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The dynamic and transport properties of swarms of ions in a uniform electrostatic field are studied
by using a molecular dynamics method. For a representative system, K1 in Ar, using a universal
interaction model potential, second and third order ion-velocity correlation functions are determined
at various field strengths. From them, Fickian diffusion coefficients parallel and perpendicular to the
field, as well as higher order diffusion coefficients,Qzzz, are obtained within estimated overall
accuracy 5% and 7%, respectively. Comparisons of the Fickian diffusion coefficients against results
of the moment solution of Boltzmann kinetic equation and a Monte Carlo simulation method using
the same interaction potential as well as against experimental data, reveal consistency among all
calculation procedures and in addition agreement with drift tube measurements. These comparisons
provide new tests for the accuracy of the employed interaction potential. The method has been
applied for up to third order velocity correlations and diffusion coefficients but it is extendible to
higher order dynamic and transport properties. ©1996 American Institute of Physics.
@S0021-9606~96!51020-2#

I. INTRODUCTION

We probe the dynamic and transport properties of ions
drifting in gases under the influence of an electrostatic field
by using a molecular dynamics simulation method. Already,
we have applied the method successfully, in the past, for the
reproduction of experimental mobilities, effective tempera-
tures parallel and perpendicular to the field and skewness
parameters of the velocity distribution of the ions.1 Here, we
further determine second and third order ion-velocity corre-
lation functions and from them Fickian and higher order dif-
fusion coefficients.

Experimental data for ion-transport properties have been
collected for many ion-molecule combinations from drift
tube experiments and have been compiled in the past
decades.2–6 They consist primarily of mobilities and Fickian
ion-diffusion coefficients parallel and perpendicular to the
electric field. For selective systems third and fourth order
moments of the ion-velocity distribution7,8 have been mea-
sured as well as population distributions of rotational states
and alignment of angular momentum of molecular ions with
respect to the field have been probed.9

The transport data have been reproduced mainly through
the moment solution of Boltzmann kinetic equation espe-
cially in the case of atomic systems.2 Recent advances, how-
ever, in the incorporation of rotational motion into the ki-
netic theory description are promising for the interpretation
of transport properties in the case of molecular ions.10–12An
alternative procedure for the description of ion motion has
been based on simulations through a Monte Carlo
method13,14which has been developed in the past based on a
prescribed distribution of free times between ion-neutral col-
lisions. This method has been employed for the reproduction
of mobilities and Fickian diffusion coefficients but has not

been applied for the determination of dynamic properties so
far.

The straightforward application of our MD method for
the calculation of velocity correlation functions enables us to
determine the dynamic properties of ions in steady drift mo-
tion. The present procedure consists of a usual equilibrium
molecular dynamics technique with periodic boundary con-
ditions supplemented by an effective dissipation mechanism
of iconical interactions1 which mimics realistically and effi-
ciently the loss of electric energy of the ions through transfer
to the buffer gas as thermal energy.

By using this procedure we have obtained in the past
drift velocities and effective ion-temperatures parallel and
perpendicular to the field, which enabled us to establish the
accuracy of the method by comparison against experimental,
theoretical and simulation results. Further, here, we calculate
Fickian diffusion coefficients parallel and perpendicular to
the field as well as a third order non-Fickian diffusion coef-
ficient for the ions at various field strengths. The former
coefficients are compared and tested against experimental
data as well as against results from the moment solutions of
the kinetic theory and Monte Carlo simulations using the
same interaction potential.

