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Abstract 
Introduction  
The reaction between susceptible and infected subjects has been 
studied under the well-mixed hypothesis for almost a century. Here, 
we present a consistent analysis for a not well-mixed system using 
fractal kinetics’ principles.  
Methods  
We analyzed COVID-19 data to get insights on the disease spreading 
in absence/presence of preventive measures. We derived a three-
parameter model and show that the “fractal” exponent h of time 
larger than unity can capture the impact of preventive measures 
affecting population mobility.  
Results  
The h=1 case, which is a power of time model, accurately describes 
the situation without such measures in line with a herd immunity 
policy. The pandemic spread in four model countries (France, Greece, 
Italy and Spain) for the first 10 months has gone through four stages: 
stages 1 and 3 with limited to no measures, stages 2 and 4 with 
varying lockdown conditions. For each stage and country two or three 
model parameters have been determined using appropriate fitting 
procedures. The fractal kinetics model was found to be more akin to 
real life.  
Conclusion  
Model predictions and their implications lead to the conclusion that 
the fractal kinetics model can be used as a prototype for the analysis 
of all contagious airborne pandemics.
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Introduction
Recently, Jewell et al.1 criticized the predictive models of the COVID-19 pandemic. This rigorous analysis justifies the
first portion of the famous quote by George Box2 “All models are wrong, some of them are useful”. All epidemiological
models used in practice have a common origin, namely, the famous Kermack–McKendrick model.3 We argue in this
work that their poor predictive power originates from the erroneous hypothesis of the “well-mixed” epidemiological
system; this hypothesis is crucial for the validity of the differential equations, which describe the “reaction” between
susceptible (S) and infected (I) subjects. We also argue that the violation of this hypothesis results in a wrong perception
and definition of the basic reproductive numberR0

4,5 of epidemiological models, which denotes the number of secondary
infections produced by a single infection.

People worldwide are concerned about the uncontrolled “exponential” spread of a disease, yet it is not clear or justified
if this description is correct. In fact, an alternative “power” model based on an adjustable exponent of time has been
proposed.6 We expand this approach by first questioning the ‘well-mixed” hypothesis and introducing a “fractal
kinetics’” approach7 which yields, as a special case, the “power”model. This model7 relies on fractal kinetics’ principles
that are suitable for the study of reactions and diffusion processes in insufficiently mixed media.8,9 In the same vein, we
explored all theoretical aspects of the fractal kinetics’ SImodel and applied it for the description of the time evolution of
the COVID-19 pandemic in several countries. Our results support that this “conceptual change” from classical to fractal
kinetics principles offers a novel, useful approach for the analysis of airborne pandemics data and justifies the second
portion of George Box2 quote above.

Theory
The “reaction” of susceptible-infected individuals under homogeneous conditions.

In the Kermack–McKendrick model,3 the studied population is divided into susceptible, S, infectious, I and recovered,
R, sub-populations while the relevant terms SI and SIR model were coined a long time ago. For each one of the sub-
populations, specific ordinary differential equations are written based on the principles of chemical kinetics. These
equations rely on the law of mass action10 which states that the rate of the chemical reaction is directly proportional to the
product of concentrations of the reactants. However, this law applies under the strict hypothesis that the studied chemical
reaction takes place under well-stirred conditions. This dogma applies well in chemical systems and validates the use of
time-independent reaction rate constants and molar concentrations of the reactants in the reaction rate expressions.
Obviously, the well-mixed hypothesis cannot be applied to epidemiological models since individuals, unlike molecules
in a stirred solution, do not mix homogeneously; this is particularly so when preventive measures are applied. This, in
turn, makes the mathematical formalism used so far questionable and the derived estimates of the relevant parameters,
e.g., R0, a very rough approximation of reality. In fact, R0 cannot capture time-dependent variations in the transmission
potential; the time course of an epidemic can be partly described by the effective reproduction number, R(t), which is a
time-dependent parameter defined11,12 as the actual average number of secondary cases per primary case at time t:

R tð Þ¼ S tð Þ
S 0ð ÞR0 (1)

where S(t) and S(0) are the numbers of susceptible subjects at time t and zero, respectively. Eq. 1 shows that R(t) relies on
an estimate ofR0, which is usually derived from the early phase data of the pandemic.R0 is also crucial for the calculations
of herd immunity.5

The current SIR models for the ongoing COVID-19 epidemic include additional features to the classical SIR model,3,5

namely, the probability of death in the vulnerable fraction of the population, infectious period, and a time from infection to
death are included.13,14 The basic reproduction number,R0, and all variables and parameters of themodel are expressed as
Gaussian distributions around previously estimated means.2,4,14 However, R(t) is used extensively as a reliable measure
of a pathogen’s transmissibility.15,16

The “reaction” of susceptible-infected individuals under heterogeneous conditions.

In 1988, Kopelman8 introduced the concept of fractal reaction kinetics for reactions taking place under topological
constraints. Under these heterogeneous conditions, time-dependent coefficients k(t) and not rate constants govern the rate
of the reaction process.8 Numerous disciplines9,17–28 study rate processes with this approach. It is also very appropriate in
studying the “reaction” of susceptible-infected individuals under “real-life” conditions.

