$\mathrm{CH}\left(\mathrm{X}^{2} \Pi, \mathrm{a}^{4} \Sigma^{-}\right) \ldots \mathrm{OH}_{2}$ and $\mathrm{CH}_{2}\left(\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}\right.$, $\left.\tilde{a}^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2}$ Interactions. A First Principles Investigation

DEMETER TZELI, ARISTIDES MAVRIDIS
Department of Chemistry, Laboratory of Physical Chemistry, National and Kapodistrian University of Athens, P. O. Box 64 004, 15710 Zografou, Athens, Greece

Received 30 December 2003; accepted 17 March 2004
Published online 4 May 2005 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/qua. 20637

Abstract

We have investigated the interaction of the methylidene, $\mathrm{CH}\left(\mathrm{X}^{2} \Pi, \mathrm{a}^{4} \Sigma^{-}\right)$ and methylene, $\mathrm{CH}_{2}\left(\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}, \tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}\right)$ with $\mathrm{H}_{2} \mathrm{O}$, employing the (P$) \mathrm{MPn}(n=2,4)$ techniques in conjunction with the sequence of correlation consistent basis sets aug-cc-pVxZ, $x=2,3$, and 4. For the $\mathrm{CH} \ldots \mathrm{OH}_{2}$ system, we have located four minima (m) and three transition states (ts) and for the $\mathrm{CH}_{2} \ldots \mathrm{OH}_{2}$, five minima and four transition states. All our results have been corrected for zero-point energy (ZPE) and basis set superposition errors (BSSE), while for the most important m_{-}structures, we report complete basis set (CBS) interaction limits. We also report fully optimized geometries, harmonic frequencies, dipole moments, Mulliken charges, and potential energy curves. The highest $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right) \ldots \mathrm{OH}_{2}\left(\mathrm{~m}_{-}{ }^{2} \Pi\right)$ and $\mathrm{CH}_{2}\left(\tilde{a}^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2}\left(\mathrm{m1}_{-}^{1} \mathrm{~A}_{1}\right)$ interactions are the result of electron transfer from the oxygen atom to the empty p_{π} orbitals of $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right)$ and $\mathrm{CH}_{2}\left(\tilde{a}^{1} \mathrm{~A}_{1}\right)$, respectively (ylide-like structures). At the (P)MP4/AQZ//MP2/ATZ level, including ZPE, BSSE, and CBS extrapolation, we obtain $\Delta E_{0}($ BSSE $)+\mathrm{CBS}=-9.36 \mathrm{kcal} / \mathrm{mol}$ at $r_{\mathrm{C}} \ldots \mathrm{O}=1.752 \AA$, and -9.73 $\mathrm{kcal} / \mathrm{mol}$ at $r_{\mathrm{C}} \ldots \mathrm{O}=1.741 \AA$ for the $\mathrm{m} 1_{-}{ }^{2} \Pi$ and $\mathrm{m} 1_{-}{ }^{1} \mathrm{~A}_{1}$, respectively. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem 104: 497-511, 2005

Key words: ab initio calculations; methylidene-water; $\mathrm{CH}-\mathrm{H}_{2} \mathrm{O}$; methylene-water; $\mathrm{CH}_{2}-\mathrm{H}_{2} \mathrm{O}$; van der Waals interactions

Introduction

Ylides are reactive intermediates that undergo synthetically useful transformations, defined as compounds in which a positively charged atom

[^0]from group 15 (VA) or 16 (VIA) of the periodic table is connected to a carbon atom carrying an unshared pair of electrons [1]. One method of synthesizing this class of compounds is by the interaction of carbenes with a nucleophile related to elements of group 15 or 16 . For instance, in a well-known textbook of organic chemistry [2], the structure of prototypical nitrogen ylide is written as $\mathrm{R}_{3} \mathrm{~N}^{+}-\mathrm{CH}_{2}^{-}$. During the past two decades, there has been a
growing interest in the use of carbonyl ylides for the synthesis of oxygenated heterocycles (see Ref. [1] and references therein).

Now, methylidene, $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right)$ is one of the simplest and most reactive radicals, and it is believed to play an important role in atmospheric chemistry. Experimental work on the reaction of CH with small molecules such as $\mathrm{N}_{2}, \mathrm{NO}, \mathrm{N}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{CO}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$ [3-5] and computational work on the reaction $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right.$ or $\left.\mathrm{a}^{4} \Sigma^{-}\right)+\mathrm{H}_{2} \mathrm{O}[6-8]$ have been reported in the literature.

The parental carbene $\mathrm{CH}_{2}\left(\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}\right)$, perhaps the most famous molecule in the evolution of computational quantum chemistry [9], is an important intermediate, also playing a significant role in planetary atmosphere. The reaction of $\mathrm{CH}_{2}\left(\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}\right)$ with $\mathrm{H}_{2} \mathrm{O}$ producing $\mathrm{CH}_{3} \mathrm{OH}$ through an ylide-like intermediate, has been experimentally studied by mass spectrometric techniques [10]. Furthermore, the reactions $\mathrm{CH}_{2}\left(\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}\right)+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{2}\left(\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}\right)+$ $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2}\left(\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}\right)+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3}+\mathrm{OH}$, the formation of methanol and of formaldehyde, have been investigated with laser-induced fluorescence detection under quasi-stationary and first order conditions [11, 12], while the first of the reactions above was also studied by laser flash photolysis/ laser absorption methods [13].

The first computational work on the system $\mathrm{CH}_{2}\left(\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2}$ was done in 1980 by Harding et al. [14], where they calculated two minima, and in 1981 by Eades et al. [15], who calculated the three lowest configurations corresponding to two minima and one transition state. In the following years, the global minimum [16-20], the second minimum [21], the third minimum [19], and a transition structure [19] were studied. Previous theoretical work on the $\mathrm{CH} \ldots \mathrm{OH}_{2}, \mathrm{CH}_{2} \ldots \mathrm{OH}_{2}$ systems is summarized in Table I.

In the present report, we undertake a systematic study of the interaction of $\mathrm{CH}\left(\mathrm{X}^{2} \Pi, \mathrm{a}^{4} \Sigma^{-}\right), \mathrm{CH}_{2}$ ($\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}, \tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}$) with $\mathrm{H}_{2} \mathrm{O}$, using Møller-Plesset (MP) perturbation theory and relatively large basis sets. We report fully optimized geometries, interaction energies, harmonic frequencies, dipole moments and Mulliken charges, trying at the same time to understand the $\mathrm{CH} \ldots \mathrm{OH}_{2}$, and $\mathrm{CH}_{2} \ldots \mathrm{OH}_{2}$ interaction mechanisms.

Methodological Details

The $\mathrm{CH} \ldots \mathrm{OH}_{2}, \mathrm{CH}_{2} \ldots \mathrm{OH}_{2}$ calculations were performed using, for all atoms, the augmented cor-
relation consistent series of basis sets, aug-cc-pVxZ $(\mathrm{A} x \mathrm{Z}), x=2(\mathrm{D}), 3(\mathrm{~T}), 4(\mathrm{Q})$ of Dunning and coworkers [22]. The interaction between $\left(\mathrm{CH}, \mathrm{CH}_{2}\right)+\mathrm{H}_{2} \mathrm{O}$ is such (vide infra) that there is no need for a multireference approach. Therefore, we have used the single reference MP perturbation theory, MP2 and MP4, for the singlets, and UMP2, UMP4, PMP2, and PMP4 for the doublets, triplets, and quartets, as implemented in the Gaussian 94 [23a] and Gaussian 98 [23b] suite of codes. All structures were fully optimized at the above correlated levels, with the exception of UMP4/ATZ and UMP2, UMP4/ AVQZ, where single point calculations were performed at the (U)MP2/ATZ geometry. The "very tight" option of the program was used, while the energies were converged to $\sim 0.01 \mu E_{h}$ with corresponding root mean square (rms) deviation of the energy gradient with respect to nuclear coordinates of $11 \mu E_{h} /$ bohr. Harmonic frequencies were calculated for all structures at the (U)MP2/(ADZ, ATZ) level of theory. Spin contamination of the UMP calculations is not alarming: the $\left\langle\mathrm{S}^{2}\right\rangle$ values range from 0.7596 to 0.7711 (instead of 0.75) for the doublets, 2.0156 to 2.0161 (instead of 2.0) for the triplets, and 3.7540 to 3.7544 (instead of 3.75) for the quartets.

Because of the importance of basis set superposition error (BSSE) [24] in weakly or van der Waals interacting systems [25], the interaction energies were BSSE corrected [26]. The interaction energy ΔE of a XY van der Waals molecule and the corresponding BSSE corrected value Δ (BSSE) are defined as follows [27]:

$$
\begin{gather*}
\Delta E=E_{X Y}^{x y}(\mathrm{XY})-E_{X}^{\times}(\mathrm{X})-E_{Y}^{\mathrm{Y}}(\mathrm{Y}) \tag{1}\\
\Delta E(\mathrm{BSSE})=E_{X Y}^{x y}(\mathrm{XY})-E_{X Y}^{x y}(\mathrm{X})-E_{X Y}^{x y}(\mathrm{Y})+E_{X Y}^{\times}(\mathrm{X}) \\
-E_{X}^{\mathrm{X}}(\mathrm{X})+E_{X Y}^{\mathrm{X}}(\mathrm{Y})-E_{Y}^{\mathrm{Y}}(\mathrm{Y}), \tag{2}
\end{gather*}
$$

where $E^{S}{ }_{\mathrm{G}}(\mathrm{M})$ refers to the total energy of molecule M at the geometry G computed with basis set s. Within the method employed, relation (1) needs no correction with respect to basis set size for "infinitely" large, i.e., complete basis sets (CBS). We also recall that the MP approach is size-extensive, a particularly useful property in the present study. CBS limits were obtained by applying the simple exponential formula $P(x)=P(\infty)+A e^{-B x}$, where P is a generic property; n reflects the quality of the basis set; $x=2,3$, and 4 ; and A, B are freely adjustable parameters [28]. Finally, all our calculations are valence-correlated, i.e., the $\sim 1 s$ carbon
$\mathrm{CH}\left(\mathrm{X}^{2} \Pi, \mathrm{~A}^{4} \Sigma^{-}\right) \ldots \mathrm{OH}_{2}$ AND CH $\mathrm{C}_{2}\left(\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}, \tilde{\mathrm{~A}}^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2}$ INTERACTIONS
TABLE I
Previous theoretical work on $\mathrm{CH} \ldots \mathrm{OH}_{2}$ and $\mathrm{CH}_{2} \ldots \mathrm{OH}_{2}$ systems.*