A different situation arises for the third order diffusion
coefficients, since they have not been measured so far, al-
though they are suspected to interfere to the results of drift
tube experiments.15 However, a method has been developed
for the calculation of such coefficients from the moment so-
lution of Boltzmann equation,16 though it has not been ap-
plied to real systems but only for model ion-atom potentials
and in relation to the testing of generalized Nernst-Einstein
relations between high order diffusion coefficients and non-
linear mobility.16–18
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In the following section we obtain statistical expressions
for diffusion coefficients from velocity autocorrelation func-
tions by analyzing the stochastic evolution of a correlation
function in analogy to equilibrium.19 Although the derivation
is similar, it differs in that the diffusion coefficients at mod-
erate and higher field strengths become high rank tensorial
quantities and a careful treatment for the emerging dimen-
sions is required. In the third section we present the em-
ployed simulation method and the relevant operational pa-
rameters in its use. In the fourth section we calculate
autocorrelation functions for a representative system, K1 in
Ar, and study the dynamic behavior of the ionic motion in
the buffer gas as a function of the field strength. We then
discuss the possibility of utilizing such information for ex-
plaining the form of the ion velocity distribution function.
This analysis is expected to be more important in the case of
molecular ions which acquire internal degrees of freedom.

In addition, we study the reproduction of experimental
ion diffusion coefficients from the second order velocity cor-
relation functions and compare our results against results of
analytic calculations and Monte Carlo simulations. Further,
we determine theQzzzcomponent of the third order ion dif-
fusion coefficient as a function of the field strength. Its ac-
curacy is expected to be within67%. Finally, in the conclu-
sions we comment for the possibility of calculating higher
order diffusion coefficients.

II. STOCHASTIC ANALYSIS

The flow of a small amount of ions in a low density gas
under the influence of an electrostatic field is characterized
by a current,J, which is composed of two parts; one describ-
ing ordered drift motion and the other diffusional motion,2

J5nyd2D•¹n1Q:¹¹n1•••, ~1!

wheren is the ion number density,yd is the drift velocity
andD, Q, etc. are diffusion coefficients of second, third, etc.
rank, respectively. The number of dots in the expression de-
notes the order of the rank contraction between diffusion
coefficients and gradient terms. In this expression high order
gradient terms of the ion density, such as (¹n)2, are not
included due to the presence of a trace amount of ions.

The tensorial character of the diffusion emerges from the
cylindrical symmetry of the ion motion due to the effect of
the homogeneous electrostatic field. However, many of the
elements of these coefficients are zero and from the remain-
ing ones many are equal to each other due to this symmetry.
Specifically, for the Fickian diffusion coefficients there are
only two independent components,D i 5 DzzandD' 5 Dxx

5 Dyy , with the field in thez direction, and for third order
diffusion coefficients it has been suggested that there are
only three independent components.16

The low density of the system ensures the fast enough
decay of ion velocity correlations and thus the existence of
all diffusion coefficients in consistence with the above ex-
pansion. However, at low field strengths odd rank diffusion
coefficients vanish and the remaining even order ones render
scalars.

The temporal change of ion density can now be obtained
from an equation of continuity and Eq.~1!,

]n

]t
52yd•¹n1D:¹¹n2QA¹¹¹n1•••. ~2!

To derive a statistical expression for the above diffusion
coefficients, we consider the motion of a tagged ion in the
buffer gas and assume that at timet it has positionr i(t)
when initially it is at r i(0). The relevant quantity for the
study of the ion drift and diffusion is the conditional prob-
ability P(r ,t;r,0) of finding the particle at timet at position
r1r provided it was initially atp. This probability is ob-
tained form a steady state ensemble average through

P~r ,t;r,0![P~r ,t !5V^h~p,0!h~r1r,t !&, ~3!

whereh ~r ,t!5d@r 2 r i(t)] is the local microscopic density of
the ion in volumeV, such that^h &5V21, and d~r ! is a
‘‘delta’’ function. The independence of the final result on the
initial position allows us to average overr and obtain

P~r ,t !5^d~r2Dr i !&, ~4!

whereDr i 5 r i(t) 2 r i(0) is the displacement of the ion. In
order now to expand this probability in cummulants we first
Fourier transform it with respect to the spatial coordinates,

P~k,t !5E dr eikrP~r ,t !5^eikDr i&, ~5!

and then expand the exponential, in such a way that high
rank tensorial quantities emerge in an exponent,

^eikDr i&5 exp$ i^Dr i&•k1~ i2/2!^DrDr &:kk1~ i3/3! !