Page 3 of 20

F1000Research 2021, 10:609 Last updated: 20 JUL 2021



Consider two rooms of the same size shown in Figure 1 with the same “concentration” of 10 unmovable susceptible
subjects and two COVID-19 infected subjects. The probability for SARS-CoV-2 transmission is much higher in the left-
hand side room, because the distance for seven of the susceptible subjects from the two infected subjects is much smaller
than the “critical distance” associated with the bimolecular reactions of fractal kinetics.8 On the contrary, only one of
the susceptible subjects is within “critical distance” from infected subjects of the right-hand side room. The static picture
depicts the equivalency of the social distancing (1.5 meters applied during the Covid-19 pandemic) with the “pair up”
and “critical distance” concepts of fractal kinetics.8 Intuitively, if the subjects in the two rooms start moving, virus
transmission will increase as a function of time and will be dependent on the trajectory of each individual. Obviously,
continuous movement of the subjects in the two rooms sweeping the available space would result in the transmission of
the disease to all susceptible subjects in accordance with the “well-mixed” hypothesis. This means that the “well-mixed”
system is just a single limiting case of the myriad heterogeneous space/time configurations of the individuals in a
population.

These considerations lead us to the following very important conclusions relevant to airborne pandemics.

a. The time evolution of pandemics described by the classical SI and SIR models,5 which are based on the well-
mixed hypothesis, are very crude approximations of reality.

b. The use of a fixed R0 value,
4,5 is inadequate for capturing the transmission dynamics. The use ofR(t) can capture

time-dependent variations in the transmission potential,11,12,15,16 but is heavily dependent on the R0 estimate.
In real-life conditions, the transmission of the disease is not only dependent on time, but also on the topology/
movement associated with susceptible/infected individuals.

c. The importance of the “initial conditions” for fractal reaction kinetics has been delineated.8 In pandemics, the
corresponding “initial conditions” are “patient zero” at the epicenter of the country of pathogen’s origin as well
as “patient zeros” of the first humans infected in different countries. For the COVID-19 pandemic specifically,
since most of the infected subjects are asymptomatic during the initial phase of the disease spreading, no
precautions are taken. During this initial period, which lasts until social distancing measures are applied, disease
spreading follows a “herd immunity”5 style, which we call “herd kinetics”. Similarly, we coin the term “fractal
kinetics” for the disease spreading when containment measures are imposed.

The fractal kinetics’ SI model7 for epidemic spreading relies on the following equation:

dI tð Þ
dt

¼ β
th
I tð Þ 1� I tð Þ½ � (2)

Figure 1. Probability considerations for virus transmission based on the “pair-up” and “critical distance”
concepts of bimolecular reactions in fractal kinetics.8 Although the number of infected (red) and susceptible
subjects (green) is the same in both rooms, the instantaneous probability for virus transmission is 7/10 and 1/10 for
the left- and right-hand side room, respectively.
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where I(t) is the cumulative fraction of infected individuals at time t, β is a parameter proportional to the probability of an
infected individual to infect a healthy one and h is the fractal dimensionless exponent associated with fractal kinetics.8

The core assumption of the model is that societies as complex systems will exhibit self-organization as a reaction to the
emergence of a pandemic wave, enforcing preventive measures and increasing public awareness. Thus, instead of an
infection rate constant, the fractal SImodel uses a rate factor β/th decreasing of time. The solution of Eq. 2 gives I(t) as a
function of time:7

I tð Þ¼ 1þ cexp
βt1�h

h�1

� ��1

(3)

where c is a parameter which determines the fraction of individuals that will become infected eventually.

By substituting β¼ a1�h we introduce parameter α of inverse time dimension,29 which changes Eq. 3 into 4, namely:

I tð Þ¼ 1þ cexp
αtð Þ1�h

h�1

" #�1

(4)

In the limit t ! ∞ we find:7

lim
t!∞

I tð Þ¼ 1, h≤1
1þ cð Þ�1, h> 1

� �
(5)

The “well-mixed”model, described by Eq. 2 with h = 0, has a limiting value of I(t) equal to one as a result of a completely
susceptible population. However, this is not a realistic feature for all pandemics that have appeared so far. Eq. 5 reveals
that the plot of I(t) versus time for h > 1 reaches a plateau equal to 1/(1 + c) (see Figure 2), which is a reasonable feature for
all pandemics. For the special case h = 1, Eq. 6 (also plotted in Figure 2) is derived which describes what we call “herd
kinetics” not only because no precautions or measures are taken, but also because the rate of increase of infected subjects
progressively diminishes in a similar fashion when a “herd immunity”5 policy is implemented:

I tð Þ¼ 1
1þ ct�β

(6)

