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We contribute to the development of steady state thermodynamics for isothermal and homogeneous 
chemical systems, through a generalized Einstein fluctuation relation, by utilizing a local steady 
state interpretation of static concentration fluctuations of reaction intermediates. For systems of 
constrained total chemical affinity the “next-particle ratio” of the probability density, q = P( N+ 1 )/ 
P(N), derived from a usual chemical master equation is employed for the construction of chemical 
potential steady state laws. This analysis is based on the identification of the exponent of the 
distribution, as a generalized availability of local fluctuations. Further, pressure steady state laws are 
derived through a generalized Gibbs-Duhem equation, restricted to constant “disequilibrium 
variables.” Such variables are introduced as state variables, in addition to the classic ones, for the 
characterization of steady states. They relate to externally controlled generalized forces or affinities, 
which induce the flows of mass through the system. Within the local steady state approach, the state 
laws enable the construction of the generalized availability, as state function for quasisteady state 
processes beginning from a reference state. This quantity is found to provide a Liapounov function 
for the deterministic evolution of the system towards stationary states in analogy to a previously 
developed local equilibrium theory. The analysis is anplied to two-variable chemical systems of high 
stoichiometry change, but should be -capable 
systems. 0 1994 American Institute of Physics. 

of extension to general hydrodynamic 

I. INTRODUCTION 

Nonlinear chemical systems, when constrained far from 
equilibrium, exhibit rich dynamic behavior by developing 
single or multiple steady states, oscillatory and chaotic 
behavior.lm3 From all these, only the stationary steady states 
resemble equilibrium, since, in this case, the macroscopic 
properties are maintained in time, despite the flow of mass, 
momentum or energy through the body of the chemical sys- 
tem. Such flows are necessary to maintain the state of the 
system far from equilibrium. 

Similarly, in the microscopic level, the state variables 
that characterize a steady state are distributed uniquely 
around their mean values, as in the case of equilibrium, 
though the forms of the distributions can change drastically 
as the state of the system is removed far from equilibrium. 
The relevant concentration fluctuations of isothermal react- 
ing systems have been described by markovian birth-death 
chemical master equations,4 which in addition, reproduce the 
phenomenological chemical kinetic laws in the macroscopic 
limit. 

The stochastic description of fluctuations further, has 
been utilized in the development of a macroscopic steady 
state thermodynamic theory2V5,6 in analogy to classic thermo- 
dynamics, through a generalized Einstein fluctuation rela- 
tion, 

P( GZ)memti, (1) 

where P is the probability distribution for change of inter- 
mediate species, SZ, and #J is the accompanying change of 
a scalar potential compatible to the constrains imposed on 
the system. Consequently, with temperature retaining physi- 

cal meaning at steady state conditions, macroscopic energy 
potentials, II, and generalized entropy, 2, have been intro- 
duced by relating kT@ to 17 or TX. 

However, the lack of global solutions of the chemical 
master equations which provide the probability density, led 
to the employment of static correlations, ~~ij, as a source of 
analytic information for the theory,5’6 

0-l = d2~ldZ.dZ. ‘I 1 I’ (2) 

The static correlations are more easily accessible and have 
been used for the construction of state laws through integra- 
tion of Eq. (2) along steady states, though not always with 
complete success. This is so, because additional state vari- 
ables to those of equilibrium, termed “disequilibrium 
variables,“7 are needed for the description of steady states, 
and information about their effect on nonequilibrium chemi- 
cal systems is currently lacking. 

In the approach followed by Keizer,2 steady state ther- 
modynamics has been developed, by utilizing the entropic 
representation through, 

d2CldZidZj= kc; ‘. (3) 

Here, the fluctuations of macroscopic variables at sta- 
tionary noncritical steady states are considered Gaussian and 
determined from a generalized “fluctuation-dissipation” 
theorem. This formulation is compatible to the master equa- 
tion approach, because the Gaussian distributions, although 
approximate, are asymptotic solutions of the master equa- 
tion, at least to dominant order in l/V, where V is the volume 
of the system.8 In this theory, the fluxes that keep the system 
far from equilibrium, together with the variables that charac- 
terize the baths that affect them, are treated as disequilibrium 
variables. Although this description of steady states is in 
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principle complete, the disequilibrium variables are not re- 
lated to the formalism and thus their effect on the system has 
remained undetermined. This deficiency, however, does not 
restrict the applicability of the theory for states of the same 
disequilibrium variables and many relevant examples have 
been presented in the literature.’ 