3^DrDrDr &Akkk1•••%, ~6!

whereDr5Dr i 2 ^Dr i&. In this expression the factors with
the brackets in front of the products ofk are identified as
cummulants of the distribution by comparison with the gen-
eral expansion

P~k,t !5 exp$ iC~1!
•k1~ i2/2!C~2!:kk1~ i3/3! !C~3!Akkk

1•••%, ~7!

where, here,C(n) is thenth rank cummulant which is con-
tracted by the same rank product ofk vectors.

Assuming now that the regression of fluctuations to-
wards the drift state of the ions at long times is described by
the hydrodynamic equations, we derive another expression
for the probability density which involves explicitly the dif-
fusion coefficients. Accordingly, we Fourier transform with
respect to the spatial coordinates both sides of Eq.~2! after
replacingn with P(r ,t) and derive

]P~k,t !

]t
5$ iyd•k1 i2D:kk1 i3QAkkk1•••%P~k,t !, or

P~k,t !5 exp$ iyd•k1 i2D:kk1 i3QAkkk1•••%t. ~8!

Finally, by comparing expression~6! and ~8! we find

ydt5^Dr i&,

Dt5~1/2!!^DrDr &,
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Qt5~1/3!!^DrDrDr &, etc., ~9!

with t approaching infinity.
We can now utilize these expressions for the determina-

tion of ion transport properties by calculating averages from
molecular dynamics simulations. The first expression pro-
vides the drift velocity or the mobility, throughK 5 yd /E,
and the second one provides Fickian diffusion coefficients.
This formula can be transformed to another useful form by
noting first that

Dr5r i~ t !2^r i~ t !&5E
0

t

Dy~ t !dt, ~10!

withDy(t) 5 y(t) 2 yd , wherey(t) is the velocity of the ion
at timet andyd 5 ^y(t)&. We can then express the displace-
ment tensorial product forD as follows:

^DrDr &5E
0

t

dt1E
0

t

dt2^Dy~ t1!Dy~ t2!&. ~11!

This expression can further be simplified by noting that at
steady ion motion the ensemble average should depend only
on t5t22t1 . Accordingly, by changing coordinates to
(t1 ,t) and integrating overt1 , in the limit of t approaching
infinity, we derive

^DrDr &52tE
0

`

dt^Dy~0!Dy~ t !&. ~12!

Finally, by introducing this expression into Eq.~9! we obtain
an alternative expression forD in terms of the second order-
second rank velocity correlation function, M
5^Dy(0)Dy(t)&,

D5E
0

`

Mdt. ~13!

This expression has been employed in the past in Monte
Carlo simulations13 and here we will employ the same for-
mula for the calculation of D i5Dzz and
D'5(Dxx1Dyy)/2.

Similarly, the third of Eqs.~9! provides third order dif-
fusion coefficients. For the calculation ofQzzz coefficients,
however, we will use the equivalent expression which is
based on a correlation function,

Qzzz5E
0

`

dt1E
0

t1
Nzzzdt2 , ~14!

whereNzzz 5 ^Dvz(0)Dvz(t1)Dvz(t2)& is a component of
the third order-third rank velocity correlation function.

III. SIMULATION METHOD

The generation of ion configurations which are needed
for the statistical analysis relays on standard equilibrium mo-
lecular dynamics techniques, such as the Verlet algorithm
with periodic boundary conditions, supplemented by an ef-
fective dissipation mechanism for the ion electric energy.1 In
short, we permit the gas molecules to evolve without being
disturbed from equilibrium by not allowing them to feel the
forces of the ions. However, we permit the ions to interact,

but only through iconical interactions, that is, with images of
the neutral molecules created in the memory of the computer
at the beginning of each ion-atom encounter and for as long
as collisions last. Thus, the simulation of the gas motion
provides initial conditions for the exact scattering of inde-
pendent ions which move along continuous trajectories dur-
ing the whole procedure. This approach mimics realistically
and efficiently the ion energy dissipation which takes place
in drift tube experiments.

