUSIONS
three elementary integrals which contribute to the diffusion

coefficient. The depe_ndeznce bEQ, on the field is shown 0 independent components can be established for the third
in Fig. 5 together withN“Q,, which has been calculated qrqer diffusion coefficient of ions drifting in gases under the
earlier via our procedure using the same interactionnfiyence of a homogeneous electrostatic field. To complete
potentialy for comparison. _ . the determination ofQ components for the representative

The dominant contribution to the third order diffusion system of K in Ar, we determined th€, from third order
coefflClentg comes from th.B integral as can be 'nfe”ed velocity correlation functions. The other third order compo-
by inspection of the magnitude of the relevant correlatlonnem,QH, has been determined similarly in the past using the
functions that determine the integrals. Thu, C, and  ggme interaction potential

ntegr _ _ :

D are calculated from 1®® integrals involving The order of magnitude of our results and the fact that
(Avz(0)Avx(ty)Avx(tz)), (Avx(0)Avz(t)Avx(tz)) and  these coefficients contribute to the ion transport only at the
(Avx(0)Avx(ty)Avy(ty)), respectively. The first of these ey early relaxing stages, where high ion density gradients
functions at specific time values is larger than the other twopey4il, indicate tha® should interfere negligibly with drift
because it involves a product of similar velocity components ;e experimental results in the case of i Ar.

The correlation functions were determined first from a
nonequilibrium MD simulation of the motion of the ions. In
general, the form of the derived correlation functions appears
| exponentially decaying except in the cases (dfv,(0)

}{Avy(D}2),  (Avz(0){Auy(D)}?), and  (Avy(0)

N x{Avz(t)}?), where a nonmonotonic behavior at short
times has been observed. This behavior is in compliance
with the observed correlations between velocity components
of Na* in Ne through analysis of the results of a Monte
Carlo simulation in the paétin this sense, the present cor-
relation functions quantify the dynamic behavior of the pre-
viously suggested correlations.

Although the systems studied so far involve ions and
1 atoms of comparable mass, the observed effects should be
general and thus present in other systems as well.

We have shown that within our stochastic analysis only
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irreducible tensors. In addition, the computer time providedshing components of diffusion coefficients, except the
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when the pairk, k') takes values fron(1, 6), (2, 3), (4, 5}
and vice versa for interchangdédand k’. These identities
APPENDIX hold also withY in the position ofX.
In order to integrate the, variable of the integral of Eq. With the use of the above identities we can obtain three

(5), we first split the integration oft(, Sl_tZ — t,S,=t5 independent components f@ in compliance with a previ-
ous suggestioAHowever, one more set of relations between

—t,) in six contributions so tha®;;, = 1‘]|Jk , With ) . i :
elementary integrals can be identified reducing the number
1 (o sy t=s of independen® com ts to two. Specifically, the inter-
(1)_ < B p ponents to two. Specifically, the inter
Jiik t“f:c t f dslf dszf dtaNije , (A1) change of the origin of time;, with s, andi with j leads to
analogous identities,
J@ =i 1f0d fod ft dt;N (A2)
K th:ct -t 51 s % sy e | 75x= §<zx'|xk>)<z:|xxz andl(zkz)z:|zzzi (A14)
1 (o 5 ¢ with (k, k') taking values from{(1, 4), (2, 5), (3, 6)} and
Ji = lim T f dslf dszf dt;Nijy , (A3)  vice versa for interchangekl andk’. Similarly, these rela-
toe & It -t ~S2 tions hold also withY in the position ofX. The proof of
1 rt ¢ t—s, these identities is not as obvious as is in the previous case,
i = lim T f d31J dszJ dt;Nijy , (A4)  Eq.(A13), and we present it in detail.
t—e 0 S1 0 Without loss of generality we present the proof of one of
1 [t s . the above identities,
(5)_ 1 S1
Jijk=1im T ds; | ds, dtyNijji » (A5) |2) )
t—o0 0 0 0 ZXX™ IXZX»
6 1 [t 0 t—s; or
I =1lim = f d31J dszf dt; Nijy, (A6)
t—oo t Jo —t+s; )

0 0
with  Nij =(Av;(t)Avj(s)Avi(sp)) and Av(t)=u(t) f-tdsifsldszmvz“mvx(r+31)Avx(r+32)>

—(v(t)). The integrations ovetr; can now be performed in

the limit of t going to infinity leading to six elementary in- T / 't 't
tegrals going y 9 y zfodslfoldsz<Avx(r YAV (1’ +5/)Av,(r' +55)),
" (A15)
Hik= I|m J dslj dszNijic (A7) with t approaching infinity and wheneandr’ are arbitrary

time variables since the correlations do not depend on the

time origin. It is now possible through a linear transforma-
1(2) =
ik I|mJ dle dseNiji. (A8)  tion of the time variables,
. r=r'+s;,s;=—s; ands,=s,—5;, (A16)
1= nmf dslf ds;Nij , (A9)

to transforml® to 1), The first of the above equation re-
lates the reference times over which time variables are
|<J4k>: I|m f dslj ds;Nijy , (A10) Qefined and the remaining two constitute a linear transforma-
tion rule. The same rule can be used also for the proof of the
remaining identities of EqgA14).
ﬁ(): I|m f dslj ds,Niji, (A11) As a result, both sets of the above identities, E§4.3)
and (Al14), render all the components d, other than
Qzzz, equal to one another and in addition equal to

= '”“f as . oM A2 g =yB+c+D), (A17)
where here we can sBt;, =(Av;(0)Av;(s;)Avi(S,)), with  where for exampleB=183y, C=1%),, andD=1%),. For
s; ands, defined relative to the time origin dfv;(0). the Qz7zz component all siX integrals are equal to one an-

We can now utilize symmetries of the correlation func-other and thus we seQ,=Qzz=A, with for example
tions and the §;,s,) coordinates to prove that all nonvan- A=1%),.
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