Based on the results of steady state thermodynamic 
analysis, we have proceeded in the construction of chemical 
potential and pressure state laws7 by exploiting the analytic 
results of stochastic theory for isothermal one-intermediate 
chemical models. The crucial step was the identification of a 
disequilibrium parameter, which relates to variables that ap- 
pear in the master equation and characterizes the steady 
states. This parameter is related exponentially to the total 
chemical affinity, which, in turn, has been identified as the 
disequilibrium variable of the system. This consideration is 
in accordance to Keizer’s introduction of fluxes as state vari- 
ables, since, at least close to equilibrium, the chemical affin- 
ity relates monotonically to the flux of mass through the 
system. Other similar such variables have been identified for 
the characterization of stationary states in the past through 
computer simulations” and experiments with general hydro- 
dynamic systems.” 

The purpose of this paper is to proceed further in the 
development of steady state thermodynamics of homoge- 
neous and isothermal chemical systems, while working 
within the master equation approach, by first extending the 
construction of steady state laws for generalized intensive 
classic variables that retain meaning at steady states, such as 
the chemical potential and pressure, to many-intermediate 
systems, and then by introducing generalized potentials 
which can provide evolution criteria for the deterministic 
motion of chemical macroscopic variables around steady 
states. This is accomplished by treating the relaxing system 
in a local steady state approach, in analogy to the local equi- 
librium considerations of similar systems. Such a procedure 
has been followed by Ross and co-workers,12 (RHH), by 
utilizing a local equilibrium approach for the description of 
fluctuations around stationary steady states. The central 
quantity introduced is the “excess work,” cp, which is re- 
quired to reverse a fluctuation of concentrations relative to 
the work available at a similar imposed change of state vari- 
ables. This function identified from a fluctuation relation has 
been found to provide a Liapunov function for the determin- 
istic evolution of chemical systems toward stable steady 
states. 

The current procedure is to start with a generalized Ein- 
stein fluctuation relation and find, first, a relation between the 
chemical potential and the probability density. Further, due 
to the lack of general solution for a usual chemical master 
equation. a relation of the chemical potential to yet another 
quantity which determines the probability density, the “next- 
particle ratio,” q=P(Z+ 1)lP(Z),t3 is derived. For this 
quantity, an equation is obtained from the master equation, 
that can be solved more easily at stationary conditions to 
order 1 IV. 

A basic quantity in our analysis is the generalized energy 
potential, l-I, which is characteristic of the steady states of a 
chemical system and fulfills Eq. (l), P( aZ)Kexp(- hll/kT), 

in the case of local steady state fluctuations. In addition, our 
potential is defined as first order homogeneous function of 
the relevant classic extensive variables, Z, in resemblance to 
previously developed thermodynamic theories.5V7 A similar 
consideration for the extensive disequilibrium variables, as 
not necessary to the current analysis, is not introduced here, 
though it has been endorsed by Keizer’ and has been found 
to comply with computer simulation results on hydrody- 
namic systems.” Here, we will consider as intensive such 
variables only chemical affinities which are controlled 
through coupling of the system to chemical baths via species 
selective membranes. 

