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A systematic investigation has been made of the temperature dependence of the Raman 
spectrum of homogeneous poly( oxyethylene) di-n-alkyl ethers H( CH2) ,, O( CH2CH20) ,,,- 
(CH2),H. Here details are reported for the sample with n = 6 and rn = 15 and with less 
complete data on samples ( n  = 8, rn = 15) and ( n  = 4, rn = 9). Many vibrational features are 
observed including longitudinal and transverse acoustical modes. Reduction of temperature 
from 293 to 77 K reveals three components of the LAM-1 mode. 

~ ~~ 

Homogeneous triblock oligomers of the general formula 

have been prepared' with rn = 9 or 15 and n = 1-30. They form a range of crystalline 
structures which includes those in which only the oxyethylene central block crystal- 
lises (type I), those in which all blocks crystallise (type 11) and those in which only 
the n-alkyl end blocks crystallise (type 111). The structure formed depends mainly 
upon the chain length ( n )  of the alkyl end block.' Broadly, the oligomers crystallise 
as follows: I, n = 3-6, 11, n = 12-21 and 111, n = 26-30. The lowest members of the 
series ( n  = 1 or 2) crystallise essentially as poly( oxyethylene). Chain-folded struc- 
tures are found' for oligomers with rn = 15 and n = 26-30. 

With regard to Raman scattering, the interesting feature of the oligomers is the 
large difference in elongational modulus ( E )  between the helical oxyethylene blocks 
and the planar zig-zag methylene blocks: Erne/ E,, ==: 10. Consequently their longi- 
tudinal vibrations are at very different frequencies and are largely uncoupled. 

Raman scattering from the longitudinal acoustical modes, both oxyethylene 
LAM-1 and n-alkyl LAM-1, is readily observed in the completely crystalline type 
I1  material^.'-^ Moreover, the type I1 structure is unchanged3 when the temperature 
is reduced from 293 to 77 K and so it is possible to study the temperature dependence 
of the LAMS over a wide range3 and, coincidentally, to study Raman scattering 
from a transverse acoustical mode (TAM- 1) of the crystalline oxyethylene 

In the type I structure at room temperature only the central oxyethylene block 
is crystalline. The n-alkyl end blocks maintain an approximately parallel alignment' 
but are too widely spaced to crystallise, owing to the large cross-sectional area of 
the oxyethylene helix compared with the n-alkyl planar zig-zag. The alkyl layers 
in the structure can be categorised as liquid crystalline. Here we report a systematic 

Systematic name: a-(n-hexy1)-o-( n-hexyloxy)pentadeca(oxyethylene). 
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investigation of the temperature dependence of Raman scattering from the oligomer 
6-15-6,t supported by less complete results for oligomer 4-9-4 of structure I and 
oligomer 8-15-8, which has a structure intermediate between I and I I .  

EXPERIMENTAL 

MATERIALS 

The homogeneous oligoethylene glycols and their di-n-alkyl ethers were prepared and 
purified as described earlier.',' The purity of the samples with respect to block length and 
composition exceeded 99% (i .e.  exceeded the limits of detection of impurities). 

RAMAN SCATTERING 

Raman spectra were recorded as described previously4 by means of a Cary 82 spectrometer 
with samples maintained at several temperatures in the range 293-77 K by means of an 
Oxford Instruments CF104 cryostat. Low-frequency spectra (100-5 cm-') were recorded with 
narrow spectral bandwidths (down to 0.5 cm-') which allowed close approach to the Rayleigh 
scattering peak. Otherwise the spectral band width was ca. 4cm-' and the lower limit of 
observation ca. 30 cm-'. Samples were crystallised by cooling from a temperature above the 
melting point to room temperature. Small corrections were made to the scattering frequency, 
as described earlier: for the background of Rayleigh scattering and for frequency and 
temperature. 

RESULTS 

Sample 6-15-6 was investigated at several temperatures within the range 77- 
293 K, sample 8-15-8 at five temperatures within the range 113-293 K and sample 
4-9-4 at 243 K only. The results for sample 6-15-6 are most complete and mainly 
these are used for illustration. The spectra of the other two samples are less 
satisfactory, owing to high background scattering, particularly that of sample 4-9-4, 
which was a liquid at room temperature and which was enclosed in a capillary tube. 
As in earlier it was necessary to replicate spectra many times in order to 
define certain features, owing to the low signal-to-noise ratio of some of the spectra. 

It is convenient to describe separately the scattering observed in the frequency 
ranges 1500- 150 and 150-10 cm-'. Corrected frequencies are quoted. 