The operational parameters of the simulation such as the
number of ions,Ni , and neutrals,Nn , as well as the total
time steps of the simulation,T, can be selected by examining
their effect on the total cpu time which is required in order to
attain certain accuracy in the results. For a givenNn , since
the ions do not interact with each other, this time is propor-
tional to T(cNiNn 1 Nn

2), wherec is a constant which is
greater than unity whenever the functional form of the ion-
atom interaction potential is more complex than the atom–
atom potential. We see now that we can shorten lengthy
simulations for the calculation of ion properties by decreas-
ing the number of steps, though we have to increaseNi in
order to maintain the same accuracy. The net effect is favor-
able due to the quadratic dependence of time onNn , which
emerges from the atom–atom interactions. Workable condi-
tions have been achieved with 500 ions in 108 neutral atoms
for runs up to 73105 time steps of 10214 s each. In addition,
we increase the collision frequency by one order of magni-
tude by using two to three orders of magnitude denser but
still ideal gases and likewise scaled field. This becomes pos-
sible because at low density conditions, where binary colli-
sions prevail, the ion-transport properties depend on the ratio
of the field strength over the gas density,E/N.

Initially, the gas atoms are left to relax to equilibrium
after 73104 time steps, starting from an fcc configuration,
and subsequently the ions are introduced at random positions
with Gaussian velocity distribution. The ions are then left to
relax to a steady state for 13105 time steps, before data start
being collected for statistical analysis.

We have also to mention that a cutoff for the velocity
has been set, in order to avoid accidental occurrence of
single runaway ions due to velocity fluctuations at high field
strengths. Such ions can not loose easily their energy and
therefore endanger the accuracy of the statistical results. By
experimentation we have found that the limit of 20 000 m/s
is appropriate since it is crossed only by a few ions at very
high field strengths.

Finally, in order to avoid multiple scattering between an
ion and a neutral which may occur due to the introduction of
iconical interactions, another conditional test has been ap-
plied in the technique. Specifically, after the end of an iconi-
cal interaction the initially interacting neutral atom may re-
main inside the sphere of influence of the ion thus initiating
a second scattering event. This is avoided by not allowing an
ion-atom pair to interact, unless a time interval has elapsed
from its previous collision. This interval has been set equal
to the mean duration of ion-atom encounters which is about
200 time steps.

We proceed now by applying these results for the calcu-
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lation of velocity correlation functions and diffusion coeffi-
cients.

IV. RESULTS

As a representative system for the application of the pro-
cedure we have chosen K1 in Ar because it has been exten-
sively studied experimentally as well as through the analytic
solution of the Boltzmann kinetic equation and by Monte
Carlo simulations in the past. The interaction potential be-
tween Ar atoms is a Lennard-Jones potential20 which is more
efficient in the simulation and equally accurate to more com-
plex model potentials at such low pressure conditions. For
K1–Ar, we employ the Koutseloset al. potential21 which
has been used in the past in analytic calculations and simu-
lations and has been found to reproduce well the ion-
transport properties. This potential consists of two parts, one
describing short range exchange interactions and the other
long range Coulombic interactions. The latter is expressed by
a damped multiple expansion series and the former by a
double exponential function with two empirical parameters,

V~R!5v~A2aR/s2Be2bR/s!

2~C4 /R
41C6 /R

61C8 /R
8!h~R!, ~15!

where

h~R!5H exp2~1.28Rm /R21!2, Rm<1.28

1, Rm>1.28,

is a damping function andA5146.98,B570.198,a51.5024,
b51.4041. All the remaining parameters as well as those of
the Ar–Ar interaction potential are presented in Table I.

A. Second order correlation functions and Fickian
diffusion coefficients

The ion-velocity correlation functions, M
5^Dy(0)Dy(t)&, are calculated from averages of 1700 such
functions which are determined consecutively one 200 steps
after the other. Their length extends beyond the one required
for the calculation of diffusion coefficients to within 1%. The
obtained correlation functions are presented in Figs. 1 and 2.
In general, at short times the correlation functions have a
Gaussian form which characterizes almost free motion and at
long times they acquire the form of an exponential due to
loss of correlation through random ion-atom collisions. The
long extent of the correlations, up to about 200 ps, is char-
acteristic of the low density conditions of the system and
depends on the field strength. At higher fields the correlation
functions shrink due to the increase of ion-atom collision
frequency.