Further, generalized intensive classic variables are de- 
fined through 

z=(drIldZ),, (4) 

where z. is T, -P, ,U when Z is S (generalized entropy), V, 
N, respectively, and R represents remaining extensive classic 
variables and disequilibrium variables. Likewise, extensive 
and intensive disequilibrium variables, !l! and A, are related 
through 

A = ( cXI/~‘J!)~. (3 

The above considerations enable the definition of other po- 
tentials, I’I’, through Legendre transforms over some of the 
classic variables (at least), 

I-I’=IT--CiZiZi. (6) 

We can, also, write a differential form for the potential ex- 
panded in terms of all variables, 

d17=~izidZi+CiWidAi. (7) 

Through this equation and n=ziziZ, we obtain a general- 
ized Gibbs-Duhem equation for states of the same 
A-variables, 

~iZidZi=O. (8) 

The connection of thermodynamics to the probability 
density of a master equation has been implemented through a 
generalized Einstein fluctuation relation of the form 

P(ZS,r/‘;Z’,rj)~exp-[II(ZS,~S)-II(Z’,~’)]lkT, 
(9) 

where superscripts s and r refer to final (local) states and 
reference states, respectively, and bold letters represent col- 
lectively all relevant variables as vectors. The 77 parameters 
are convenient state determining (disequilibrium-) param- 
eters, precursors of the disequilibrium variables to which 
they relate monotonically. However, the probability density 
on the left-hand side (LHS) of this relation, as determined 
from a usual chemical master equation, does not depend on 
disequilibrium parameters of the final state, $, and thus ad- 
ditional considerations about these parameters are required. 
The freedom to choose these parameters has been restricted 
in the past, by requiring the chemical potential differences 
determined through such a relation and ,~u=d In l-I/&? to be 
additive.7 It was found in the case of one-variable systems, 
and will be generalized below for many-variable nonlinear 
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systems, that this is fulfilled whenever q’= 7 r. With this 
interpretation, chemical potential and pressure state laws 
have been constructed, the latter through the generalized 
Gibbs-Duhem equation, Eq. (8). 

In the following we first present a general method for the 
construction of state laws, through the determination of next- 
particle ratios of the probability distribution. In Sec. III we 
develop evolution criteria for systems amenable to local 
steady state analysis, by studying the performance of thermo- 
dynamic potentials of complex systems as Liapounov func- 
tions of the corresponding kinetic equations. Finally, in the 
discussion we summarize our results and comment on the 
possibility of determining the dependence of steady state 
thermodynamics on disequilibrium variables. 

where Eq. (12) has been used in the first equality. Although 
the second equality appears approximate for states far from 
each other, since it holds for qi= I, the final result should be 
general without any limitation on the distance between 
states. This is so, because the differences of the chemical 
potential between consecutive states will turn out to be ad- 
ditive, as they should be. Finally, to derive an equation for 
the q’s we start from the master equation, which for a gen- 
eral chain chemical reaction model 

.+ J, 
ZiV, Zi= ~iVi+,Zi) (14) 

J, 
involving (a) reversible reactions of reactants Zi , takes the 
following compact form:4”4 

II. THERMODYNAMIC STEADY STATE LAWS dP( z, t)ldt 

A system amenable to analysis through the master equa- 
tion approach, consists of a reaction chamber of constant 
volume, coupled to a thermal bath and two chemical baths 
which control the temperature and the chemical potential of 
reactants and products, A and B, of a chain reaction of the 
form 

+X,,P(Z-n,)j,IJ(Z-n,,Z) 

A+mX+(m+n)X, 

xe Y, (10) 

YeB. 

+~,,PtZ+n,)j,tZ+n,,Z), (1% 

where the vectors Z and n represent the number of interme- 
diate species {Zi} only and their changes at every reaction 
step, {ni,}, with nia= vi:-- v;. The transition probabilities, 
j, for large Z are given by 

In order to isolate the kinetic processes from other transport 
phenomena, as required in the current approach, we assume 
fast relaxation of concentration, momentum and thermal gra- 
dients compared to chemical rates throughout the system. 
For such a system, the nonequilibrium effects become evi- 
dent through the modifications that are induced on the ideal 
local equilibrium state laws of the chemical potential and 
pressure of the intermediate species. 