FREQUENCY RANGE 1500- 150 cm-' 

A spectrum of sample 6-15-6 at 293 K is illustrated in fig. l (a) .  Compared with 
published477 spectra of oligo( oxyethylene)s, scattering at t r ib~table ' .~  to alkyl blocks 
is observed as a broad shoulder at 1455 cm-', a shoulder at ca. 1300 cm-' and a 
broad peak centred on 895 cm-'. Reduction of temperature has the effect on the 
higher-frequency spectrum of causing a sharpening of the peaks and some splitting. 
For example, the spectrum of sample 6-15-6 at 77 K ([shown in fig. l(b)] allows 
better definition of a number of minor features, such as the peaks due to the n-alkyl 
blocks at 1462 and 1296 cm-' and a weak peak at 1102 cm-', and also indicates 
splitting of the broad peaks centred on 231 cm-' (as noted earlier3.4) and 535 cm-'. 

t Samples are denoted by their alkyl-end-block length in number of carbon atoms (n) and their 
nominal oxyethylene-central-block length in number of oxyethylene units (m). Thus sample 6-15-6 is 
pentadecaethylene glycol di-n-hexyl ether. Note that this sample has an overall chain length of 58 chain 
atoms (C and 0). 
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Fig. 1. Raman spectra of sample 6-15-6: ( a )  T = 293 K and ( b )  T = 77 K. The intensity scales 
are arbitrary. There is a change in sensitivity near 1325 cm-*. 

There are also pronounced changes with temperature in the regions 1350-1500 and 
820-900 cm-'; e.g. the peaks at 862 and 1432 cm-' are very sensitive to temperature, 
particularly that at 862cm-' (see fig. 1). There are no significant changes in peak 
position observed with temperature over the range 293-77 K. 

FREQUENCY R A N G E  150-10 cm-' 

A spectrum of sample 6-15-6 for the range 100-10 cm-' at 293 K is shown in fig. 
2. This spectrum is similar to those recorded for oligo(oxyethy1ene)s at room 
t e m p e r a t ~ r e , ~ ' ~  with prominent peaks assignable to the crystalline oxyethylene block 
LAM-1 (at ca. 17.5 cm-' and narrow), and LAM-3 (at ca. 40 cm-' and broad) and 
to crystalline oxyethylene block CO internal rotation plus lattice vibration (at ca. 
80 cm-' and broad). The effect of reducing the temperature successively to 77 K is 
illustrated in fig. 3. A striking feature of the results is the broadening towards high 
frequencies and eventual splitting of the scattering peak associated with LAM-1 of 
the oxyethylene block. A spectrum of sample 4-9-4 at 243 K (illustrated elsewhere,* 
frequency range 20-50 cm-') shows a similar effect, as does the series of low- 
frequency spectra for the sample 8-15-8 shown in fig. 4 for variation of temperature 
over the range 293-113 K. There is evidence of broadening and possibly splitting 
of the LAM-3 peaks of a similar nature. 
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Fig. 2. Low-frequency Raman spectrum of samples 6-15-6 at 293 K. 

Corrected peak frequencies for sample 6-15-6 are listed in table 1. The assign- 
ments, where possible, are by analogy with previously published  result^^'^^^^^ and 
will be discussed later. For samples 4-9-4 and 8-15-8 the quality of the spectra is 
too low to permit identification of frequencies for the separate components of 
LAM-1. The intense peak at 71 cm-' independent of temperature in the spectrum 
of 6-15-6 (see fig. 3)  is also observed in the spectra of 8-15-8. The weak temperature- 
independent peaks at 60-61 and 103 cm-' are also seen in the spectra of both samples. 

Plots of peak frequency against temperature for LAM and TAM peaks are shown 
in fig. 5 and 6 for samples 6-15-6 and 8-15-8. For the intermediate peak around 
80-90 cm-' the temperature dependence is found to be linear. This is shown in fig. 
7 for both samples 6-15-6 and 8-15-8. 

DISCUSSION 

The Raman spectra of these oligo( oxyethy1ene)di-n-alkyl ethers reveal a wealth 
of detail and marked effects with reduction of temperature over the range 293-77 K. 

In the higher-frequency region the spectra derive mainly from the central crystal- 
line oxyethylene block, and assignment of the bands can be made following Koenig 
and Angood.' The crystalline n-alkyl blocks contribute features at 1296 and 
1462 cm-'. For sample 6-15-6 the prominent peaks at 862 and 1432 cm-' assigned 
to oxyethylene and apparent in the low-temperature spectrum are more sensitive to 
temperature, particularly that at 862 cm-', than found in samples studied earlier, 
e.g. the oligo(oxyethy1enes) 2-15-2 and 2000H and the type I1 di-n-alkyl ether 

The temperature-dependent band observed in the region of 80-90 cm-' is assig- 
ned4 to a lattice mode of the crystalline oxyethylene block. The temperature 
dependences of the lattice mode in samples 6-15-6 and 8-15-8 are similar to those 
observed4 for the oligo(oxyethy1enes). They fit linear equations of the form 

vlcm-' = 96.1-0.057T for 6-15-6 

18-1 5-1 8. 
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Fig. 3. Temperature variation of the low-frequency Raman spectrum of sample 6-15-6: ( a )  
243, ( b )  203, ( c )  173, ( d )  143 and ( e )  77 K. 

and 

vjcrn-' = 96.0-0.060T for 8-15-8. 