Method	E (hartree)	$\{r\}^{\text {b }}$	$\Delta E\left(\Delta E_{0}\right)$
m1_ ${ }^{2}$	$\mathrm{CH} \ldots \mathrm{OH}_{2}$		
UMP2/6-31G**	-114.59632	1.868	-14.3 (-12.0)
MP2/6-31G(d^{\prime}) $(=A)^{\text {d,e }}$	-114.562765	1.832	-15.3
QCISD(T)/6-31G(d^{\prime})// $\mathrm{A}^{\mathrm{d}, \mathrm{e}}$	-114.613477		-12.3
MP4(SDQ)/CBSB4//A ${ }^{\text {d,e }}$	-114.641734		-8.5
CBS-Q (0 K)// $\mathrm{A}^{\mathrm{d}, \mathrm{e}}$	-114.763895		-9.6
m2_ ${ }^{2} \Pi^{\text {b }}$			
MP2/6-31G(d^{\prime}) ($=$ A $)^{\text {d }}$	-114.545255	2.320	-4.3
QCISD(T)/6-31G(d^{\prime})// A^{d}	-114.599747		-3.6
MP4(SDQ)/CBSB4// A^{d}	-114.633612		-3.4
CBS-Q (0 K)// $\mathrm{A}^{\text {d }}$	-114.751696		-1.9
ts2_ ${ }^{2} \Pi^{\text {b }}$			
MP2/6-31G(d^{\prime}) (=A) ${ }^{\text {d,f }}$	-114.539180	2.409	-0.5
QCISD(T)/6-31G(d^{\prime})// $\mathrm{A}^{\mathrm{d}, \mathrm{f}}$	-114.597846		-2.5
MP4(SDQ)/CBSB4//A ${ }^{\text {d,f }}$	-114.625735		+1.5
CBS-Q (0 K)//A ${ }^{\text {d,f }}$	-114.751008		-1.5
m1_ ${ }^{1} \mathbf{A}_{1} \quad \mathbf{C H}_{2}$			
RMP2/6-31G**/RMP2/6-31G*g	-115.23560	1.805	-18.1
RMP4/6-31G*//RMP2/6-31G*g	-115.26205		-14.7
HF/dz+(sd-diff,C / d-pol C,O) ${ }^{\text {h }}$		1.825	a+1.0
MP4(SDQ)/6-31G** $=$ B)//HF/B ${ }^{\text {i }}$	-115.25956		-13.44
UMP2/6-31G* (=C) ${ }^{\text {j }}$	-115.20329	1.805	-18.85
UMP2/6-311G(df,p)//C ${ }^{\text {j }}$	-115.33007		-20.14
UMP4/6-31G**//C ${ }^{\text {j }}$	-115.26944		-16.53
CAS/CCl/aug-pol-dz ${ }^{\text {k }}$	-115.37254	2.366	-7.62 (-4.60)
$\mathrm{CCI}+\mathrm{Q} /$ aug-pol-dz ${ }^{\text {k }}$	-115.40517		-8.95 (-5.93)
CAS/CCI/tz-double pol ${ }^{\text {k }}$	-115.36931		-5.91 (-2.89)
$\mathrm{CCI}+$ Q/tz-double pol ${ }^{\text {k }}$	-115.40561		-9.54 (-6.52)
MP2/6-31G*	-115.203286		-18.8 (-12.8)
MP2/6-311G**	-115.335146	1.77	-18.7 (-12.8)
MP2/6-311++G**m		1.758	(-9.57)
QCISD/6-311++G**m		1.874	(-6.53)
B3LYP/6-31G*m		1.866	(-15.26)
B3LYP/6-311++G**m		1.857	(-10.52)
ts1_ ${ }^{1} \mathrm{~A}_{1}$			
$\mathrm{HF} / \mathrm{dz}+\left(\right.$ sd-diff,C/d-pol C,O) ${ }^{\text {h }}$		-	$a+5.6$
m2_ ${ }^{1} \mathrm{~A}_{1}{ }^{\text {b }}$			
HF/dz + (sd-diff,C/d-pol C,O) ${ }^{\text {h }}$		1.870	a
MP2/6-311++G** $=\mathrm{E})^{\text {n }}$		1.778	(-9.30)
QCISD/6-311++G**		1.883	(-5.02)
QCISD(T)/E//QCISD/En			(-6.37)
m3_ ${ }^{1} \mathbf{A}_{1}$			
RMP2/6-31G*//RMP2/6-31G*g	-115.21753	2.153	-6.7
RMP4/6-31G*//RMP2/6-31G*g	-115.24829		-6.4
MP2/6-31G*	-115.184626		-7.1 (-4.7)
MP2/6-311G**	-115.314750	2.17	-5.9 (-3.8)
ts3_ ${ }^{1} \mathrm{~A}_{1}$			
MP2/6-31G*	-115.177624	2.49	-2.7 (-1.6)

[^1]TZELI AND MAVRIDIS
TABLE II \qquad
Absolute energies E (hartree), geometries $r_{\mathrm{e}}(\hat{\mathrm{A}}), \boldsymbol{\theta}_{\mathrm{e}}$ (degrees), and energy gaps $T_{\mathrm{e}}(\mathrm{kcal} / \mathrm{mol})$ of $\mathrm{CH}, \mathrm{CH}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$ molecules at different levels of theory.

[^2]$$
\mathrm{CH}\left(\mathrm{X}^{2} \Pi, \mathrm{~A}^{4} \Sigma^{-}\right) \ldots \mathrm{OH}_{2} \text { AND CH } \mathrm{CH}_{2}\left(\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}, \tilde{\mathrm{~A}}^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2} \text { INTERACTIONS }
$$

TABLE III
Harmonic frequencies $\omega\left(\mathrm{cm}^{-1}\right)$ and zero-point energies (ZPE) (kcal/mol) of $\mathrm{CH}\left(\mathrm{X}^{2} \Pi, \mathrm{a}^{4} \Sigma^{-}\right), \mathrm{CH}_{2}\left(\tilde{X}^{3} \mathrm{~B}_{1}, \tilde{a}^{1} \mathrm{~A}_{1}\right)$, and $\mathrm{H}_{2} \mathrm{O}\left(\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\right)$ molecules at the (U)MP2/AxZ, $x=\mathrm{D}, \mathrm{T}, \mathrm{Q}$ level of theory.*

	ADZ	ATZ	AQZ	Expt	ADZ	ATZ	AQZ	Expt/ Theory
	$\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right)$				$\mathrm{CH}\left(\mathrm{a}^{4} \Sigma^{-}\right)$			
$\omega_{\text {e }}$	2930	2948	2956	$2860.75^{\text {a }}$	3193	3206	3209	$3090.9^{\text {b }}$
ZPE	4.188	4.214	4.227	$4.090^{\text {a }}$	4.565	4.583	4.587	$4.419^{\text {b }}$
	$\mathrm{CH}_{2}\left(\tilde{X}^{3} \mathrm{~B}_{1}\right)$				$\mathrm{CH}_{2}\left(\tilde{a}^{1} \mathrm{~A}_{1}\right)$			
ω_{1}	1138	1132	1134		1408	1471	1420	
ω_{2}	3183	3199	3205		2975	2991	2997	
ω_{3}	3420	3432	3441		3056	3067	3078	
ZPE	11.07	11.10	11.12	$10.683^{\text {c }}$	10.64	10.69	10.71	10.327°
$\mathrm{H}_{2} \mathrm{O}\left(\tilde{X}^{1} \mathrm{~A}_{1}\right)$								
$\omega_{2}\left(\mathrm{a}_{1}\right)$	1622	1628	1632	$1648{ }^{\text {d }}$				
$\omega_{1}\left(\mathrm{a}_{1}\right)$	3803	3822	3840	$3832{ }^{\text {d }}$				
$\omega_{3}\left(b_{2}\right)$	3938	3948	3966	$3943{ }^{\text {d }}$				
ZPE	13.39	13.44	13.49	$13.47^{\text {d }}$				

* Experimental or very accurate theoretical values are also given.
${ }^{\text {a }}$ Ref. [29b].
${ }^{\mathrm{b}}$ Accurate theoretical values (Ref. [32]).
${ }^{\text {c }}$ Expt. Ref. [30g].
${ }^{d}$ Ref. [31c].
and oxygen orbitals were always kept doubly occupied.

$\mathbf{C H}, \mathbf{C H}_{2}$, and $\mathrm{H}_{2} \mathbf{O}$ Molecules

Total energies, geometries, and harmonic frequencies of $\mathrm{CH}\left(\mathrm{X}^{2} \Pi, \mathrm{a}^{4} \Sigma^{-}\right), \mathrm{CH}_{2}\left(\tilde{X}^{3} \mathrm{~B}_{1}, \tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}\right)$, and $\mathrm{H}_{2} \mathrm{O}\left(\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\right)$ molecules are reported in Tables II and III. At the highest level of calculation, (U)MP4/ $A Q Z$, the geometries of all three molecules are in very good agreement with the experiment [29-31]. The energy gap $a^{4} \Sigma^{-} \leftarrow \mathrm{X}^{2} \Pi$ of CH is $T_{0}=16.2$ (16.6) $\mathrm{kcal} / \mathrm{mol}$ at the UMP4(PMP4)/AQZ level (where P stands for "projected"), in fair agreement with the experimental value of $17.11 \pm 0.18 \mathrm{kcal} / \mathrm{mol}$ [29c, 29d]. The same can be said for the energy separation $\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1} \leftarrow \tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}$ of CH_{2}, where at the (U)MP4[(P)MP4)]/AQZ level, we obtain $T_{0}=10.3$ [11.0] kcal/mol, as compared with the experimental value, $T_{0}=8.998 \pm 0.014 \mathrm{kcal} / \mathrm{mol}$ [30f]. Here, zero-point energies (ZPE) have been calculated at the (U)MP2/AQZ level (Table III), admittedly not in very good agreement with experiment (or best ab initio values), but fair enough for the purposes of the present work.

Now, and for reasons that will be useful in the following sections, we give the valence-bond-

Lewis (vbL) diagrams of all species involved in this work [Schemes (1)-(5); see also Refs. [9] and [32]).

From these icons, it is clear that, in general, the interaction energies of $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right)$ and $\mathrm{CH}_{2}\left(\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}\right)$ with $\mathrm{H}_{2} \mathrm{O}$, should be much larger than the corresponding interactions of $\mathrm{CH}\left(\mathrm{a}^{4} \Sigma^{-}\right)$and $\mathrm{CH}_{2}\left(\tilde{X}^{3} \mathrm{~B}_{1}\right)+\mathrm{H}_{2} \mathrm{O}$. "Bonding" in the first pair with water is plausible through an electron transferring mechanism to the available $2 p_{x}$ and $2 p_{x, y}$ orbitals of $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right)$ and $\mathrm{CH}_{2}\left(\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}\right)$ respectively, but shut off in the $\mathrm{CH}\left(\mathrm{a}^{4} \Sigma^{-}\right)$, $\mathrm{CH}_{2}\left(\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}\right)$ pair.