To derive a state law for the chemical potentials, we 
have interpreted the difference of potentials at the exponent 
of Eq. (9) as a generalized availability,7 which for a quasi- 
steady state process that varies X and Y (represented collec- 
tively by Z) is given by 

ji =,Z+Zvia, I (16) 

where, in order for the extensivity property of the transition 
probabilities to be insured, the constants k: relate to the 
usual reaction rates, ih, through 

k~=~,+(V-~Yt.+l)~ (17) 

The corresponding kinetic equations have the form 
ii=~,pin(t~--t~), where zi=Zi/V and the rates of the 
mass action law, tz, relate to the transition probabilities 
through Vt: = jh. 

Since in the macroscopic limit j(Z+n,)-j(Z) and 
qi({Zj+nj},t)=qi({Zj},t), to order l/V, (for relatively 
small n,), by dividing Eq. (15) with P(Z,t) we obtain an 
equation for qi , 

(11) 
C~j,+(~iql’*)-‘+Cei,(rriq”‘~)-C,(j,’+jol)=O. 

(18) 

where the summation runs over all intermediate chemical 
species. For a final state (s) close to an initial (reference) 
state (r), we can now connect the chemical potentials to the 
probability density, by relating Eqs. (9) and (1 l), and obtain 

,u:- ,cLU~= - kTdln PldZi . 02) 

Since it is not possible to determine global solutions for the 
probability densities of the birth-death master equations, to 
proceed further, we derive an equation for the next-particle 
ratio of the probability, qi({Zj+i},t)=P(Zi+ l,{Zj,,},t)l 
ptzi ,{zj+i},t)9 which allows the determination of the 
chemical potentials in the macroscopic limit through 

,uf-,ui= -kT(q,- l)--kT In qi, (13) 

The solution of this equation requires approximate tech- 
niques in the case of complex reaction mechanisms, as it is 
discussed in the appendix for a model of high stoichiometry 
change, but for the system adopted above, with m = 1 and 
n = 1, this equation acquires a simple form that allows an 
analytic result to be derived, 

+4x(1-q,)[jg(jz+j:)9y+j:q,l=0. (19) 

For one-variable systems we recover previously derived re- 
sults, by fixing the Y variable, through the identification 
YE B, and setting q,,= 1 in the above equation. The equation 
obtained, 
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eq 

B 

FIG. I. Schematic representation of stable steady states in the space of A 
and E variables. The states of the same yparameter arrange themselves 
along straight lines, (ss). one of which represents the equilibrium states, 
(eql. Chemical potential scales are defined along such lines with respect to 
reference states. (r). The inclined lines (li) represent steady states of the 
same X variable. 

(1 -s,)[j;+j;-(j;+j,‘)q,l=O, (20) 

has two solutions, one of which is trivial, q,=l, since it 
corresponds to comparison of states at the peak of the distri- 
bution, and the other one, q,t-=(jt +j;)l(j;+j:), repro- 
duces the chemical potential steady state law derived from an 
analytic solution of the master equation,7 

pLLS-pr=kT ln[(j,‘+jl)l(j:+j;)]. (21) 

Here, the X variable in the transition probabilities, j, refers to 
a state (s) and the A and B appearing in j: and j, refer to a 
reference state in relation to which the chemical potential 
scale is defined. This result is compatible to Keizer’s theory, 
since the covariance matrix determined through 
kTa- ’ - - dp*lJX fulfills his fluctuation-dissipation relation. 
In addition, Eq. (21) is identical to the result of RHH,12(a) 
though the chemical potential difference has been interpreted 
differently as species specific chemical affinity within a local 
equiIibrium approach. 

We have found before, that in order for the above chemi- 
cal potential difference to be additive, or otherwise in order 
for relation 

pS-/L’=(/+p’)+(p’-p’) (22) 
to be an identity for chemical potential differences substi- 
tuted from Eq. (2 I), the three states (s), (I), and (r), (and 
thus any state connected by this equation), must be charac- 
terized by the same disequilibrium gparameter, 

$= + f, (23) 
defined by v=AIBS7 In the space of A and B variables (Fig. 
l), such states lie on a straight line that passes through the 
origin of the axes. In the figure, the vparameter determines 
the slope of line (ss), and for v=K-‘, where K is the equi- 
librium constant, it identifies the equilibrium states (es). This 
parameter provides a measure of the deviation of steady 
states from equilibrium, and is related to other physically 
meaningful quantities, such as the flux of mass through the 

system and the total chemical affinity which here is exter- 
nally constrained. The latter quantity, which relates mono- 
tonically to 7,7, 

&mln 7, (24) 

has been selected as disequilibrium variable, and together 
with X provide the chemical state variables of the system, the 
remaining ones being V and T. 