A linearized form of Eq. 6 is as follows:

ln
1
I tð Þ�1

� �
¼ lnc�βlnt (7)

where the slope β is an “apparent” dimensionless transmissibility rate constant during the “herd kinetics” period; the term
“apparent” is used to underline its proportional dependency to the probability of an infected individual to infect a healthy
one (see Eq. 2). At t = 1, hence ln t = 0, we get:

Figure 2. Simulated curves for the infected population fraction generated from Eqs. 4 and 6. Parameter values
used:h = 0, β = 0.064, c = 790; h = 1, β = 3, c = 4.4� 105;h = 2.5, α = 0.018 (time)�1, c = 6.Marks on the curves are inflection
points.
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I t¼ 1ð Þ¼ 1
1þ c1

(8)

Theoretically, the value of I(t = 1) corresponds to the “initial conditions”, i.e., the fraction of infected individuals at the
first day of the pandemic; since the real “time zero” is unknown, c1 is proportional to the number of total (asymptomatic
and symptomatic) infected cases from the real time zero to time t = 1 day, when the first case was confirmed. We use the
notation c1 to distinguish it from c appearing in Eqs. 5, 6 and 7.

In all pandemics, a characteristic time is observed when the daily number of confirmed infected cases does not increase
anymore and starts declining; this corresponds to the inflection point tip.When h > 1, an estimate for tip can be obtained by
equating the second derivative of Eq. 4 to zero and solving the resulting equation for time. Lacking an analytical solution,
this equation can only be solved numerically.

For the special case h = 0, tip, can be derived from Eq. 4:

tip ¼ 1
β
lnðcÞ (9)

The following t.ip can be derived from Eq. 2, under “herd kinetics” conditions (h = 1):

tip ¼ β�1ð Þc
βþ1

� �1
β

forβ> 1 (10)

The inflection points for the three examples considered, h = 0, h = 1 and h = 2.5 are shown on the simulated curves of
Figure 2. Inflection points denote when a curve changes from being convex (upwards) to concave (downwards), i.e., the
confirmed infected new cases remain temporarily constant and then start to drop.

If the value of parameter c is low, all cases reach the asymptotic limit of 1. However, in real-life conditions the limiting
value of the cumulative fraction of infected individuals, I(t) is alwaysmuch smaller than 1. This epidemiological evidence
(fact) can be explained only by the fractal kinetics SI model as shown in Figure 2. The curve of the example considered
using h = 2.5 reaches the plateau value of 0.125, i.e., 12.5% of the population will be infected eventually.

For h > 1, the I(t) corresponding to the inflection time point, I (tip) can be derived from Eq. 4 using the tip estimate in the
denominator of Eq. 4. The tip estimate is obtained by equating the second derivative of Eq. 4 to zero and solving
numerically the resulting equation.

For h = 0:

IðtÞip ¼ 0:5 (11)

while for h = 1:

IðtÞip ¼
β�1
2β

(12)

During the time course of the pandemics, an estimate for the time of the termination or close to the termination of the
spreading is desperately needed as early as possible. An estimate for the time of 90% termination, t90% for h > 1, can be
derived from Eq. 4 using I(t) = 0.90/(1 + c):

t90% ¼ 1
α

h�1ð Þ ln 1:1cþ0:1
c

� �� � 1
1�h

(13)

Methods
Fits to COVID-19 data
The best fits of Eqs. 4 and 6 to the data30 were obtained by maximizing the R2 of the two adjacent periods. By anchoring
the date of each country’s lockdown decision (or any similar form of draconianmeasure) andmoving forward in time, the
Levenberg–Marquardt algorithm of least squares was implemented. The lockdown dates are close or very close to the
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transition from herd kinetics to fractal kinetics and vice versa. A minimum value of R2 = 0.985 was set as a criterion of
goodness of fit and every value higher than that was accepted. The turning time data point at which the bestR2 value began
to diminish was rejected and its prior time data point was accepted. From that time segment and further on the consequent
kinetic profile was fitted to the data points until the plateau of quasi-steady state was reached. The fitting discontinuities
observed in the kinetics between the distinct periods (e.g., from second to third period for France) are associated with the
fact that I(t) values at the boundary of the two periods were not equalized in our fitting methodology. Between the quasi-
steady state and the beginning of the second herd period a 10% change of the number of cumulative infected cases at
one week interval was sought in order to establish the commencement of a second viral wave and the reproduction of
the according fitting procedure. Data acquisition, modelling and simulations were programmatically implemented with
Python language31 and its respective libraries.

Results
In our previous studies7,32 on COVID-19 data analysis, we applied the fractal kinetic SI model (Eq. 3) assuming
that fractal kinetics commences at time zero. However, reconsideration of the topological characteristics of the virus
transmission in the light of Eq. 4 led us to the realization that a “herd kinetics’” period precedes the “fractal kinetics’”
period. Exponent β drives the kinetics during the “herd kinetics” stage and is the analogue of R0 for a not well-mixed
system. But, unlike R0, β is not associated with the expected number of cases directly generated by one case in a
population. During the “fractal kinetics” period, parameter α in Eq. 4 governs the rate of the disease, while the prevailing
spatial conditions are reflected on the h value. During this period, a meaningful parameter for the rate of the process is the
half-life, t½ = ln2/α.