The relative error of the calculations appears to be al-
most independent of the field and the direction of the diffu-
sional motion. For the employed operational parameters it is
found that the standard deviation of the correlations from
single runs at 30 and 75 ps, for example, are less than 10%
and 15% of the mean value, respectively. However, the cor-
responding diffusion coefficients acquire better accuracy due
to the fact that they are calculated through the time integra-
tion of these correlation functions.

Specifically, diffusion coefficients parallel and perpen-
dicular to the field are obtained from the correlation func-
tionsMzzand (Mxx 1 Myy)/2, respectively. To achieve better
accuracy by extending the integration up to infinity, we have
split the integration in two parts. The first part, which corre-
sponds to short time correlations, is integrated numerically
and the second one, which includes the tail of the correlation
function, is first fitted by an exponential and then integrated
analytically up to infinity. The resulting ion-diffusion coeffi-
cients are reported in Table II ND as for the removal of an

TABLE I. Potential parameters for the K1 Ar system (a050.529 177 25 Å!.

System v(e2/a0) s(a0) e~K! Rm(a0) C4(e
2a0

3) C6(e
2a0

5) C8(e
2a0

7)

K1Ara 1.202 0.9478 5.87 5.540 66.04 1007.4
ArArb 6.4345 119.7

aThe parameters are from Ref. 21.
bFrom Ref. 20.

FIG. 1. Second order velocity correlation function,M i , of K1 in Ar at
various field strengths.

FIG. 2. Second order velocity correlation function,M' , of K1 in Ar at
various field strengths.
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inverse density dependence at intermediate and higher field
strengths. In the same table we present the ion drift velocity,
effective temperatures parallel and perpendicular to the field,
Ti 5 (m/kB)^(v i 2 ^v i&)

2&, and the skewness parameter of
the velocity distribution which is defined throughd5^(vz
2 ^vz&)

3&1/3/^(vz 2 ^vz&
2&1/2. In the past the first of these

quantities has been found to agree very well with experimen-
tal data and the second one has been compared successfully
to results of the kinetic theory and simulations. Their over all
accuracy is found to be better than 2% and 5%, respectively,
except at very low fields where the drifting motion appears
vanishing and the relative error can be twice as much. The
error here and in the subsequent calculations was estimated
by performing simulations using different initial conditions.
Better accuracies, however, can in principle be achieved by
extending the number of the ions and the length of the simu-
lation.

The attained accuracy of the Fickian diffusion coeffi-
cients is within 5% and as can be seen in Figs. 3 and 4
compare well with the experimental data,22,23as well as with
previously calculated coefficients from the moment solution

of Boltzmann kinetic equation21 and Monte Carlo
simulations23 using the same interaction potential. In the fig-
ures, in order to make vivid the comparison tests, we have
plotted reduced coefficients defined through

D̃',i5qD',i /K~0!kTeff~0!,

kTeff~0!5kT1~1/3!M @K~0!E#2, ~16!

whereK~0! is the zero field mobility at the gas temperature
T. This reduction removes an approximately quadratic de-
pendence of the diffusion coefficients onE/N.

B. Third-order correlation functions and non-Fickian
diffusion coefficients

In a similar way, we proceed for the calculation of three-
time velocity correlation functions. By way of an example,
we determine theNzzz 5 ^Dvz(0)Dvz(t1)Dvz(t2)& correla-
tion functions. These correlations last longer than the second
order ones and a time range up to 600 ps is required in order
to determine them in their whole extent until they become

TABLE II. Transport properties of the K1Ar at 300 K using the KMV interaction potential.a

E/N(Td)b vd(m/s! Ti(K! T'(K! d NDi
c ND'

c NNQzzz
c

30 213.6 408.5 358.4 0.5053 2.703 2.175 0.4081
60 462.8 830.8 589.7 0.8540 7.241 4.085 2.735
80 645.3 1 356 860.8 0.9413 11.83 6.145 4.836
100 849.3 2 068 1 264 0.9390 17.48 9.593 8.058
150 1 307 4 037 2 482 0.9043 28.80 18.87 12.30
200 1 680 6 039 3 826 0.8888 33.61 27.32 15.87
300 2 293 10 340 6 829 0.8564 46.51 45.22 23.07
400 2 832 15 600 10 390 0.8392 59.89 58.95 40.02
600 3 621 28 900 19 190 0.6848 78.78 91.51 72.43

aFrom Ref. 21.
b1 Td510221 V m2.
cThe units ofND andNNQare 1018 1/cm s and 1033 1/cm3 s, respectively.