Results and Discussion

$\mathrm{CH} \ldots \mathrm{H}_{2} \mathbf{O}$

We have calculated four structures of the $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right) \ldots \mathrm{OH}_{2}$ complex, as shown in Figure 1, two minima (m) and two transition states (ts), and three $\mathrm{CH}\left({ }^{4} \Sigma^{-}\right) \ldots \mathrm{OH}_{2}$ structures (two m and one ts). Table IV presents absolute energies, BSSE-corrected dissociation energies $\Delta E(\mathrm{BSSE}), \Delta E_{0}(\mathrm{BSSE})=$ $\Delta E(\mathrm{BSSE})+$ ZPE corrections; CBS limits are also given for the $\mathrm{m} 1_{-}{ }^{2} \Pi, \mathrm{~m} 2_{-}^{2} \Pi$, and $\mathrm{m} 1_{-}{ }^{4} \Sigma^{-}$species. Tables V and VI list ZPEs, harmonic frequencies $\left(\omega_{e}\right)$, Mulliken charges, and dipole moments (μ) respectively.

d. ts $2_{-}^{2} \Pi$

e. $m 1_{-}^{4} \Sigma^{-}$

g. $\mathrm{m} 2_{-}^{4} \Sigma^{-}$

FIGURE 1. Geometries of the $\mathrm{CH}\left({ }^{2} \Pi\right) \ldots \mathrm{OH}_{2}$ and $\mathrm{CH}\left({ }^{4} \Sigma^{-}\right) \ldots \mathrm{OH}_{2}$ minima. Bond distances in \AA at the UMP2/ATZ level.

At the PMP4/AQZ-CBS level, the interaction energy of $\mathrm{m} 1_{-}^{2} \Pi$ (global minimum, $\left.\mathrm{C}_{1}\right)$ is $\Delta E(\mathrm{BSSE})=$ $-13.7 \mathrm{kcal} / \mathrm{mol}$, or $\Delta E_{0}(\mathrm{BSSE})=-9.36 \mathrm{kcal} / \mathrm{mol}$, using the ATZ-ZPE corrections. The interaction takes place by charge transfer from the water oxygen atom to the empty $2 p_{x}$ orbital of the $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right)$ state, Scheme (1), forming an ylide-like complex at $r_{\mathrm{C}} \ldots \mathrm{O}=1.752 \AA$ (Fig. 1). Corresponding literature results at the UMP2/6-31G ${ }^{* *}$ [6] and UMP2/6-31G ${ }^{*}$ (d) $[7]$ are $\Delta E=-14.3 \mathrm{kcal} / \mathrm{mol}, r_{\mathrm{C}} \ldots \mathrm{O}=1.868 \AA$, and $-15.3 \mathrm{kcal} / \mathrm{mol}, r_{\mathrm{C}} \ldots \mathrm{O}=1.832 \AA$, respectively.

SCHEMES 1-5.

However, no BSSE corrections have been applied in Ref. [6], while the results reported by Jursic [7] lack both ZPE and BSSE corrections. At the UMP4(SDQ)/CBSB4/ /UMP2/6-31G* (d) level, Jursic gives $\Delta E=-8.5 \mathrm{kcal} / \mathrm{mol}$. It is interesting that correcting the ΔE value of Jursic [7] for ZPE and BSSE at the UMP4(SDTQ)/ADZ level (slightly better than that of Ref. [7]), using our results (Table IV), one obtains $\Delta E=-8.5+4.1+2.1=-2.3$

SCHEME 6.
$\mathrm{CH}\left(\mathrm{X}^{2} \Pi, \mathrm{~A}^{4} \Sigma^{-}\right) \ldots \mathrm{OH}_{2}$ AND $\mathrm{CH}_{2}\left(\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}, \tilde{\mathrm{~A}}^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2}$ INTERACTIONS
TABLE IV
Total energies E (hartree), interaction energies ΔE ($\mathrm{kcal} / \mathrm{mol}$), basis set superposition error-corrected ΔE, $\Delta E(B S S E)(\mathrm{kcal} / \mathrm{mol})$, and zero-point energy-corrected $\triangle E(B S S E), \Delta E_{0}($ BSSE $)(\mathrm{kcal} / \mathrm{mol})$, of $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right.$, $\left.\mathrm{a}^{4} \Sigma^{-}\right) \ldots \mathrm{OH}_{2}$ complexes at different levels of theory.

	E	ΔE	$\Delta E(B S S E)$	$\Delta E_{0}(B S S E)$	E	ΔE	$\Delta E(B S S E)$	$\Delta E_{0}(B S S E)$

[^3]TABLE V
UMP2/ATZ harmonic vibrational frequencies $\omega\left(\mathrm{cm}^{-1}\right.$) and zero-point energies (ZPE) ($\mathrm{kcal} / \mathrm{mol}$) of the $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right) \ldots \mathrm{OH}_{2}(\mathrm{~m} 1, \mathrm{ts} 1, \mathrm{~m} 2, \mathrm{ts} 2)$ and $\mathrm{CH}\left(\mathrm{a}^{4} \Sigma^{-}\right) \ldots \mathrm{OH}_{2}(\mathrm{~m} 1, \mathrm{ts} 1, \mathrm{~m} 2)$ complexes.

m1_ ${ }^{2} \Pi$		ts1_ ${ }^{2} \Pi$		$\mathrm{OH}_{2} \mathrm{~m} 2{ }^{2} \Pi$		ts2_ ${ }^{2} \Pi$	
ω_{1}	213	$\omega_{1}\left(\mathrm{a}^{\prime \prime}\right)$	159i	$\omega_{1}\left(\mathrm{a}^{\prime}\right)$	131	$\omega_{1}\left(a^{\prime}\right)$	19.6 i
ω_{2}	411	$\omega_{2}\left(\mathrm{a}^{\prime}\right)$	399	$\omega_{2}\left(\mathrm{a}^{\prime \prime}\right)$	155	$\omega_{2}\left(\mathrm{a}^{\prime \prime}\right)$	62.6
ω_{3}	634	$\omega_{3}\left(\mathrm{a}^{\prime \prime}\right)$	646	$\omega_{3}\left(\mathrm{a}^{\prime}\right)$	156	$\omega_{3}\left(\mathrm{a}^{\prime}\right)$	104
ω_{4}	687	$\omega_{4}\left(\mathrm{a}^{\prime}\right)$	650	$\omega_{4}\left(\mathrm{a}^{\prime}\right)$	287	$\omega_{4}\left(\mathrm{a}^{\prime}\right)$	113
ω_{5}	1230	$\omega_{5}\left(\mathrm{a}^{\prime}\right)$	1169	$\omega_{5}\left(\mathrm{a}^{\prime \prime}\right)$	520	$\omega_{5}\left(\mathrm{a}^{\prime \prime}\right)$	233
ω_{6}	1623	$\omega_{6}\left(\mathrm{a}^{\prime}\right)$	1632	$\omega_{6}\left(\mathrm{a}^{\prime}\right)$	1641	$\omega_{6}\left(\mathrm{a}^{\prime}\right)$	1631
ω_{7}	2968	$\omega_{7}\left(\mathrm{a}^{\prime}\right)$	2991	$\omega_{7}\left(\mathrm{a}^{\prime}\right)$	2995	$\omega_{7}\left(\mathrm{a}^{\prime}\right)$	2983
ω_{8}	3743	$\omega_{8}\left(\mathrm{a}^{\prime}\right)$	3747	$\omega_{8}\left(\mathrm{a}^{\prime}\right)$	3743	$\omega_{8}\left(\mathrm{a}^{\prime}\right)$	3818
ω_{9}	3863	$\omega_{9}\left(\mathrm{a}^{\prime \prime}\right)$	3851	$\omega_{9}\left(\mathrm{a}^{\prime}\right)$	3915	$\omega_{9}\left(\mathrm{a}^{\prime \prime}\right)$	3942
ZPE	21.98	ZPE	21.57	ZPE	19.36	ZPE	18.422
$\mathrm{m1}{ }_{-}^{4} \Sigma^{-}$		ts $1_{-}^{4} \Sigma^{-}$		$\mathrm{m} 2_{-}^{4} \Sigma^{-}$			
$\omega_{1}\left(\mathrm{a}^{\prime}\right)$	103.1	$\omega_{1}\left(\mathrm{a}^{\prime \prime}\right)$	84.0 i	$\omega_{1}\left(\mathrm{a}^{\prime \prime}\right)$	69.1		
$\omega_{2}\left(\mathrm{a}^{\prime \prime}\right)$	114.8	$\omega_{2}\left(\mathrm{a}^{\prime}\right)$	79.9	$\omega_{2}\left(\mathrm{a}^{\prime}\right)$	74.0		
$\omega_{3}\left(\mathrm{a}^{\prime}\right)$	138.2	$\omega_{3}\left(\mathrm{a}^{\prime}\right)$	101.8	$\omega_{3}\left(\mathrm{a}^{\prime}\right)$	85.9		
$\omega_{4}\left(\mathrm{a}^{\prime}\right)$	351.6	$\omega_{4}\left(\mathrm{a}^{\prime \prime}\right)$	196.4	$\omega_{4}\left(\mathrm{a}^{\prime}\right)$	230.5		
$\omega_{5}\left(\mathrm{a}^{\prime \prime}\right)$	420.5	$\omega_{5}\left(\mathrm{a}^{\prime}\right)$	208.6	$\omega_{5}\left(\mathrm{a}^{\prime \prime}\right)$	242.4		
$\omega_{6}\left(\mathrm{a}^{\prime}\right)$	1628.7	$\omega_{6}\left(\mathrm{a}^{\prime}\right)$	1631.1	$\omega_{6}\left(\mathrm{a}^{\prime}\right)$	1627.8		
$\omega_{7}\left(\mathrm{a}^{\prime}\right)$	3090.3	$\omega_{7}\left(\mathrm{a}^{\prime}\right)$	3194.0	$\omega_{7}\left(\mathrm{a}^{\prime}\right)$	3192.7		
$\omega_{8}\left(\mathrm{a}^{\prime}\right)$	3817.0	$\omega_{8}\left(\mathrm{a}^{\prime}\right)$	3804.5	$\omega_{8}\left(\mathrm{a}^{\prime}\right)$	3816.7		
$\omega_{9}\left(\mathrm{a}^{\prime \prime}\right)$	3941.5	$\omega_{9}\left(\mathrm{a}^{\prime}\right)$	3935.2	$\omega_{9}\left(\mathrm{a}^{\prime \prime}\right)$	3942.6		
ZPE	19.45	ZPE	18.80	ZPE	18.99		

$\mathrm{kcal} / \mathrm{mol}$, showing the importance of ZPE and BSSE corrections for weakly interacting systems.

Increasing the symmetry of $m 1_{-}^{2} \Pi$ from C_{1} to C_{S} the ts1_ ${ }^{2} \Pi$ transition state (one imaginary frequency) is obtained, reflecting a pivotal movement of $\mathrm{H}_{2} \mathrm{O}$ around the C... O axis [Fig. 1(b)]. The $\Delta E_{0}(\mathrm{BSSE}) / \mathrm{PMP} 4-\mathrm{ATZ}$ "interaction" energy is -8.3 $\mathrm{kcal} / \mathrm{mol}$, larger by $0.30 \mathrm{kcal} / \mathrm{mol}$ than the $\mathrm{m}_{1}{ }^{2} \Pi$
complex at the same level (Table IV). Obviously, the interaction mechanism of $\mathrm{m} 1 _$and $\mathrm{ts} 1_{-}^{2} \Pi$ species are identical, but the latter's equilibrium distance $r_{\mathrm{C} \ldots \mathrm{O}}=1.792 \AA$, is $0.04 \AA$ larger than that of the former.