To extend this analysis to two-variable systems, we first 
investigate if the known chemical potential laws of equilib- 
rium fulfill Eq. (19). It is easily verified that, in the cases of 
general systems at equilibrium and linear systems at steady 
states, chemical potential 
[LL:-p:=r;ln(Ziy$=-kTlnq.1 are compatible 2: 
this equation. Specifically, the two ldng brackets vanish upon 
setting q,=X’IX’ and qr= Y’IY’, that is, 

tj; +jl)qx-.GqY=.G 7 

- j:qx+ tjl +j:)qY=.G 
As in the previous case, the X and Y variables in these equa- 
tions refer to any state (s) and the A and B, that appear in j : 
and j; , to a reference state (r). 

Since the set of these equations is not restricted to apply 
only at equilibrium, it can be used to supply chemical poten- 
tial laws for general nonequilibrium steady states. Such an 
analysis requires the identification of a disequilibrium vari- 
able that is needed for the full characterization of steady 
states, in addition to X or Y. As in the previous case, it 
suffices to consider that the q’s relate states, (s) and (r), 
such that $=ASIBS=ArIBr= 7’. Assuming y to be a com- 
mon scaling factor for the A’s and B’s, (AS = A’/ y and 
BS=Brly), we infer that qx=qr= l/y fulfill Eq. (25). This 
is so because the q’s and the variables A and B, which ap- 
pear in j: and j; , relate linearly. We thus infer that the 
additivity property for the chemical potentials is insured pro- 
vided the compared states are characterized by the same 
vparameter. This is a more general conclusion than the one 
derived for one-variable systems in the past and can be fur- 
ther extended to many-step stochastic processes, though the 
vparameter should be defined differently. An example for a 
two-step process is given in the Appendix. 

Since the gparameter relates monotonically to the ex- 
ternally controlled total chemical affinity, Eq. (24), assuming 
ideal laws for the species that interact through the chemical 
baths, the chemical affinity can be identified, again, as the 
disequilibrium variable of the system. The remaining state 
variables are the X (or Y) variable, the volume and the tem- 
perature of the system. 

The chemical potential for states of the same total 
chemical affinity can now be defined through 

pi=&-kT In qx 

and 

,ug=p*.ry--kT In qy, (26) 

where $ represent chemical potentials of a reference state. 
Even better, by utilizing the scaling property of the q’s we 
obtain a general expression for the chemical potentials of X 
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and Y, pS=,ur+ kT In y, and by defining ~U;=,UU;, the form 
of the chemical potentials allows us to obtain /.L;= 1~; for all 
states of the same total chemical affinity. This “convention” 
generalizes the equality of the chemical potentials of inter- 
mediate species at equilibrium, for general steady states. 

In the above expressions, y actually represents relative 
activities related to number densities through activity coefli- 
cients, LY, by yx=axXIX’ and yy=ayYIYr. Analytic ex- 
pressions for the activities, in terms of X and Y variables, are 
obtained from y= l/q, (or y= l/qr) and analytic solutions of 
Eqs. (25) for the q’s, 

where X and Y refer to any state, (s). This result has been 
obtained with the use of Eq. (16) to express the relevant 
transition probabilities. We observe that the state law for the 
Y intermediate remains ideal at this level of approximation, 
due to the fact that it reacts only through linear steps in the 
considered model. In addition, it is easily checked that at 
equilibrium the law for X reduces also to the ideal state law, 
since in this case AJ=O. 