The “Herd-Fuzzy-Fractal-Herd-Fuzzy-Fractal” (HFF)2 kinetic motif
Initially, virus transmission takes place under “herd kinetics’” conditions (Eq. 6, Figure 3A). This prevails until the first
preventive measures are imposed; these can be followed by a lockdown decision. The preventive measures and the
lockdown status induce a gradual reduction in the rate of the disease spread, i.e., “fractal kinetics” starts operating (Eq. 4,
h>1, Figure 3B). The transition from herd kinetics (Eq. 6) to fractal kinetics (Eq. 4, h>1) can be gradual during this
fuzzy period, with both equations operating concurrently. The prevalence of fractal kinetics during the lockdown period
results in an asymptotic approach of I(t) to the steady state, i.e., I(t) = (1+c)-1 (see Eq. 5, Figure 3B); according to Eq. 4
the higher the value of the fractal exponent of time h, the more rapid is the approach of I(t) to the steady state. This pattern
we call “Herd-Fuzzy-Fractal” (HFF) kinetic motif. When the confirmed new cases reach a steady state, governments
relax lockdown rules. In theory, when such a decision is taken, the termination of the first wave of the pandemic has
been accomplished. However, the relaxation of lockdown measures in conjunction with the large number of infected
individuals at steady state can, after a while, initiate a second wave of the pandemic leading to the application of new
preventive measures and new lockdown rules. Consequently, a secondwave of the disease emerges (Figures 3C and 3D);
hence, the (HFF)2 kinetic motif.

Analysis of COVID-19 data
We focused on the data30 of four model countries, namely, France, Greece, Italy, and Spain. Figure 4 shows for each one
of the four countries, the fittings of Eqs. 6 and 4 to herd- and fractal-kinetics’ periods’ data, respectively. Parameter
estimates derived are listed in Table 1. High R2 values listed in this Table indicate that the model of Eqs. 4 and 6, for all
four countries, is in excellent agreement with the disease data except Italy’s fourth fractal kinetics’ period data.

For the first herd kinetics’ period, the estimate for βherd 1 in Greece was found to be 2.38� 0.06, which is much smaller
than for the other three countries. This is in agreement with the remarkably lower initial I(t) profile of Greece in Figure 4.
We should emphasize the valid estimation of the parameter βherd1 for all countries studied. This is clear proof that the
initial phase follows a power of time function (Eq. 6) which is contrary to the general belief that the initial phase increases
exponentially. This subexponential increase has been observed in the early phase of COVID-19 spreading in different
parts of China.6 During the first fractal kinetics’ period, the estimate for αfractal 2 in Greece was also higher, 0.02 � 2 �
10�4 (days)�1 compared with 0.010–0.012 (days)-1 found for the other three countries. This leads to a shorter half-life of
42 days for Greece compared with an average of 63 days for the three other countries; this, coupled with the earlier
lockdown rules imposed in Greece, explains the more rapid approach to the steady state (Figure 4). The fractal exponent
hfractal 2 was smaller inGreece, 2.93� 0.06,while for France, Italy and Spain it was 4.71� 0.09, 4.39� 0.02, 5.14� 0.06,
respectively (Table 1). On the contrary, the estimate for cfractal 2 in Greece 3227 � 30.19 was roughly ten-times higher
than in the other three countries, resulting in much lower I(t) steady-state value.

All countries remained in a slightly moving upwards quasi-steady state for 2–3 months (Figure 4). This period was
followed by a gradually increasing phase in the number of confirmed infected cases. Relaxed rules led to higher
population mobility. All countries re-entered a herd kinetics’ period (blue concaving upwards segment in Figure 4). The
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estimates for βherd 3 were found 1.17� 0.02, 3.56� 0.04, 3.80� 0.04, 5.08� 0.08 for Italy, Spain, Greece and France,
respectively, in full agreement with the visually increasing “curvature” of the blue concaving upwards segment of the
four countries. All countries imposed preventive measures and lockdown rules several times (Figure 4). For France,
Greece and Spain a remarkably similar reliable estimate for αfractal 4, 0.003 (days)

�1 was found; this is indicative of a slow
process with a half-life of 231 days. However, different hfractal 4 estimates, 16.11 � 0.54, 9.01 � 0.42 and 6.28 � 0.43
were found for France, Greece, and Spain, respectively. Assuming that the conditions will not change in the next time
period, predictions, based on the parameter estimates of the fourth fractal kinetics period for the steady-state value and
t90%, can be made for the three countries (Table 1). On the contrary, the fitting of Eq. 4 to Italy’s fourth fractal kinetics’
period data was not equally successful and reliable parameters estimates for hfractal 4, αfractal 4 and cfractal 4 were not derived
(Table 1). This is due to the fact that the point of inflection has not been reached yet and therefore the fitting algorithm
cannot converge to reliable parameters estimates.