Figure 3 shows the potential energy curve (PEC) of the $\mathrm{m} 1_{-}{ }^{2} \Pi \mathrm{HC} \ldots \mathrm{OH}_{2}$ interaction at the MP2/ ATZ level, maintaining the equilibrium geometries

TABLE VI
Atomic Mulliken charges q and dipole moments μ (Debye) of the $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right) \ldots \mathrm{OH}_{2}$ and $\mathrm{CH}\left(\mathrm{a}^{4} \Sigma^{-}\right) \ldots \mathrm{OH}_{2}$ complexes at the UMP2/ATZ level ${ }^{\text {a }}$ (see Fig. 1).

	$\mathrm{CH}\left({ }^{2} \Pi\right) \ldots \mathrm{OH}_{2}$				$\mathrm{CH}\left({ }^{4} \Sigma^{-}\right) \ldots \mathrm{OH}_{2}$		
	m1_² ${ }^{2}$	ts1_${ }^{2}$	$\mathrm{m} 2{ }^{2}{ }^{2}$	ts2_² ${ }^{2}$	$\mathrm{m} 1{ }^{4} \Sigma^{-}$	ts1_ ${ }^{4} \Sigma^{-}$	$\mathrm{m} 2{ }^{4} \Sigma^{-}$
q_{c}	-0.71	-0.71	-0.50	-0.53	-0.52	-0.45	-0.46
$\mathrm{q}_{\mathrm{H} 1}$	0.37	0.39	0.48	0.53	0.53	0.44	0.45
9	-0.13	-0.17	-0.47	-0.41	-0.43	-0.45	-0.44
$\mathrm{q}_{\mathrm{H} 2}$	0.22	0.25	0.31	0.20	0.21	0.27	0.22
$\mathrm{q}_{\mathbf{H} 3}$	0.25	0.25	0.19	0.20	0.21	0.20	0.22
μ	3.955	3.321	3.318	3.763	2.852	2.541	1.836

[^4]
a. $\mathrm{ml}_{-}{ }^{1} \mathbf{A}_{1}$

b. $\mathrm{m}_{2}{ }^{1} \mathrm{~A}_{1}$

c. tsi_ ${ }^{1}{ }^{1} \mathbf{A}_{1}$

d. $\mathrm{m}^{\mathbf{3}}{ }^{1} \mathbf{A}_{1}$

e. $\mathrm{ts} 2_{-}{ }^{1} \mathrm{~A}_{1}$

g. $\mathrm{ml}_{-}{ }^{3} \mathbf{B}_{1}$

h. ts1_ ${ }^{3} \mathbf{B}_{1}$

FIGURE 2. Geometries of the $\mathrm{CH}_{2}\left(\tilde{a}^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2}$ and $\mathrm{CH}_{2}\left(\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}\right) \ldots \mathrm{OH}_{2}$ minima. Bond distances in \AA at the (U)MP2/ATZ level.
of the free $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right), \mathrm{H}_{2} \mathrm{O}$ fragments along the interaction coordinate.

In both cases $\mathrm{m} 1_{-}^{2} \Pi$ and $\mathrm{ts} 1_{-}^{2} \Pi$, the bonding is succinctly represented by the vbL diagram shown in Scheme (6), indicating the charge transfer from an oxygen lone pair to the empty $2 p_{x}$-orbital of the $\mathrm{CH}\left(\mathrm{X}^{2} \Pi, \mathrm{~B}_{1}\right.$ component). Indeed, from the Mulliken population analysis, 0.30 electrons are migrating to the $2 p_{x}-\mathrm{CH}$ orbital. Note that the $\mathrm{H}_{1}, \mathrm{C}, \mathrm{O}$, and H_{3} atoms in $\mathrm{m1}_{-}{ }^{2} \Pi$ [Fig. 1(a)] are practically planar, the dihedral $\mathrm{H}_{1} \mathrm{COH}_{3}$ angle being 0.85°. This mechanism suggests that a variety of Lewis bases, L , such as, NH_{3} and CO , or even noble gases, can form systems of considerable stability with the $X^{2} \Pi \mathrm{CH}$ state.

Finally, the symmetric and asymmetric stretching modes of water in both $\mathrm{m} 1_{-}^{2} \Pi$ and $\mathrm{ts} 1_{-}^{2} \Pi$ structures are red shifted by $79-97 \mathrm{~cm}^{-1}$, as compared with the free $\mathrm{H}_{2} \mathrm{O}$ molecule, while the CH stretching is blue shifted by 20 and $43 \mathrm{~cm}^{-1}$ in $\mathrm{m}_{-}{ }^{2} \Pi$ and ts1_ ${ }^{2} \Pi$, respectively (Tables III and V).

The $\mathrm{m} 2_{-}^{2} \Pi\left(\mathrm{C}_{S}\right)$ and $\mathrm{ts} 2_{-}{ }^{2} \Pi\left(\mathrm{C}_{2 v}\right)$ structures constitute the second minimum and second transition state, respectively [Fig. 1(c) and (d)]. At the PMP4/ AQZ, we calculate a van der Waals interaction energy for $\mathrm{m} 2 _, \Delta E=-3.78 \mathrm{kcal} / \mathrm{mol}$, reduced to $\Delta E_{0}(\mathrm{BSSE})[\mathrm{CBS}]=-1.94[-1.97] \mathrm{kcal} / \mathrm{mol}$, (Table IV) at $r_{\mathrm{C}} \ldots \mathrm{H}=2.197 \AA$, a significantly high interaction, considering its morphology and the atoms involved. The $\mathrm{C}_{2 v}$ ts2_ ${ }^{2} \Pi$ van der Waals

FIGURE 3. Potential energy curves at the UMP2/ATZ level of the $\mathrm{m1}{ }_{-}^{2} \Pi \mathrm{CH}\left({ }^{2} \Pi\right) \ldots \mathrm{OH}_{2}$ and $\mathrm{m} 1_{-}{ }^{4} \Sigma^{-}$ $\mathrm{CH}\left({ }^{4} \Sigma^{-}\right) \ldots \mathrm{OH}_{2}$ structures.
$\mathrm{C}-\mathrm{H} \ldots \mathrm{OH}_{2} \mathrm{PMP} 4 / \mathrm{ATZ}$ interaction is, $\Delta E=$ $-1.90 \mathrm{kcal} / \mathrm{mol}$ reduced to $\Delta E_{0}(\mathrm{BSSE})=-0.91$ $\mathrm{kcal} / \mathrm{mol}$, and estimated to about $-1 \mathrm{kcal} / \mathrm{mol}$ at the AQZ basis set, using our experience from the $\mathrm{m} 2{ }^{2} \Pi$ interaction. It is interesting that at the AQZ basis set the ts $2{ }^{2} \Pi$ structure was calculated to be a real minimum, but at the ATZ level, the previously calculated (ADZ) frequency of $61 \mathrm{~cm}^{-1}$ became $20 i$ cm^{-1}. For both $\mathrm{m} 2_{-}^{2} \Pi$ and $\mathrm{ts} 2_{-}^{2} \Pi$ structures, the C-H bond length decreases by $\sim 0.01 \AA$ upon interaction with water as compared with the free $\mathrm{X}^{2} \Pi$ CH species (Table II). Jursic [7] reports $\Delta E(\mathrm{MP} 4 \mathrm{SDQ})=-3.4 \mathrm{kcal} / \mathrm{mol}$ at $r_{\mathrm{C}} \ldots \mathrm{H}=2.320 \AA$ for the $\mathrm{m} 2_{-}{ }^{2} \Pi$ structure; however, this value is reduced to $-1.2 \mathrm{kcal} / \mathrm{mol}$ if corrected by ZPE and BSSE using our results of the ADZ basis set (Table $I V)$. In addition, concerning the ts $2_{-}^{2} \Pi$ structure, he concludes that it is a real minimum, although at the MP4SDQ level this configuration is unbound.

Turning now to the $\mathrm{CH}\left(\mathrm{a}^{4} \Sigma^{-}\right) \ldots \mathrm{OH}_{2}$ interaction, we report results for three structures, two minima $\mathrm{m} 1_{-}^{4} \Sigma^{-}, \mathrm{m} 2_{-}^{4} \Sigma^{-}$, and one transition state, ts1_ ${ }^{4} \Sigma^{-}$[Fig. 1(e), (g) and (f)], all of C_{S} symmetry. No theoretical results have been reported before in the literature for these systems. The potential energy curve of the $\mathrm{m1}_{-}^{4} \Sigma^{-}$along the $\mathrm{CH} \ldots \mathrm{OH}_{2}$ interaction coordinate constructed as before at the MP2/ATZ level is depicted in Figure 3. Recalling that by singlet coupling two $\mathrm{a}^{4} \Sigma^{-} \mathrm{CH}$ moieties the acetylene molecule is obtained, we expect the $\mathrm{CH} \ldots \mathrm{OH}_{2}$ interaction to be very similar to the corresponding $\mathrm{HCCH} \ldots \mathrm{OH}_{2}$ interaction [27]. In-
deed, from Ref. [27] at the MP4/AQZ/ /MP4/ATZ level, we have $\Delta E_{0}(\mathrm{BSSE})[\mathrm{CBS}]=-1.88[-1.92]$ $\mathrm{kcal} / \mathrm{mol}, r_{\mathrm{HCCH}} \ldots \mathrm{OH}_{2}=2.188 \AA$, and $\varphi=155.8^{\circ}$, while for the $\mathrm{ml}_{-}^{4} \Sigma^{-2}$ at the MP4/AQZ//MP2/ ATZ level we obtain $\Delta E_{0}(\mathrm{BSSE})[\mathrm{CBS}]=$ $-1.57[-1.69] \mathrm{kcal} / \mathrm{mol}, r_{\mathrm{CH}} \ldots \mathrm{OH}_{2}=2.151 \AA$, and $\varphi=146.2^{\circ}$ [Table IV, Fig. 1(e)]. The C-H bond length within the $\mathrm{m} 1_{-}^{4} \Sigma^{-}$complex increases by $0.01 \AA$ as contrasted to the free $\mathrm{a}^{4} \Sigma^{-} \mathrm{CH}$, with a concomitant red shift of the $\mathrm{C}-\mathrm{H}$ frequency of $116 \mathrm{~cm}^{-1}$.

The interaction energies of $\mathrm{m} 2_{-}{ }^{4} \Sigma^{-}$and ts $1_{-}^{4} \Sigma^{-}$ structures [Fig. 1(g), (f)] at the MP4/AQZ level are $\Delta E=-0.95$ and $-1.03 \mathrm{kcal} / \mathrm{mol}$, respectively, but corrected for ZPE and BSSE these values become +0.2 and $-0.1 \mathrm{kcal} / \mathrm{mol}$, practically unbound.