The nonidealities observed at nonequilibrium conditions 
are due to non-Poissonian deformations of concentration 
distributions,i4 which depend on the asymmetry of the 
stoichiometry of the forward and backward reaction steps of 
the nonlinear models. 

or 
III. KINETIC STABILITY CRITERIA 

qY=[j;(jl+j:)+j:j:l/D, (27) 

with D = (j; +jl)(j; + j:) - jl j;. For linear systems, or 
nonlinear systems at equilibrium, the activity coefficient be- 
comes equal to unity implying ideality for the system. 

To proceed further in the construction of pressure steady 
state laws, we have to look beyond the master equation ap- 
proach and work with a generalized Gibbs-Duhem equation 
at constant V, T, and &, 

or 

Chemical systems evolve towards stable stationary states 
according to phenomenological kinetic laws, in the same 
way they approach equilibrium. In addition, a macroscopic 
thermodynamic description has been developed based on the 
introduction of nonclassic disequilibrium variables, in anal- 
ogy to thermodynamics. It is thus expected that around 
steady states, kinetic stability criteria would hold, as in the 
case of equilibrating systems or general nonequilibrium sys- 
tems that are amenable to local equilibrium description.‘* 
Indeed, we observe that for the models considered below the 
generalized availability, Eq. (ll), is a Liapounov function in 
the domain of attraction of stable stationary states. We have 
to mention here that, despite the similarity in appearance of 
this availability with the excess work cp of RHH, the two 
quantities differ, since in the former the chemical potentials 
depend on a disequilibrium variable, not introduced in any 
equivalent way in the local equilibrium approach. 

(P-P’)V= 1 (x+ Y)dp, (28) r 

where we have made use of the convention px= py= p. The 
integration of this expression is straightforward but leeds to a 
lengthy expression. Instead, we follow here an approximate 
but simpler iterative solution of the Gibbs-Duhem equation 
in differential form, 

Vd( p,+ Py) =Xdp,y+ Y&L,= (X-t- Y)dp. (2% 

The method is to substitute the X and Y variables in the 
above equation through the ideal state laws, X= P,VIkT, 
Y= P,VIkT, and P= P,+ Py , and deduce new approximate 
steady state laws. These laws can be further iterated, to ob- 
tain more accurate limiting laws. A single substitution pro- 
duces the following approximate steady state laws, 

P,V/XRT= 1 - (P,IX)[X(ki + k:)lJ, 

+ Yk;/.J,]AJIJ, 

P,VIYRT= 1, (30) 

with 

Jx=k;A’X(k;+k;)+k;k;B’, 

J,=k;B’(k;X+k;)+k;k;A’X, 

J=k;X(k;+k;)+k;k;, 

and 

AJ=k:k;k;A’-k,k;k,Br, 

In addition, since our approach is compatible to Keizer’s 
steady state thermodynamics our generalized availability, 
AII, has a counterpart in the latter theory. The corresponding 
quantity of this theory which has been developed in an en- 
tropic representation is the second differential of the gener- 
alized entropy, 82A.2, also identified as Liapounov function.* 
More precisely, 2AII or even better the second variation 
82AII corresponds to -TS*AC. However, despite the simi- 
larity of the two quantities, differences exist in the construc- 
tion and in the interpretation of stochastic results concerning 
the identification of disequilibrium variables as presented in 
the introduction. The former difference is of order l/V and 
thus Keizer’s theory approaches the results from the master 
equation at the macroscopic level, but the latter difference 
can be alleviated only close to equilibrium where linear laws 
prevail and thus our disequilibrium variable, that is the 
chemical affinity, relates linearly to Keizer’s mass flux. 