Figure 3. A schematic of the “Herd-Fuzzy-Fractal-Herd-Fuzzy-Fractal” (HFF)2 kinetic motif of COVID-19 pan-
demic. The gray line segments indicate fuzzy periods. A–D. Subplots correspond to the four distinct periods of
the kinetic motif. Equations and parameter values used: A: Eq. 6, β = 8, c = 3� 1016; B: Eq. 4, h = 4.5, α = 0.012 (time)�1,
c = 240; C: Eq. 6, β = 1.18, c = 119350; D: Eq. 4, h = 8, α = 3.35 � 10�3(time)�1, c = 20.
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Figure 4. Best fits (solid lines) of Eqs. 6 and 4 for the herd kinetics periods and fractal kinetics periods,
respectively, to data30 (points) for France, Greece, Italy and Spain. The data correspond from time zero up to
10 December 2020. The gray line segments indicate fuzzy periods.
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The estimates for tip reported in Table 1 for France, Greece and Spain correspond to time (days) from the commencement
of the fourth fractal kinetics’ period. These estimates were found to be in agreement with the observed values, which is an
additional piece of evidence for the validity of the fractal model. An estimate for Italy’s tip was not obtained for reasons
mentioned above. Besides, the fourth fractal kinetics period data were used to predict the t90% (expressed in days from the
commencement of this period) and the final steady-state (1/(1+c)) for France, Greece and Spain (Table 1).

Analysis of COVID-19 data for countries deviating from the (HFF)2 kinetic motif
A large number of countries, besides the four analyzed, followed the (HFF)2 kinetic motif shown in Figure 4, e.g.,
Australia, China, Germany, Austria, United Kingdom.30 Yet, several countries did not exhibit the (HFF)2 motif, lacking
a second wave and followed a “herd-fuzzy-fractal” (HFF) kinetic motif. Argentina and Brazil are examples of countries
where strict/mild preventivemeasureswere either not applied or did not work effectively. Both countries exhibit an (HFF)
kinetic motif, Figure 5. Parameter values determined: Argentina, 1st stage: (h = 1), β = 1.929� 0.028; 2nd stage: h = 2.189
� 0.043, α = (1.754� 0.067)� 10�3 (days)�1, c = 3.61� 0.38; Brazil, 1st stage: (h = 1), β = 4.633� 0.017; 2nd stage: h =
2.892 � 0.023, α = (4.044 � 0.017) � 10�3 (days)�1, c = 21.86 � 0.24.

On the other hand, some countries exhibited a more complex pattern, which deviates from the (HFF)2 and (HFF) motifs.
Infection data for USA did not follow either the (HFF)2 or the (HFF) kinetic motif. The I(t) time profile never reached a
steady state and the shape of the curve indicates a deformed three-wave like kinetic profile (Figure 6). Probably both types
of kinetics (herd and fractal) run concurrently for most of the time throughout the course of the pandemic, with the

Figure 5. I(t) versus time plots for Argentina and Brazil.30 Xs mark the implementation of mild preventive
measures. The gray lines indicate the fuzzy period after the X point.
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Figure 6. Confirmed infected cases for USA and Sweden.30
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contribution of each varying with time. This is most likely due to different COVID-19 policy containment measures
followed in different states around the country. Sweden intentionally applied the herd immunity strategy30 during the
COVID-19 pandemic. An initial herd-kinetics type continuous increase in the number of total infected cases reached
a point of inflection around 20 July 2020, followed by a slower rate of increase of infected cases, (Figure 6). Since
neither strict measures nor lockdown rules were applied at that time, the shape of the curve should be attributed to a fractal
kinetics-like self-organization of the society. A rather sharp increase after 10 September 2020 can be attributed to the
increased mobility of the individuals since no relaxation measures were taken close to this date.

Implications
The above results (Figures 2, 3, Table 1) demonstrate that the fractal kinetics SImodel is more akin to real life. Since the
well-mixed hypothesis is the crux of the matter of the epidemiological models,5 the use of not well-mixed hypothesis has
important implications, which can metamorphosize airborne pandemics; these implications are discussed and itemized
(designated with italics) below.

The reproductive number
The reproductive number, R0 is not needed for the initial growth of the disease4 being incompatible with the not well-
mixed hypothesis, Figure 1. Limitations associated with the estimation ofR0, can be found in numerous publications. Our
results show that the time exponent β of Eq. 6 controls the time evolution of the disease throughout the initial herd
kinetics’ period. In other words, β drives the initial phase of the disease spreading being the slope of Eq. 7, i.e. a linearized
form of Eq. 6. The predominant role of β during the herd kinetics’ period can be also concluded from Eq. 12, which
explicitly shows that the infected population fraction at the inflection point, I(t)ip is solely dependent on β. Although R0

and β are different, however, they can be used complementary to each other during the initial stages of the pandemics.
Estimates for β derived from the analysis of herd kinetics’ period data at two time points from 100 countries are shown in
Figure 7 and Table 2. The degree of uncertainty (standard deviation) for the estimates was found in most cases small; this
was accompanied with high correlation coefficients (not shown). Overall, the estimates derived from the longer period of
35 days seem to be either similar or higher or significantly higher than these derived from the analysis of the shorter period
(10 days) data. For some countries, the small number of confirmed infected cases in the first 10 days did not allow the
estimation of β. In view of the diversity and variability of data presented in Figure 7, we quote the median values derived
from the analysis of 100 countries, 2.44 (0.25–12.24) and 1.34 (0.20–6.13) for the β estimates corresponding to 35 and
10 days, respectively.