$\mathbf{C H}_{2} \ldots \mathrm{OH}_{2}$

We report six structures of the CH_{2} $\left(\tilde{a}^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2}$ complex, three minima (m) and three transition states (ts), and three CH_{2} $\left(\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}\right) \ldots \mathrm{OH}_{2}$ structures, two minima, and one transition state (Fig. 2). Table VII lists absolute energies, BSSE-corrected dissociation energies $\Delta E(\mathrm{BSSE})$, and $\Delta E_{0}(\mathrm{BSSE})$; CBS limits are also listed for all five m-structures. Tables VIII and IX give ZPEs and harmonic frequencies, and Mulliken charges and dipole moments, respectively.

The $\mathrm{m} 1_{-}{ }^{1} \mathrm{~A}_{1}$ (global minimum), $\mathrm{m} 2{ }_{-}{ }^{1} \mathrm{~A}_{1}$ (second minimum) just $0.3 \mathrm{kcal} / \mathrm{mol}$ above the $\mathrm{m1}{ }^{1}{ }^{1} \mathrm{~A}_{1}$, and ts1 ${ }_{-}^{1} \mathrm{~A}_{1}$ (first transition state) of point group symmetries C_{s}, C_{1}, and C_{s}, respectively, are complexes of ylide character formed by charge transfer of about $0.3 \mathrm{e}^{-}$from the oxygen to the empty $2 p_{x}$ orbital (perpendicular to the CH_{2} plane) of the $\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}$ state of methylene [see also Scheme (4)]. The vbL diagram shown in Scheme 7 clearly captures the physics of bonding.

The interaction energies ΔE with respect to CH_{2} $\left(\tilde{a}^{1} \mathrm{~A}_{1}\right)+\mathrm{H}_{2} \mathrm{O}$ at the MP4/AQZ//MP2/ATZ are -15.72 and $-15.45 \mathrm{kcal} / \mathrm{mol}$ for the $\mathrm{m} 1_{-}^{1} \mathrm{~A}_{1}$ and $\mathrm{m} 2{ }^{1} \mathrm{~A}_{1}$, respectively. Correcting these values for ZPE and BSSE, we obtain $\Delta E_{0}(\mathrm{BSSE})=-9.31$ and $-8.99 \mathrm{kcal} / \mathrm{mol}$ (Table VII). The final interaction energy of the global minimum $\mathrm{m1}_{-}{ }^{1} \mathrm{~A}_{1}$ at the CBS limit is $-9.73 \mathrm{kcal} / \mathrm{mol}$. Assuming a similar CBS correction for the second minimum (m2), one estimates its interaction energy to be $-9.4 \mathrm{kcal} / \mathrm{mol}$.

The corresponding values for the ts $1_{-}{ }^{1} \mathrm{~A}_{1}$ structure at the MP4/ATZ//MP2/ATZ level are $\Delta E=$ $-10.52 \mathrm{kcal} / \mathrm{mol}, \Delta E_{0}(\mathrm{BSSE})=-4.07 \mathrm{kcal} / \mathrm{mol}$, or
$\mathrm{CH}\left(\mathrm{X}^{2} \Pi, \mathrm{~A}^{4} \Sigma^{-}\right) \ldots \mathrm{OH}_{2}$ AND $\mathrm{CH}_{2}\left(\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}, \tilde{\mathrm{~A}}^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2}$ INTERACTIONS
TABLE VII
Total energies E (hartree), interaction energies ΔE ($\mathrm{kcal} / \mathrm{mol}$), basis set superposition error-corrected ΔE, $\Delta E(B S S E)(\mathrm{kcal} / \mathrm{mol})$, and zero-point energy-corrected $\triangle E\left(\right.$ BSSE), ΔE_{0} (BSSE) (kcal/mol), of $\mathrm{CH}_{2}\left(\right.$ á $^{1} \mathrm{~A}_{1}$, $\left.\tilde{\mathbf{X}}^{3} \mathrm{~B}_{1}\right) \ldots \mathrm{OH}_{2}$ complexes at different levels of theory.

	E	ΔE	ΔE (BSSE)	ΔE_{0} (BSSE)	E	ΔE	ΔE (BSSE)	ΔE_{0} (BSSE)
				ADZ				
		(U)MP2 ${ }^{\text {a }}$			(U)MP4 ${ }^{\text {a }}$			
m1_ ${ }^{1} \mathrm{~A}_{1}$	-115.28599	-15.76	-13.24	-7.46	-115.32511	-14.47	-12.00	-6.22
ts1_ ${ }^{1} \mathrm{~A}_{1}$	-115.27810	-10.81	-8.51	-3.29	-115.31775	-9.58	-7.60	-2.38
m3- ${ }^{1} \mathrm{~A}_{1}$	-115.27052	-6.06	-5.13	-2.84	-115.31123	-5.76	-4.84	-2.55
ts2 ${ }^{1} \mathrm{~A}_{1}$	-115.27026	-5.89	-4.98	-2.78	-115.31099	-5.61	-4.69	-2.50
ts3 ${ }^{1} \mathrm{~A}_{1}$	-115.26357	-1.70	-1.23	-0.27	-115.30474	-1.69	-1.19	-0.23
m1-3 ${ }^{3}$	-115.28930	-1.95	-1.42	-0.24	-115.32441	-2.07	-1.48	-0.30
ts1-3 ${ }^{3} \mathrm{~B}_{1}$	-115.28916	-1.87	-1.36	-0.45	-115.32424	-1.97	-1.41	-0.50
$\mathrm{m} 2{ }_{-}^{3} \mathrm{~B}_{1}$	-115.28905	-1.80	-1.23	-0.11	-115.32416	-1.92	-1.29	-0.18
	PMP2				PMP4			
m1-3 ${ }^{3} \mathrm{~B}_{1}$	-115.29114	-1.96	-1.43	-0.25	-115.32555	-2.07	-1.48	-0.30
ts1-3 ${ }^{3}$	-115.29100	-1.88	-1.37	-0.46	-115.32538	-1.97	-1.41	-0.50
$\mathrm{m} 2{ }_{-}^{3} \mathrm{~B}_{1}$	-115.29088	-1.80	-1.23	-0.11	-115.32530	-1.92	-1.29	-0.17
		(U)MP2 ${ }^{\text {a }}$		ATZ	(U)MP4 ${ }^{\text {a,b }}$			
m1_ ${ }^{1} \mathrm{~A}_{1}$	-115.39070	-17.13	-16.06	-10.04	-115.42916	-15.49	-14.50	-8.48
m2_ ${ }^{1} \mathrm{~A}_{1}$	-115.39061	-17.07	-15.95	-9.89	-115.42869	-15.20	-14.16	-8.10
ts1- ${ }^{1} \mathrm{~A}_{1}$	-115.38243	-11.94	-10.92	-5.42	-115.42123	-10.52	-9.57	-4.07
m3- ${ }^{1} \mathrm{~A}_{1}$	-115.37311	-6.09	-5.69	-3.39	-115.41377	-5.84	-5.46	-3.17
ts2 ${ }^{1} \mathrm{~A}_{1}$	-115.37284	-5.92	-5.52	-3.32	-115.41351	-5.67	-5.30	-3.10
ts3 ${ }^{1} \mathrm{~A}_{1}$	-115.36600	-1.63	-1.39	-0.51	-115.40704	-1.61	-1.37	-0.49
m1-3 ${ }^{3}$	-115.38942	-1.79	-1.54	-0.44	-115.42509	-1.89	-1.63	-0.53
ts1-3 ${ }^{3}$	-115.38929	-1.70	-1.49	-0.64	-115.42492	-1.78	-1.57	-0.72
m2_ ${ }^{3} \mathrm{~B}_{1}$	-115.38934	-1.73	-1.47	-0.31	-115.42501	-1.84	-1.58	-0.42
	PMP2				PMP4			
m1-3 ${ }^{3} \mathrm{~B}_{1}$	-115.39132	-1.80	-1.55	-0.45	-115.42620	-1.88	-1.62	-0.53
ts1-3 ${ }^{3} \mathrm{~B}_{1}$	-115.39118	-1.71	-1.50	-0.65	-115.42604	-1.77	-1.56	-0.72
$\mathrm{m} 2{ }_{-}^{3} \mathrm{~B}_{1}$	-115.39122	-1.74	-1.48	-0.32	-115.42613	-1.83	-1.57	-0.41
				AQZ ${ }^{\text {c }}$				
			MP2 ${ }^{\text {a }}$		(U)MP4 ${ }^{\text {a }}$			
$\mathrm{ml}^{1}{ }^{\text {a }} \mathrm{A}_{1}$	-115.42424	$\begin{array}{cc} -17.30 & -16.79 \\ & -17.05 \pm 0.02 \end{array}$		-10.77	-115.45938	-15.72	-15.33	-9.31
CBS ${ }^{\text {d }}$					-15.75 ± 0.02			
m2_ ${ }^{1} \mathrm{~A}_{1}$	-115.42418	-17.27	-16.73	-10.67	-115.45896	-15.45	-15.05	-8.99
m3- ${ }^{1} \mathrm{~A}_{1}$	-115.40624	-6.01	-5.82	-3.52	-115.44351	-5.75	-5.61	-3.31
$\mathrm{CBS}^{\text {d }}$			5.86				-5.66	
m1-3 ${ }_{1}$	-115.42152	-1.70	-1.59	-0.49	-115.45431	-1.79	-1.70	-0.60
$\mathrm{CBS}^{\text {d }}$			-1.64				-1.75	
$\mathrm{m} 2_{-}{ }^{3} \mathrm{~B}_{1}$	-115.42140	-1.62	-1.51	-0.35	-115.45420	-1.72	-1.63	-0.47
			-1.52				-1.64	
	PMP2				PMP4			
$\mathrm{ml}^{3}{ }^{3} \mathrm{~B}_{1}$	-115.42342	-1.71	-1.60	-0.50	-115.45542	-1.78	-1.69	-0.59
$\mathrm{CBS}^{\text {d }}$			-1.64				-1.76	
$\mathrm{m}_{2}{ }^{3} \mathrm{~B}_{1}$	-115.42329	-1.62	-1.52	-0.36	-115.45531	-1.71	-1.63	-0.47
CBS ${ }^{\text {d }}$			-1.52				-1.64	

[^5]TABLE VIII
MP2/ATZ harmonic vibrational frequencies $\omega\left(\mathrm{cm}^{-1}\right)$ and zero-point energies ZPE ($\mathrm{kcal} / \mathrm{mol}$) of the $\mathrm{CH}_{2}\left(\tilde{a}^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2}(\mathrm{~m} 1, \mathrm{~m} 2, \mathrm{ts} 1, \mathrm{~m} 3, \mathrm{ts} 2, \mathrm{ts} 3)$ and $\mathrm{CH}_{2}\left(\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}\right) \ldots \mathrm{OH}_{2}(\mathrm{~m} 1, \mathrm{ts} 1, \mathrm{~m} 2)$ complexes.