In the current approach the integration of dII along any 
path in the X,Y variable space requires the knowledge of 
dependence of the chemical potential on the A-variable. 
Since such information is currently lacking, in order to de- 
rive stability criteria we have to rely on a local steady state 
approach, according to which, states along an X,Y path 
should be represented by steady states of independent X and 
Y components with A-variables equal to A’. This assumption 
eliminates the A-variable dependence from the availability, 
but introduces complexity into the analysis, especially for 
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dAKI/dt= kT[ln(X/X’)dX/dt+ In( Y/Y’)dYldt] 

= kTV’MV, (36) 

where Vf is the transpose of vector V with components SX 
and SY, and M is a matrix 

A. One-intermediate nonlinear chemical systems 

In the case of the one-variable model considered above, 
with chemical potential given by Eq. (21), the availability 
along a deterministic path (traced in reverse direction) from a 
reference state (Y) to a state characterized by X is calculated 
from 

M= 
jg/X' JalXr 
j",fY' j;lYr ' (37) 

with 

jx=j:+ji-j;-jl, 

j,=jT+j;-j,-j:, AlI=kT ln[(j;+j~)/(j:fj;)]dX. 
I (31) 

r 

The proof that AII is a Liapunov function for the relaxing 
macroscopic motion of the chemical system starting from an 
initial state close to a (reference) stable steady state, is ob- 
tained by analyzing the sign of AII in relation to the sign of 
dAl7ldt along the relevant deterministic path.15 Specifically, 
the sign of the two quantities should be different and AII 
should vanish only at the (reference) steady state. Since 
AII=O only at X=X’ and 

dAIIldr=kT In[(j;+jl)/(j:+j;)](dX/dt) 

=kT In[(j;+ji)/(j:+j;)](j;+j:-j:-ji), 

(32) 
is a negative definite quantity, we are left to consider whether 
AII is a positive definite quantity around stable steady states. 
It is verified, that for stable states this is indeed the case, by 
expanding the integrand of Eq. (31) around the reference 
state and then performing the integration 

AIl=kn(j;+jl-j:-j;):/(j;+jl+j:+j;),] 

x(x-x,)*+o[(x-x,)3], (33) 
where the prime indicates differentiation with respect to X 
and the subscript I’ indicates quantities evaluated at the ref- 
erence state. The numerator of the dominant contribution of 
this expression, which determines the sign of AII, deter- 
mines also the stability of the deterministic motion, as can be 
inferred from the linear stability analysis of the relevant ki- 
netic equation 

ds.~/dr=(j;+j2+-j:-j;):Sx, (34) 

with 6.~ = (X-X7/V. For stable states, the quantity in the 
brackets should be negative definite and consistently AII60. 
In conclusion, we find that the sign of AII provides a neces- 
sary and sufficient condition for the kinetic stability of steady 
states of the chemical system. 

6. Two-intermediate linear chemical systems 

In the case of a two-intermediate model with m=O and 
II = 1, the predicted chemical potential laws are ideal, thereby 
allowing a simple expansion around steady states to be de- 
rived for AIL To dominant order in Sx and Sy we obtain 

Al-I=kk(X-X,)*/2X’+(Y-Y,)*/2Y’-jaO (35) 

and 

and where the superscripts, x and y, indicate partial differ- 
entiation with respect to the denoted variables. 

Since AII is positive definite, we should require 
dAIIldr60 for stable states, or otherwise that the eigenval- 
ues (ei,e2) of the matrix of the quadratic form, M, be both 
negative, 

~1+~2=j~IXr+jYylYr<0 

l ,15~=(j$jYy-j~j;jxy)/X*Y~>O. (38) 

These inequalities can be proved with the help of linear sta- 
bility analysis of the kinetic equations, which produces a 
stability matrix, L, of negative eigenvalues, (e,,e2), in the 
case of stable steady states, 

dSVldt= WV, 

where 6v=( SX, SY) and 

L= ji ji 
I I j”r j’r ’ 

Thus, in the case of stable states we obtain 

el + e2=&+.&<0, 

(39) 

(40) 

). e~e2=GG-.&.G)>O. (41) 

Even more, by inspection we deduce that for the models 
considered above, Eq. (IO), ji and j$ are separately nega- 
tive. These conditions ensure inequalities (38) and thus again 
we deduce that AII provides a necessary and sufficient con- 
dition for the stability of linear systems. 