FIG. 3. Reduced diffusion coefficients parallel to the field for K1 in Ar at
300 K. Circles are experimental data of roughly 10% accuracy from Ref. 22,
crosses have been determined through kinetic theory within 5%, Ref. 21,
and points with 5% error bars are present MD results.

FIG. 4. Reduced diffusion coefficients perpendicular to the field for K1 in
Ar at 300 K. Circles are experimental data of about 3% accuracy from Ref.
23, crosses have been determined through kinetic theory within 5%, Ref. 21,
squares have been calculated by MC simulation within 3%, Ref. 23, and
points with 5% error bars are present MD results.
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negligible. The relative standard deviation of the calculation
appears to be relatively independent of the field and is about
20% at 30 and 75 ps, except at very low fields where the
error can double. The form of selective functions which are
defined throughN(t) 5 ^Dvz(0)Dvz(0)Dvz(t)&, is depicted
in Fig. 5. In general, these functions acquire Gaussian form
at short times and they decay exponentially at longer times in
resemblance to the second order correlation functions. At
very low fields, however, a small peak, within the error un-
certainty, is observed below 6 ps. If it is not an artifact of the
statistics, it could be attributed to the persistence of the ion
motion when weak interactions prevail during ion-neutral
collisions. Further study in this direction is under way.

The long extent of the third order correlation functions,
in comparison to the second order ones, may be related to the
inseparability of velocity distributions along the three veloc-
ity directions observed in Monte Carlo simulation for Na1 in
Ne.24 The long survival of such correlations may indicate
characteristic motion in velocity space, which results in the
specific deformation of the velocity distribution. To justify
this assertion, however, special test are required.

These correlation functions can now be used for the cal-
culation of non-Fickian ion-diffusion coefficients. We, thus,
calculate theQzzz component of the third order diffusion
coefficient and present it in Table II scaled with the gas
number density asNNQzzz in order for an inverse quadratic
density dependence at low and intermediate field strengths to
be removed. In addition, we report the skewness parameter
because it provides a measure of the initial unreduced triple
velocity correlations, sinceNzzz(0,0)5 d3(kBTi /m)3/2.

The accurate extension of the integration of the correla-
tion function to infinity requires fitting of its tail by a two-
dimensional exponential function

C~ t1 ,t2!5~e2a1t12b12e2a2t12b2!t2 /t11e2a2t12b2.
~17!

Obviously, for t2 5 0 or t1 5 t2 this function reduces to a
single exponential and for certaint1 , C(t1 ,t2) is a linear

function in t2 . The resulting fitting is quite accurate leading
to 1%–2% errors in the final diffusion coefficient.

As in the case of second order correlation function, the
integration is performed numerically at short times and ana-
lytically using the above function at the tail of the correla-
tion. The overall error in the calculation ofQzzz, including
the error of the statistical calculation, is found to be within
about 7%, except at very weak fields where it can become
twice as much.

V. CONCLUSIONS

For the first time we probe the dynamic properties of
ions moving in neutral gases under the influence of an elec-
trostatic field using a molecular dynamics method. Specifi-
cally, for a representative system, K1 in Ar, two and three
time velocity correlation functions for the ions have been
determined and their shape and extent characterized. From
these functions Fickian and third order diffusion coefficients
have been calculated. The former compare well with experi-
mental data and results from the moment solution of Boltz-
mann kinetic theory and Monte Carlo simulations using the
same ion-atom interaction potential. The latter coefficients
are expected to be accurate within about 7%. Higher order
diffusion coefficients of comparable accuracy can also be
determined from the present method but at the cost of higher
amount of computer time.
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