Exponential versus power growth
The classical phraseology “the exponential growth of the disease” used by medical doctors, scientists and laymen is
questionable. This phrase is related to the approximate solution of the SIRmodel, which is an exponential function, when

Figure 7. A bar plot of 100 countries based on the estimates with standard deviations for β, derived from the
nonlinear regression analysis of data30 using Eq. 6. Data of 10 and 35 days, after the first reported case, were
analyzed. See also Table 2.
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Table 2. β values and associated uncertainties (σ) and fitting corresponding coefficients of determination (R)
derived from nonlinear regression analysis of data29 from 100 countries using Eq. 6. Data of 10 and 35 days,
after the first reported case, were analyzed. Part of these results is shown in Figure 7. Blanks are due to fragmented
data that prevented the fitting procedure to converge.

# Country β35 σ(β35) N R β10 σ(β10) N R

1 United Arab Emirates 1.154 0.107 36 0.99582 0.673 0.14517 11 0.979075

2 Qatar 1.329 0.126 32 0.99639 1.258 0.11773 8 0.988578

3 Singapore 1.294 0.054 36 0.99649 1.389 0.14623 11 0.992743

4 Lebanon 3.1 0.067 32 0.99914 4.012 0.56454 11 0.998925

5 Israel 5.891 0.136 33 0.99974 2.282 0.39644 10 0.99666

6 Azerbaijan 3.743 0.093 29 0.99935 2.071 0.22794 5 0.992274

7 Algeria 3.879 0.079 31 0.99942 3.894 0.44518 9 0.998676

8 South Africa 1.891 0.129 34 0.99804 2.605 0.43315 9 0.997136

9 United States of America 1.986 0.286 36 0.99825 1.24 0.22384 11 0.991278

10 Canada 0.92 0.094 36 0.99417 0.652 0.07839 11 0.978231

11 Egypt 4.418 0.169 32 0.99955 11

12 Australia 0.683 0.043 36 0.99128 0.95 0.12042 11 0.986863

13 Yemen 5.373 0.144 36 0.99971 11

14 Saudi Arabia 2.592 0.064 33 0.99884 2.955 0.34097 8 0.997505

15 Afghanistan 3.436 0.174 26 0.99919 7

16 Iraq 3.048 0.093 34 0.99914 1.726 0.10908 11 0.994959

17 South Korea 5.9 0.27 36 0.99997 0.996 0.15335 11 0.987751

18 Thailand 1.5 0.089 36 0.99722 0.99 0.23089 11 0.987646

19 Iran 2.283 0.053 36 0.99862 4.198 0.17418 11 0.999016

20 Turkey 2.875 0.043 34 0.99905 3.765 0.1611 9 0.998585

21 Vietnam 0.692 0.065 36 0.99143 1.602 0.35587 11 0.994278

22 Philippines 0.247 0.034 33 0.97541 0.623 0.09151 11 0.977024

23 Japan 2.397 0.183 36 0.99874 0.32 0.15916 11 0.957422

24 Bangladesh 6.54 0.369 30 0.99978 1.084 0.21026 5 0.975912

25 Pakistan 3.092 0.118 31 0.99912 0.817 0.15819 7 0.975079

26 Indonesia 2.281 0.036 29 0.99843 2.848 0.32505 5 0.995896

27 India 7.2 0.15 36 0.99983 0.428 0.07002 11 0.966147

28 China 1.188 0.072 31 0.99562 0.942 0.60565 6 0.975897

29 Antigua and Barbuda 0.913 0.046 36 0.9941 1.137 0.18016 11 0.99

30 Barbados 1.487 0.049 34 0.99709 0.593 0.13826 9 0.971

31 Bahamas 0.334 0.04 31 0.97963 1.153 0.26721 6 0.982289

32 Suriname 2.095 0.093 34 0.99835 0.381 0.10594 9 0.956115

33 Guyana 1.489 0.109 35 0.99714 0.802 0.05252 10 0.981859

34 Jamaica 0.856 0.03 36 0.99355 1.275 0.07792 11 0.991663

35 Uruguay 2.468 0.029 36 0.9988 1.92 0.13438 11 0.995809

36 Panama 1.715 0.049 35 0.99773 1.168 0.09999 10 0.989569

37 Costa Rica 1.921 0.038 36 0.99815 1.735 0.21188 11 0.995005

38 El Salvador 0.928 0.046 36 0.99424 0.446 0.1619 11 0.967419

39 Nicaragua 1.641 0.052 32 0.99743 0.784 0.1117 7 0.973687

40 Paraguay 1.755 0.087 34 0.99778 1.525 0.22573 9 0.992582
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Table 2. Continued