m1_ ${ }^{1} \mathrm{~A}_{1}$		m2_ ${ }^{1} \mathrm{~A}_{1}$		ts1_ ${ }^{1} \mathrm{~A}_{1}$		m3- ${ }^{1} \mathrm{~A}_{1}$		ts2_ ${ }^{1} \mathrm{~A}_{1}$	
$\omega_{1}\left(\mathrm{a}^{\prime \prime}\right)$	101	ω_{1}	150	$\omega_{1}\left(\mathrm{a}^{\prime \prime}\right)$	343 i	$\omega_{1}\left(\mathrm{a}^{\prime \prime}\right)$	86.6	$\omega_{1}\left(\mathrm{a}^{\prime \prime}\right)$	86.2i
$\omega_{2}\left(\mathrm{a}^{\prime}\right)$	442	ω_{2}	442	$\omega_{2}\left(\mathrm{a}^{\prime}\right)$	388	$\omega_{2}\left(\mathrm{a}^{\prime}\right)$	138	$\omega_{2}\left(\mathrm{a}^{\prime \prime}\right)$	145
$\omega_{3}\left(\mathrm{a}^{\prime \prime}\right)$	695	ω_{3}	662	$\omega_{3}\left(\mathrm{a}^{\prime}\right)$	654	$\omega_{3}\left(\mathrm{a}^{\prime}\right)$	187	$\omega_{3}\left(a^{\prime}\right)$	166
$\omega_{4}\left(\mathbf{a}^{\prime}\right)$	710	ω_{4}	730	$\omega_{4}\left(\mathrm{a}^{\prime \prime}\right)$	703	$\omega_{4}\left(\mathrm{a}^{\prime \prime}\right)$	208	$\omega_{4}\left(\mathrm{a}^{\prime}\right)$	225
$\omega_{5}\left(\mathrm{a}^{\prime \prime}\right)$	1183	ω_{5}	1149	$\omega_{5}\left(\mathrm{a}^{\prime \prime}\right)$	1164	$\omega_{5}\left(\mathrm{a}^{\prime}\right)$	403	$\omega_{5}\left(\mathrm{a}^{\prime}\right)$	498
$\omega_{6}\left(\mathrm{a}^{\prime}\right)$	1186	ω_{6}	1201	$\omega_{6}\left(\mathrm{a}^{\prime}\right)$	1182	$\omega_{6}\left(\mathrm{a}^{\prime \prime}\right)$	727	$\omega_{6}\left(\mathrm{a}^{\prime \prime}\right)$	640
$\omega_{7}\left(\mathrm{a}^{\prime}\right)$	1423	ω_{7}	1423	$\omega_{7}\left(\mathrm{a}^{\prime}\right)$	1390	$\omega_{7}\left(\mathrm{a}^{\prime}\right)$	1423	$\omega_{7}\left(a^{\prime}\right)$	1423
$\omega_{8}\left(\mathrm{a}^{\prime}\right)$	1655	ω_{8}	1614	$\omega_{88}\left(\mathrm{a}^{\prime}\right)$	1611	$\omega_{88}\left(\mathrm{a}^{\prime}\right)$	1656	$\omega_{8}\left(\mathrm{a}^{\prime}\right)$	1658
$\omega_{9}\left(\mathrm{a}^{\prime}\right)$	3006	ω_{9}	3008	$\omega_{9}\left(\mathrm{a}^{\prime}\right)$	2964	$\omega_{9}\left(\mathrm{a}^{\prime}\right)$	3021	$\omega_{9}\left(\mathrm{a}^{\prime}\right)$	3021
$\omega_{10}\left(\mathrm{a}^{\prime \prime}\right)$	3080	ω_{10}	3100	$\omega_{10}\left(\mathrm{a}^{\prime \prime}\right)$	3045	$\omega_{10}\left(\mathbf{a}^{\prime}\right)$	3103	$\omega_{10}\left(a^{\prime \prime}\right)$	3103
$\omega_{11}\left(\mathrm{a}^{\prime}\right)$	3751	ω_{11}	3755	$\omega_{11}\left(\mathrm{a}^{\prime}\right)$	3746	$\omega_{11}\left(\mathrm{a}^{\prime}\right)$	3619	$\omega_{11}\left(a^{\prime}\right)$	3627
$\omega_{12}\left(\mathrm{a}^{\prime \prime}\right)$	3848	ω_{12}	3877	$\omega_{12}\left(\mathrm{a}^{\prime \prime}\right)$	3875	$\omega_{12}\left(\mathrm{a}^{\prime}\right)$	3906	$\omega_{12}\left(a^{\prime}\right)$	3907
ZPE	30.14	ZPE	30.18	ZPE	29.62	ZPE	26.42	ZPE	26.32
ts3_ ${ }^{1} \mathrm{~A}_{1}$		m1_ ${ }^{3} \mathrm{~B}_{1}$		ts1_ ${ }^{3} \mathrm{~B}_{1}$		$\mathrm{m}_{2}{ }^{3} \mathrm{~B}_{1}$			
$\omega_{1}\left(\mathrm{a}^{\prime \prime}\right)$	101.3i	$\omega_{1}\left(\mathrm{a}^{\prime \prime}\right)$	63.2	$\omega_{1}\left(\mathrm{a}^{\prime \prime}\right)$	66.2 F	$\omega_{1}\left(\mathrm{a}^{\prime \prime}\right)$	39.1		
$\omega_{2}\left(\mathrm{a}^{\prime}\right)$	65.0	$\omega_{2}\left(\mathrm{a}^{\prime \prime}\right)$	70.3	$\omega_{2}\left(\mathrm{a}^{\prime \prime}\right)$	10.6	$\omega_{2}\left(\mathrm{a}^{\prime \prime}\right)$	81.6		
$\omega_{3}\left(\mathrm{a}^{\prime \prime}\right)$	75.5	$\omega_{3}\left(\mathrm{a}^{\prime}\right)$	81.5	$\omega_{3}\left(\mathrm{a}^{\prime}\right)$	59.9	$\omega_{3}\left(\mathrm{a}^{\prime}\right)$	94.0		
$\omega_{4}\left(\mathrm{a}^{\prime}\right)$	95.6	$\omega_{4}\left(\mathrm{a}^{\prime}\right)$	107	$\omega_{4}\left(\mathrm{a}^{\prime}\right)$	106	$\omega_{4}\left(\mathrm{a}^{\prime}\right)$	122		
$\omega_{5}\left(\mathrm{a}^{\prime \prime}\right)$	165	$\omega_{5}\left({ }^{\prime}{ }^{\prime}\right)$	175	$\omega_{5}\left(\mathrm{a}^{\prime}\right)$	205	$\omega_{5}\left(\mathrm{a}^{\prime}\right)$	228		
$\omega_{6}\left(\mathrm{a}^{\prime}\right)$	196	$\omega_{6}\left({ }^{\prime \prime}\right)$	310	$\omega_{6}\left(\mathrm{a}^{\prime \prime}\right)$	238	$\omega_{6}\left(\mathrm{a}^{\prime \prime}\right)$	312		
$\omega_{7}\left(\mathrm{a}^{\prime}\right)$	1427	$\omega_{7}\left(\mathrm{a}^{\prime}\right)$	1132	$\omega_{7}\left(\mathrm{a}^{\prime}\right)$	1135	$\omega_{7}\left(\mathrm{a}^{\prime}\right)$	1134		
$\omega_{8}\left(\mathrm{a}^{\prime}\right)$	1632	$\omega_{8}\left(\mathrm{a}^{\prime}\right)$	1629	$\omega_{8}\left(\mathrm{a}^{\prime}\right)$	1629	$\omega_{88}\left(\mathrm{a}^{\prime}\right)$	1631		
$\omega_{9}\left(a^{\prime}\right)$	2995	$\omega_{9}\left(\mathrm{a}^{\prime}\right)$	3181	$\omega_{9}\left(\mathrm{a}^{\prime}\right)$	3183	$\omega_{9}\left(\mathrm{a}^{\prime}\right)$	3194		
$\omega_{10}\left(\mathrm{a}^{\prime}\right)$	3074	$\omega_{10}\left(\mathrm{a}^{\prime}\right)$	3419	$\omega_{10}\left(\mathrm{a}^{\prime}\right)$	3421	$\omega_{10}\left(\mathrm{a}^{\prime \prime}\right)$	3428		
$\omega_{11}\left(\mathrm{a}^{\prime}\right)$	3818	$\omega_{11}\left(\mathrm{a}^{\prime}\right)$	3819	$\omega_{11}\left(\mathbf{a}^{\prime}\right)$	3820	$\omega_{11}\left(\mathrm{a}^{\prime}\right)$	3787		
$\omega_{12}\left(\mathrm{a}^{\prime \prime}\right)$	3941	$\omega_{12}\left(\mathrm{a}^{\prime \prime}\right)$	3943	$\omega_{12}\left(\mathrm{a}^{\prime \prime}\right)$	3945	$\omega_{12}\left(\mathrm{a}^{\prime}\right)$	3923		
ZPE	24.99	ZPE	25.63	ZPE	25.38	ZPE	25.69		

estimated to be about $-5 \mathrm{kcal} / \mathrm{mol}$ at the CBS limit, judging from our previous experience.

The ts $1{ }_{-}^{1} \mathrm{~A}_{1}$ structure is the transition state between two energetically equivalent $\mathrm{m} 2{ }_{-}^{1} \mathrm{~A}_{1}$ structures with respect to the pivotal movement of the $\mathrm{H}_{2} \mathrm{O}$ molecule around the $\mathrm{C} \ldots \mathrm{O}$ axis of $\mathrm{m}_{2}{ }^{1} \mathrm{~A}_{1}$ [Fig. 2(b)], meaning that the energy barrier of this librational motion is $4.0 \mathrm{kcal} / \mathrm{mol}$ at the MP4/ATZ level. Figure 4 depicts the MP4/ATZ PEC of CH_{2} $\left(\tilde{a}^{1} \mathrm{~A}_{1}\right)+\mathrm{H}_{2} \mathrm{O}$ along the $\mathrm{C} \ldots \mathrm{O}$ coordinate. Finally, in all three structures, the symmetric and asymmetric stretching of water is red shifted $\sim 70-100 \mathrm{~cm}^{-1}$ and the methylene bending are red shifted by $50-80 \mathrm{~cm}^{-1}$.

The previous theoretical literature concerning the $\mathrm{m}_{-}^{1} \mathrm{~A}_{1} \mathrm{CH}_{2} \ldots \mathrm{OH}_{2}$ complex is significant [14-

20] (see Table I). Although, in general, all previous works give the $m 1_{-}^{1} \mathrm{~A}_{1}$ conformation as a minimum, the level of calculations are considerably lower than the present one and lacking systematic BSSE + ZPE corrections. This is reflected in a variety of conflicting results. For instance, the interaction energy of C...O ranges from -5.91 [18] to -20.14 [17] kcal/mol, or corrected for ZPE, - 15.3 [20] to -2.89 [18] kcal/mol. Similarly, C ... O distances range from 1.758 [20] to $2.366 \AA$. [18] The $\mathrm{m}_{2}{ }^{1} \mathrm{~A}_{1}$ structure was also examined in 1996 [21] at the MP2 and $\operatorname{QCISD}(\mathrm{T})+$ ZPE level, giving $\Delta E_{0}=$ -9.30 (MP2) and $-6.37[Q C I S D(T)] \mathrm{kcal} / \mathrm{mol}$.