IV. DISCUSSION 

The main result of this work is that steady state laws for 
many-intermediate homogeneous and isothermal chemical 
systems have been derived from the results of stochastic 
analysis, by the use of a generalized Einstein fluctuation re- 
lation applied at steady state conditions. Such a relation pro- 
vides a connection between thermodynamics and probability 
distribution of fluctuations, which in the current approach are 
derived from a usual birth-death chemical master equation. 
The exponent of the distribution is identified as a generalized 
availability which characterizes the deviation of a steady 
state from a reference one in a local steady state manner. 
This allows the connection of the chemical potential to the 
next-particle ratio of the probability distribution, P(Z+ l)/ 
P(Z), for which, in turn, an equation is derived from the 
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master equation. The systematic solution of this equation 
provides chemical potential steady state laws for a large class 
of chemical models in contrast to previous euristic ap- 
proaches. 

Although the chemical potential steady state laws are 
derived directly from stochastic analysis, pressure state laws 
are derived indirectly by the use of a generalized Gibbs- 
Duhem equation. The nonequilibrium effects become evident 
in both state laws through introduction of corrections to the 
ideal laws of equilibrium. 

The crucial step in the interpretation of stochastic results 
is the identification of the chemical affinity as disequilibrium 
variable for the characterization of the steady states. How- 
ever, it has been realized that information about this variable 
is not contained in the probability distribution of a usual 
chemical master equation and thus other methods have to be 
employed for this purpose. Experiment, computer simula- 
tion, and generalized master equations that can take account 
of the effect of externally controlled chemical affinities can 
provide some means along this line. In addition, we have 
proved here, in the case of one-variable nonlinear and two- 
variables linear models, that the generalized availability de- 
fined in a local steady state approach is a Liapounov function 
for the deterministic macroscopic motion of the system to- 
wards stationary steady states. We can thus formulate neces- 
sary and sufficient kinetic stability criteria for certain reac- 
tion models by examining the definiteness of this function 
and its rate of change along a kinetic path, in analogy to the 
previously developed local equilibrium theory of John Ross 
and coworkers. Although the results depend on the models 
considered, similar analysis should be applicable to other 
more complex chemical systems, as well as to general hy- 
drodynamic systems. 

APPENDIX 

We consider a one-variable two-step chemical model, 
consistent with the general system introduced above, Eq. 
(lo), 

A+2X, 

The relevant equation for q, Eq. (18), is a third order equa- 
tion forbidding a simple analytic solution, 

j;q3+(j;+j:)q2-(j^:+ET)q-j:=0, 642) 
where the huts indicate that the A and B variables involved 
in the corresponding j’s refer to a reference state. Despite 
this, simple results can be derived for some special cases. 
First, for equilibrium states, j: = j; and jz = j;, this equa- 
tion becomes 

(q+ l)(jTq*-f:)+q(j;q-j^;)=O. (A3) 

By inspection we find that for q = l/y the two square brackets 
vanish upon setting ASIA’=? and BSIBr= y. This implies 
that the equality ASIA’= (BSIBr)* should hold, or otherwise 
that the ratio ve=AIB2, should be the same for the com- 
pared states. Obviously this is fulfilled, since the inverse of 
the ratio is equal to the equilibrium constant. Again, as in the 
models discussed in Sec. III, the value of the inverse of the 
equilibrium constant is the value which the disequilibrium 
gparameter acquires at equilibrium. This parameter relates 
monotonically to the total chemical affinity since 
In 77eQpu,-2p.,=.&. 

Another simple result is derived by setting j; =0 in Eq. 
W), 

(2jT+j,)q*-(j”:+j”;)q-3:=0, 644) 

where we have made use of the steady state condition 
j~=2j~+j~.Bysettingq=llyandBSIBr=yinthisequa- 
tion, we deduce that ASIA’= y(y+ 1)/2, or otherwise that 

2ASIAr=(BSIB’)( 1 +B”IB’). WI 

In the space of the chemical A and B variables, this relation 
restricts the compared states to a line, along which chemical 
and pressure scales can be defined. 
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