The temperature-independent bands at ca. 103, 80 and 61 cm-' have been 
a s ~ i g n e d , ~  by reference to earlier work,' to internal deformations of the oxyethylene 
helix. The peak at ca. 71 cm-', which is very prominent in the spectra of sample 
6-15-6 (see fig. 3) has no counterparts in the spectra of the oligo(oxyethylene)s4 and 
their type I1 di-n-alkyl  ether^.^ The frequency of this peak does not change with 
temperature, which characterises it as an internal deformation of the molecule. 

In the very-low-frequency range the prominent peak in the spectra of the samples 
at room temperature (e.g. at 17.5 cm-' for sample 6-15-6: see fig. 2) can be assigned 
to LAM-1. This assignment has been discussed earlier233 and is based on a compara- 
tive study of the spectra of the series of di-n-alkyl ethers r 1 - 1 5 - n ~ ~ ~  and also upon 
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Fig. 4. Temperature variation of the low-frequency Raman spectrum of sample 8-15-8: ( a )  
293, ( b )  203, ( c )  173 and ( d )  113 K. 

the temperature dependence of the peak frequency .'y4 Similar considerations serve 
to identify LAM-3 and TAM-1. The remarkable feature of the present results is the 
temperature dependence of LAM-1 (and possibly LAM-3), which is observed to 
broaden and then split on reduction of temperature (see fig.. 3 and 4). Three 
components of the LAM-1 can be identified in the spectra of sample 6-15-6 at low 
temperatures, and all have the same temperature dependence in the range 203-77 K 
(see table 1 and fig. 3) .  This temperature dependence is very similar to that found 
earlier3*4 for the oligo(oxyethy1ene) 2-15-2 and the di-n-octadeyl ether 18-15-18, as 
illustrated in fig. 5. 

Broadening and splitting of the LAM-1 peak when the sample is cooled have 
been detected in all the samples investigated in this work (i.e. 6-15-6, 8-15-8 and 
4-9-4) but have not been observed in earlier on oligo(oxyethy1ene)s and 
di-n-alkyl ethers of structure I1 (e .g .  2-15-2 and 18-15-18). The obvious structural 
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Table 1. Corrected peak frequencies of Raman 
bands for sample 6-15-6, assigned by reference to 

earlier ~ o r k ~ > ~ , ~ ~ ~  
~~ ~ 

T=293 K T = 173 K T=77 K assignmenta 

b 

12.7 
17.5 

- 

42 
61 

79 
79 

b 

13.0 
14.5 
20.8 
24.4 
28.1 
44 
60 
71 
81 
87 

103 

13.1 
16.0 
22.4 
27.3 
31.0 
49 
61 
71.5 
83 
91.5 

103 

OE 
TAM-1 

LAM-1 

LAM-3 
OE 

? 
OE 

lattice 
OE 

~~ ~~~~ 

a OE, internal mode of the oxyethylene chain: other- 
wise longitudinal acoustical mode (LAM), transverse 
acoustical mode (TAM) or lattice mode (as indicated). 

Peak unresolved. 
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Fig. 5. Temperature dependence of the LAM-1 mode in samples 2-15-2 (X), 6-15-6 (e, table 
l ) ,  8-15-8 (U), 18-15-18 (0). The most intense LAM component is plotted for6-15-6 and 8-15-8. 

difference is that the samples investigated earlier are completely crystalline, whereas 
the present samples are partly crystalline, with crystalline oxyethylene blocks sand- 
wiched between liquid-crystalline n-alkyl blocks. The broadening and splitting is 
towards higher frequencies, hence a possible origin of the effect is .a more restricted 
chain end. 
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Fig. 6. Temperature dependence of the TAM-1 mode in 6-15-6 ( X)  and 8-15-8 (0). 
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Fig. 7. Dependence of the band at 80-90 cm-l with temperature: sample 6-15-6 ( x), frequency 
dependence Y = 96.1 - 0.057 T ;  sample 8-15-8 (0), frequency dependence v = 96.0 - 0.060T. 
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End interactions are important in determining the LAM in oligo( oxyethy1ene)s 
and their ethers. This has been demonstrated in several ways: by changing end- 
groups,2’6 crystallinity6 and and by swelling end-1ayers.l’ It is likely 
that a type I structure will undergo reorganisation within the n-alkyl layer when 
the temperature is reduced, leading to changes in structure and symmetry. Unfortu- 
nately we have no crystallographic information at low temperatures. 
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