The rest of the $\mathrm{CH}_{2}\left(\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2}$ structures presently studied and shown in Figure 2 are a third minimum ($\mathrm{m} 3_{-}{ }^{1} \mathrm{~A}_{1}$) and two transition structures

TABLE IX
Atomic Mulliken charges q and dipole moments μ (Debye) of the $\mathrm{CH}_{2}\left(\tilde{\mathbf{a}}^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2}$ and $\mathrm{CH}_{2}\left(\tilde{\mathbf{X}}^{\mathbf{3}} \mathrm{B}_{1}\right) \ldots \mathrm{OH}_{2}$ complexes at the (U)MP2/ATZ level. ${ }^{\text {a }}$

${ }^{\text {a }}$ Mulliken charges and dipole moments of the free CH_{2} and $\mathrm{H}_{2} \mathrm{O}$ at the (U)MP2/ATZ level are as follows: $\mathrm{CH}_{2}\left(\tilde{a}^{1} \mathrm{~A}_{1}\right): q_{\mathrm{C}}=-0.80, \mu=$ 1.814 Debye; $\mathrm{CH}_{2}\left(\tilde{X}^{3} \mathrm{~B}_{1}\right): q_{\mathrm{C}}=-0.91, \mu=0.594$ Debye; $\mathrm{H}_{2} \mathrm{O}: q_{\mathrm{O}}=-0.43, \mu=1.859$ Debye.
(ts2_ and ts3_ ${ }^{1} \mathrm{~A}_{1}$), all belonging to the C_{S} point group. The ts2_ ${ }^{1} \mathrm{~A}_{1}$ is the transition state between two (energetically) equivalent $\mathrm{m}_{-}{ }^{1} \mathrm{~A}_{1}$ structures with a very small energy barrier ($<0.2 \mathrm{kcal} / \mathrm{mol}$, including ZPE corrections). At the MP4/AQZ// MP2/ATZ level, the $m 3_{-}^{1} \mathrm{~A}_{1} \mathrm{C} \ldots$ H interaction energy amounts to $\Delta E=-5.75 \mathrm{kcal} / \mathrm{mol}$ or $\Delta E_{0}(\mathrm{BSSE})[\mathrm{CBS}]=-3.31[-3.36] \mathrm{kcal} / \mathrm{mol}$, and practically the same in the ts2_ ${ }^{1} \mathrm{~A}_{1}$. It is interesting

SCHEME 7.
to observe that we are dealing with a remarkably strong ($-3.4 \mathrm{kcal} / \mathrm{mol}$) C . . . H "hydrogen bond" in both m 3 _ and $\mathrm{ts} 2{ }^{1} \mathrm{~A}_{1}$ structures, probably the result of the positive end of the water hydrogen $\left[\mathrm{H}_{3}\right.$ in Fig. 1(d)] facing the cylindrically symmetric $2 s$ (or $2 s p_{z}$ hybrid) of the $\mathrm{CH}_{2} \tilde{a}^{1} \mathrm{~A}_{1}$ state [Scheme (8)].

FIGURE 4. Potential energy curves at the (U)MP2/ATZ level of the $m 1_{-}{ }^{1} A_{1} \mathrm{CH}_{2}\left(\tilde{a}^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2}$ and $\mathrm{m} 1_{-}{ }^{3} \mathrm{~B}_{1}$ $\mathrm{CH}_{2}\left(\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}\right) \ldots \mathrm{OH}_{2}$ structures.

SCHEME 8.

Finally, and in accordance with the previously discussed strong C...HOH interaction, a red shifted O-H stretching interaction of $\sim 200 \mathrm{~cm}^{-1}$ is calculated for both m 3 _ and ts2_ ${ }^{1} \mathrm{a}_{1}$ structures. The ts3_ ${ }_{-}^{1} \mathrm{~A}_{1}$ transition state [Fig. 1(f)] concerns a $\mathrm{CH} \ldots \mathrm{O}$ interaction with $\Delta E\left[\Delta E_{0}(\mathrm{BSSE})\right]=$ $-1.61[-0.49] \mathrm{kcal} / \mathrm{mol}$.

We discuss now the interaction of $\mathrm{H}_{2} \mathrm{O}$ with the $\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}$ state of CH_{2}. Looking at the electronic distribution of the $\tilde{X}^{3} B_{1}$ [Scheme (5)], we expect weak van der Waals interactions between these two species, and indeed this is the case. No calculations have been reported so far on the $\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}$ state of $\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}$.

We present results for two minima ($\mathrm{m}_{-}{ }^{3} \mathrm{~B}_{1}$, $\mathrm{m} 2{ }_{-}^{3} \mathrm{~B}_{1}$) and one transition state (ts $1_{-}^{3} \mathrm{~B}_{1}$), all of geometrical C_{s} symmetry [Fig. 2(g), (h), and (i)]. The $\mathrm{H} \ldots \mathrm{O}$ interaction energy of $\mathrm{m} 1_{-}^{3} \mathrm{~B}_{1}$ is $\Delta E=-1.78$ $\mathrm{kcal} / \mathrm{mol}$ at the MP4/AQZ//MP2/ATZ, or including ZPE and BSSE corrections, $\Delta E_{0}(\mathrm{BSSE})[\mathrm{CBS}]=$ $-0.59[-0.66] \mathrm{kcal} / \mathrm{mol}$ (Table VII). Figure 4 shows the PMP2/ATZ potential curve of $\mathrm{m1}_{-}^{3} \mathrm{~B}_{1}$ along the H... O coordinate.

The ts $1_{-}{ }^{3} B_{1}$ is the transition state between two equivalent (mirror images) geometries of $m 1_{-}^{3} B_{1}$, but the total energy differences between the $\mathrm{m} 1_{-}^{3} \mathrm{~B}_{1}$ and ts $1_{-}{ }^{3} B_{1}$ is negligible, making the two structures practically indistinguishable. Contrasting the total energies of $\mathrm{m} 1_{-}{ }^{1} \mathrm{~A}_{1}$ and $\mathrm{m} 1_{-}{ }^{3} \mathrm{~B}_{1}$ corrected for ZPE, BSSE and including the CBS limit at MP4/AQZ level, it is seen (Tables II, III, and VII) that the global minimum of the $\mathrm{CH}_{2} \ldots \mathrm{OH}_{2}$ complex is the $\mathrm{m}_{-}{ }^{3} \mathrm{~B}_{1}$ state by $-1.97 \mathrm{kcal} / \mathrm{mol}$. However, considering our MP4/AQZ ã $\tilde{1}_{1} \mathrm{~A}_{1} \leftarrow \tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}$ energy splitting of $11.04 \mathrm{kcal} / \mathrm{mol}$ (Tables II and III), larger by 2.0 $\mathrm{kcal} / \mathrm{mol}$ from the experimental value [26], we can claim with confidence that the $\mathrm{m} 1_{-}{ }^{1} \mathrm{~A}_{1}$ and $\mathrm{m} 1_{-}{ }^{3} \mathrm{~B}_{1}$ states are in essence degenerate. Lastly, in the m2_ ${ }^{3} \mathrm{~B}_{1}$, at the MP4/AQZ//MP2/ATZ level, the $\mathrm{H} \ldots \mathrm{C}$ interaction energy is $\Delta E=-1.71 \mathrm{kcal} / \mathrm{mol}$, reduced to $-0.47 \mathrm{kcal} / \mathrm{mol}$ by adding the ZPE and BSSE corrections, or $-0.48 \mathrm{kcal} / \mathrm{mol}$ at the CBS limit (Table VII).

Synopsis

Employing the $(\mathrm{P}) \mathrm{MP} n(n=2,4)$ technique in conjunction with the sequence of correlation consistent basis sets aug-cc-pVxZ, $x=2,3$, and 4 , we have systematically examined the weakly interacting systems $\mathrm{CH}\left(\mathrm{X}^{2} \Pi, \mathrm{a}^{4} \Sigma^{-}\right)+\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2}\left(\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}\right.$, $\left.\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}\right)+\mathrm{H}_{2} \mathrm{O}$. For the $\mathrm{CH} \ldots \mathrm{OH}_{2}$ system, we have located four minima (m) and three transition states (ts, one imaginary frequency), and five minima and four transition states for the $\mathrm{CH}_{2} \ldots \mathrm{OH}_{2}$. All our results have been corrected for ZPE and BSSE, while for the most important m_{-}structures, we report complete basis set (CBS) interaction limits.

The highest $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right) \ldots \mathrm{OH}_{2}\left[\mathrm{~m}_{-}{ }^{2} \Pi\right.$, Fig. 1(a)] and $\mathrm{CH}_{2}\left(\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2}\left[\mathrm{m1}_{-}{ }^{1} \mathrm{~A}_{1}\right.$; Fig. 2(a)] interactions are the result of electron transfer from the oxygen atom to the empty p_{π} orbitals of $\mathrm{CH}\left(\mathrm{X}^{2} \Pi\right)$ and $\mathrm{CH}_{2}\left(\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}\right)$, respectively. Specifically, and at the highest level of calculation (P)MP4/AQZ//MP2/ ATZ, including ZPE, BSSE, and CBS extrapolation, we obtain $\Delta E_{0}($ BSSE $)+\mathrm{CBS}=-9.36 \mathrm{kcal} / \mathrm{mol}$ at $r_{\mathrm{C} \ldots \mathrm{O}}=1.752 \AA$, and $-9.73 \mathrm{kcal} / \mathrm{mol}$ at $r_{\mathrm{C}} \ldots \mathrm{O}=$ $1.741 \AA$ for $\mathrm{m}_{-}{ }^{2} \Pi$ and $\mathrm{m} 1_{-}{ }^{1} \mathrm{~A}_{1}$, respectively. The obvious similarity of the interaction mechanism causes practically the same "binding energies" and bond distances for both systems.

In the $\mathrm{m1}_{-}{ }^{4} \Sigma^{-} \mathrm{CH} \ldots \mathrm{H}_{2} \mathrm{O}$ complex [Fig. 1(e)], we obtain $\Delta E_{0}($ BSSE $)+\mathrm{CBS}=-1.69 \mathrm{kcal} / \mathrm{mol}$ at $r_{\mathrm{H} \ldots \mathrm{O}}=2.151 \AA$, close to the corresponding $\mathrm{HC} \equiv \mathrm{CH} \ldots \mathrm{OH}_{2}$ interaction [27], as expected.