# Country β35 σ(β35) N R β10 σ(β10) N R

41 Honduras 2.843 0.098 27 0.99889 1.894 0.46311 3 0.982547

42 Dominican Republic 2.541 0.032 33 0.9988 1.673 0.14523 8 0.992942

43 Cuba 1.5 0.058 36 0.99722 1.246 0.25306 11 0.991344

44 Haiti 2.43 0.052 35 0.99874 0.852 0.11752 10 0.983297

45 Bolivia 3.011 0.099 31 0.99908 0.864 0.0922 8 0.979807

46 Equador 2.675 0.088 36 0.99896 1.245 0.10828 11 0.991338

47 Guatemala 3.233 0.058 35 0.99924 2.324 0.12754 10 0.996768

48 Chile 0.831 0.039 36 0.99328 1.133 0.31607 11 0.989937

49 Venezuela 5.361 0.255 35 0.9997 2.416 0.186 10 0.996989

50 Peru 2.624 0.066 33 0.99886 1.92 0.20854 8 0.994462

51 Argentina 2.563 0.04 32 0.9988 2.036 0.17567 7 0.994346

52 Colombia 0.751 0.078 36 0.99229 11

53 Mexico 4.814 0.125 36 0.99964 5.348 0.90313 11 0.999395

54 Brazil 1.42 0.053 35 0.99689 1.789 0.17175 10 0.994858

55 San Marino 1.051 0.072 30 0.99461 0.585 0.21517 5 0.94762

56 Liechtenstein 1.24 0.046 24 0.99516 3

57 Monaco 2.539 0.057 36 0.99885 1.717 0.14569 11 0.994915

58 Iceland 2.065 0.239 28 0.9981 2.904 0.76791 6 0.996674

59 Belarus 10.44 0.415 36 0.99992 1.371 0.30641 11 0.992587

60 United Kingdom 2.212 0.099 29 0.99834 1.707 0.21415 5 0.988902

61 Luxembourg 1.148 0.064 36 0.99578 1.867 0.15733 11 0.995599

62 Montenegro 2.667 0.071 27 0.99876 0.942 0.60567 6 0.975901

63 North Macedonia 3.538 0.065 34 0.99935 1.743 0.2317 9 0.994102

64 Moldova 2.556 0.048 35 0.99885 1.643 0.21845 10 0.994054

65 Hungary 3.438 0.086 36 0.99933 6.138 0.86169 11 0.999545

66 Switzerland 1.491 0.031 35 0.99715 3.169 0.15303 10 0.998181

67 Slovenia 1.853 0.045 35 0.998 2.822 0.08282 10 0.997738

68 Slovakia 3.358 0.057 33 0.99927 1.264 0.16136 8 0.988674

69 Serbia 2.887 0.105 27 0.99892 4

70 Lithuania 2.102 0.066 32 0.9983 1.845 0.18954 7 0.993247

71 Latvia 1.855 0.059 36 0.99804 2.688 0.25161 11 0.997706

72 Malta 1.799 0.056 33 0.99783 2.798 0.57651 8 0.997231

73 Georgia 2.114 0.074 31 0.99828 4.362 0.66006 7 0.998736

74 Estonia 1.882 0.046 34 0.99802 1.304 0.11802 9 0.990376

75 Cyprus 2.884 0.066 36 0.99909 2.992 0.27071 11 0.998119

76 Czechia 9.135 0.462 36 0.9999 11

77 Belgium 2.194 0.037 27 0.99825 2

78 Armenia 1.667 0.042 36 0.99766 1.28 0.09468 11 0.991712

79 Albania 4.1 0.112 33 0.99949 1.013 0.04827 10 0.987014

80 Croatia 1.497 0.027 34 0.99712 1.725 0.10106 9 0.993996

81 Bulgaria 7.2 0.15 36 0.99983 0.428 0.07002 11 0.966147

82 China 2.432 0.051 36 0.99877 0.995 0.1101 11 0.987732

83 Kazakhstan 0.375 0.161 36 0.98316 11
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the parameter of the recovery rate is equal to zero.5 Based on our theoretical results and the good fittings of Eq. 6 to data of
herd kinetics’ period (Figure 4), “the herd kinetics’ period seems to obey a power of time function”.According to Eq. 2,
β drives the disease spreading when h = 1 and the rate of infection is inversely proportional to time. This is in agreement
with the real-life conditions because of the continuous reduction of the probability of infection as a function of time (β/t).
However, the resemblance of the I(t) profiles of the classical, h = 0 and the special case h = 1 in Figure 2 makes the
discernment of the kinetics of the initial phase difficult.