Furthermore, in the $\mathrm{CH}_{2} \ldots \mathrm{H}_{2} \mathrm{O}$ complex, the $\mathrm{m} 3{ }_{-}^{1} \mathrm{~A}_{1}$ structure [Fig. 2(d)] has a remarkably strong C...H "hydrogen bond," $\Delta E_{0}($ BSSE $)+$ CBS $=-3.36 \mathrm{kcal} / \mathrm{mol}$ at $r_{\mathrm{H}} \ldots \mathrm{C}=2.098 \AA$, while the $\mathrm{m} 1_{-}^{3} \mathrm{~B}_{1}$ species [Fig. $2(\mathrm{~g})$] gives a ΔE_{0} (BSSE) + $\mathrm{CBS}=-0.66 \mathrm{kcal} / \mathrm{mol}$ at $r_{\mathrm{H} \ldots \mathrm{O}}=2.376 \AA$.

Finally, the global minimum of the $\mathrm{CH}_{2} \ldots \mathrm{OH}_{2}$ complex is the $\mathrm{m} 1_{-}^{3} \mathrm{~B}_{1}$ state, lower than $\mathrm{m} 1_{-}{ }^{1} \mathrm{~A}_{1}$ by $1.97 \mathrm{kcal} / \mathrm{mol}$. However, considering our MP4/ AQZ $\tilde{a}^{1} \mathrm{~A}_{1} \leftarrow \tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}$ energy splitting of $11.04 \mathrm{kcal} /$ $\mathrm{mol}, 2.0 \mathrm{kcal} / \mathrm{mol}$ larger than the experimental value [30f], we conclude that $\mathrm{m} 1_{-}{ }^{1} \mathrm{~A}_{1}$ and $\mathrm{m} 1_{-}{ }^{3} \mathrm{~B}_{1}$ states are in essence degenerate.

ACKNOWLEDGMENT

D. T. expresses her gratitude to the Hellenic Scholarship Foundation (IKY) for financial assistance.
$\mathrm{CH}\left(\mathrm{X}^{2} \Pi, \mathrm{~A}^{4} \Sigma^{-}\right) \ldots \mathrm{OH}_{2}$ AND $\mathrm{CH}_{2}\left(\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}, \tilde{\mathrm{~A}}^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2}$ INTERACTIONS

References

1. Padwa, A.; Hornbuckle, S. F. Chem Rev 1991, 91, 263.
2. Streitwieser, A., Jr.; Heathcock, C. H. Introduction to Organic Chemistry, 3rd ed.; Macmillan, New York, 1985.
3. Sanders, W. A.; Lin, M. C. Chemical Kinetics of Small Organic Radicals; Afassi, Z., Ed.; CRC Press: Boca Raton, FL, 1988; Vol III.
4. Zabarnick, S.; Fleming, J. W.; Lin, M. C. Chem Phys 1989, 132, 407.
5. Hou, Z.; Bayes, K. D. J Phys Chem 1993, 97, 1896.
6. Wang, Z.-X.; Liu, R.-Z.; Huang, M.-B.; Yu, Z. Can J Chem 1996, 74, 910.
7. Jursic, B. S. J Phys Chem 1998, 102, 9255.
8. Ma, S.-Y.; Liu, R.-Z. Huaxue Xuebao 1996, 54, 632.
9. Kalemos, A.; Dunning, T. H., Jr.; Mavridis, A.; Harrison, J. F. Can J Chem 2004, 82, 684.
10. Wesdemiotis, C.; Feng, R.; Danis, P. O.; Williams, E. R.; McLafferty, F. W. J Am Chem Soc 1986, 108, 5847.
11. Hack, W.; Wagner, H. G.; Wilms, A. Ber Bunsenges Phys Chem 1988, 92, 620.
12. Cartensen, H.-H.; Wagner, H. G. Ber Bunsenges Phys Chem 1995, 99, 1539.
13. Staker, W. S.; King, K. D.; Gutsche, G. J.; Lawrance, W. D. J Chem Soc Faraday Trans 1991, 87, 2421.
14. Harding, L. B.; Schlegel, H. B.; Krishnan, R.; Pople, J. A. J Phys Chem 1980, 84, 3394.
15. Eades, R. A.; Gassman, P. G.; Dixon, D. A. J Am Chem Soc 1981, 103, 1066.
16. Pople, J. A.; Raghavachari, K.; Frisch, M. J.; Binkley, J. S.; Schleyer, P. v. R. J Am Chem Soc 1983, 105, 6389.
17. Yates, B. F.; Bouma, W. J.; Radom, L. J Am Chem Soc 1987, 109, 2250.
18. Walch, S. P. J Chem Phys 1993, 98, 3163.
19. Zub, L. L.; Standard, J. M. J Mol Struct 1996, 368, 133.
20. Tucker, J. M.; Standard, J. M. J Mol Struct 1998, 431, 193.
21. Gonzalez, C.; Restrepo-Cossio, A.; Marquez, M.; Wiberg, K. B. J Am Chem Soc 1996, 118, 5408.
22. (a) Dunning, T. H., Jr. J Chem Phys 1989, 90, 1007; (b) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J Chem Phys 1992, 96, 6796.
23. (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; AlLaham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision A.1; Gaussian: Pittsburgh, PA, 1994; (b) Gaussian 98; Gaussian: Pittsburgh, PA, 1998.
24. (a) Boys, S. F.; Bernardi, F. Mol Phys 1970, 19, 553; (b) Davidson, E. R.; Chakravorty, S. J Chem Phys Lett 1994, 217, 48.
25. (a) Van Duijneveldt, F. B.; van Duijneveldt-van de Rijdt, J. G. C. M.; van Lenthe, J. H. Chem Rev 1994, 94, 1873; (b) Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem Rev 1994, 94, 1887.
26. Xantheas, S. S. J Chem Phys 1996, 104, 8821.
27. Tzeli, D.; Mavridis, A.; Xantheas, S. J Chem Phys 2000, 112, 6178; J Phys Chem A 2002, 106, 11327.
28. See, e.g., Peterson, K. A.; Dunning, T. H., Jr. J Mol Struct (Theochem) 1997, 400, 93.
29. (a) Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979; (b) Zachwieja, M. J Mol Spectrosc 1995, 170, 285; (c) Kasdan, A.; Herbst, E.; Lineberger, W. C. Chem Phys Lett 1975, 31, 78; (d) Nelis, T.; Brown, J. M.; Evenson, K. M. J Chem Phys 1988, 88, 2087; J Chem Phys 1990, 92, 4067.
30. (a) Herzberg, G.; Johns, J. W. C. Proc R Soc London Ser A 1966, 295, 107; (b) Leopold, D. G.; Murray, K. K.; Stevens Miller, A. E.; Lineberger, W. C. J Chem Phys 1985, 83, 4849; (c) Peterson, K. A.; Dunning, T. H., Jr. J Chem Phys 1997, 106, 4119; (d) McKellar, A. R. W.; Bunker, P. R.; Sears, T. J.; Evenson, K. M.; Saykally, R. J.; Langhoff, S. R. J Chem Phys 1983, 89, 5251; (e) Bunker, P. R.; Jensen, P.; Kraemer, W. P.; Beardsworth, R. J Chem Phys 1985, 85, 3724; (f) Bunker, P. R.; Jensen, P. J Chem Phys 1988, 89, 1327; (g) Császár, A. G.; Leininger, M. L.; Szalay, V. J Chem Phys 2003, 118, 10631.
31. (a) Cook, R. L.; De Lucia, F. C.; Helminger, P. J Mol Spectrosc 1974, 53, 62; (b) Hoy, A. R.; Bunker, P. R. J Mol Spectrosc 1974, 52, 439; J Mol Spectrosc 1975, 59, 159; (c) Benedict, W. S.; Gailar, N.; Plyler, E. K. J Chem Phys 1956, 24, 1139.
32. Kalemos, A.; Mavridis, A.; Metropoulos, A. J Chem Phys 1999, 111, 9536.

[^0]: Correspondence to: A. Mavridis; e-mail: mavridis@chem.uoa.gr Contract grant sponsor: Hellenic Scholarship Foundation (IKY).

[^1]: * Total energies E (hartree), van der Waals distances $r(\AA \AA)$, interaction energies ΔE and $\Delta E_{0}=\Delta E+\mathrm{ZPE}^{a}(\mathrm{kcal} / \mathrm{mol})$.
 ${ }^{\text {a }}$ Zero-point energy.
 ${ }^{\mathrm{b}}$ van der Waals distances (see Figs. 1 and 2).
 ${ }^{c}$ Ref. [6].
 ${ }^{\text {d Ref. [7]. }}$
 ${ }^{\mathrm{e}}$ It is reported that this structure is metastable rearranging to a more stable product, but our calculations show that it is minimum.
 ${ }^{\dagger}$ This structure is reported as minimum, but our calculations show that it is a transition state.
 ${ }^{9}$ Ref. [14].
 ${ }^{\mathrm{h}}$ Ref. [15].
 ${ }^{\text {i Ref. [16]. }}$
 ${ }^{\text {j Ref. [17]. }}$
 ${ }^{k}$ Ref. [18].
 ${ }^{\prime}$ Ref. [19].
 ${ }^{m}$ Ref. [20].
 ${ }^{n}$ Ref. [21].

[^2]: ${ }^{\text {a }}$ Expt., Ref. [29b].
 ${ }^{\mathrm{b}}$ Ref. [29c], r_{0}.
 ${ }^{c}$ Ref. [29d], T_{0}.
 ${ }^{d}$ Ref. [30c].
 ${ }^{e}$ Ref. [30a].
 ${ }^{\dagger}$ Ref. [30d].
 ${ }^{9}$ Ref. [30e].
 ${ }^{\mathrm{h}}$ Ref. [31a].
 ${ }^{i}$ Ref. [31b].
 ${ }^{\text {j }}$ Ref. [31c].

[^3]: a UMP4(SDTQ)/ADZ//UMP4(SDQ)/ADZ
 b UMP4(SDTQ)/ADZ//UMP2/ADZ.
 c UMP4(SDTQ)/ATZ//UMP2/ATZ.
 ${ }^{d}$ UMP2, UMP4(SDTQ)/AQZ//UMP2/ATZ.
 ${ }^{e}$ Complete basis set limit (see text).

[^4]: ${ }^{\text {a }}$ Mulliken charges and dipole moments of the free CH and $\mathrm{H}_{2} \mathrm{O}$ at the UMP2/ATZ level are as follows, $\mathrm{CH}\left({ }^{2} \Pi\right): q_{\mathrm{C}}=-0.42, \mu=1.515$ Debye; $\mathrm{CH}\left({ }^{4} \Sigma^{-}\right): q_{C}=-0.44, \mu=0.608$ Debye; $\mathrm{H}_{2} \mathrm{O}: q_{\mathrm{O}}=-0.43, \mu=1.859$ Debye.

[^5]: ${ }^{\text {a }}$ For the $\mathrm{CH}_{2}\left({ }^{1} \mathrm{~A}_{1}\right) \ldots \mathrm{OH}_{2}$ the UMP2 and UMP4 is MP2 and MP4, respectively.
 ${ }^{\mathrm{b}}$ (U)MP4/ATZ//(U)MP2/ATZ.
 c (U)MP2, (U)MP4/AQZ//(U)MP2/ATZ.
 ${ }^{d}$ Complete basis set limit.