Herd immunity

Herd immunity5 calculations rely on an estimate for R0 and syllogisms based on the relative magnitude, λ = R(t)/R0,
which is the proportion of the population that is susceptible to catching the disease. If preventivemeasures are not applied,
an estimate for the time needed to reach a certain level of the infected population fraction, e.g., I(t) = 0.6 ensuring herd

Table 2. Continued

# Country β35 σ(β35) N R β10 σ(β10) N R

84 Russia 4.531 0.075 34 0.99959 2.166 0.43266 9 0.995986

85 Romania 3.111 0.149 26 0.99903 2

86 Ukraine 2.875 0.043 34 0.99905 3.765 0.1611 9 0.998585

87 Turkey 2.346 0.034 34 0.99864 3.493 0.3283 9 0.998361

88 Greece 7.563 1.321 34 0.99984 11

89 Finland 2.532 0.049 36 0.99885 2.888 0.1294 11 0.997991

90 Norway 2.191 0.082 36 0.99852 2.857 0.21442 11 0.99795

91 Denmark 3.244 0.054 34 0.99923 1.916 0.26743 9 0.995004

92 Ireland 3.5 0.061 36 0.99935 3.75 0.12038 11 0.998774

93 Netherlands 3.192 0.02 34 0.99921 2.533 0.17424 9 0.996984

94 Poland 3.418 0.098 36 0.99933 2.176 0.13686 11 0.99664

95 Portugal 12.24 0.159 36 0.99994 0.32 0.15915 11 0.957416

96 Spain 1.804 0.419 36 0.99795 0.454 0.077 11 0.967925

97 France 8.139 0.145 36 0.99987 11

98 Italy 10.04 0.991 36 0.99991 0.788 0.06693 11 0.982925

99 Germany 10.46 0.196 36 0.99992 11

100 Sweden 3.799 0.114 36 0.99944 3.211 0.41481 11 0.998352

Figure 8. A contour plot based on Eq. 14 showing the time required to reach herd immunity level I (thi) = 0.6 for
various values of parameter β and population size N.
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immunity can be obtained from Eq. 7. Assuming an infected individual at time t=1, i.e., 1
I t¼1ð Þ ¼N, where N is the

population of the country, then, fromEq. 7, we get c =N� 1≈N.Hence, the time thi needed to reach a certain level of herd
immunity I (thi) under non preventive measures is

thi ¼ N
1

I thið Þ�1

 !1
β

(14)

Figure 8 shows thi as a function of β and N assigning I (thi) = 0.6. It can be seen that population size has a mild effect,
whereas the apparent transmissibility constant β severely reduces thi. Eq. 14 can be used at the initial stages of the
pandemics and requires only a valid estimate for β. This will certainly provide valuable information for authorities, if
coupled with estimates of the mortality rate and deaths, prior to a decision for a herd-immunity policy.33 Caution should
be exercised with the use of Eq. 14, since it can be applied only under the strict assumption of herd kinetics operating
throughout the entire period of the disease spreading. The example of Sweden (Figure 6) shows that societies can exhibit
self-organization and move to a fractal kinetics’ mode.

Deviation from the herd kinetic profile after the imposition of lockdown

Cumulative data of infected people from nine countries (Austria, Belgium, Denmark, France, Germany, Italy, Spain,
Switzerland, United Kingdom) were gathered and analyzed under two different prisms. Analysis was broken down into
two parts, before and after imposition of strict preventive measures (lockdown) (Figure 9). For the first period, the herd
kineticmotif where h=1 (Eq. 6)was found to be adequate, whereas after lockdown clearly fails. The latter periodwas also
analyzed using the fractal kinetic motif of h > 1with very persuasive goodness of fit (Figure 9). In all cases,R2 was greater
than 0.98. This pictorial divergence shows that after implementing mobility restrictions the evolution of the pandemic
could not be captured by a power law expression, but rather by a fractal kinetic one (Eq. 4) which eventually leads to a
plateau of cumulative cases.

Figure 9. I(t) versus time plots for Austria, Belgium, Denmark, France, Germany, Italy, Spain, Switzerland,
United Kingdom.30 The blue dots represent cumulative infected cases up to lockdown datum points.16 The orange
lines depict the power fit to these data. Purple dots represent data after lockdown imposition whereas the purple
lines are their superimposed fractal fits. Red lines depict the hypothetical power fit to the aforementioned data
points in the event that Covid-19 propagation followed a power law pattern. R2 values for all nine countries were
measured higher than 0.98.
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Model predictions

According to Jewell et al.,1 the ability of current models to predict is very poor. Our work demonstrates that the herd
kinetics’ period is described by Eq. 6, while the kinetic motif “herd-fuzzy-fractal” should be taken into account in the
modeling work. Apparently, these approaches have not been implemented so far. Roughly, predictions during the herd
kinetics’ period can be based on a valid estimate for β, Eq. 6. Under preventive measures, valid estimates for the
parameters of the model (Eq. 4, h>1) can be derived and used for predictive purposes provided that data beyond the point
of inflection are available (see Table 1).

Conclusions
Since the early days of epidemics’modeling,3 a great deal of work has been done and now there is a change of paradigm.
Interestingly, the results of our work are in full agreement with the basic conclusion of the most recent, extensive
and elegant COVID-19 study16 based on the effective reproduction number R(t), “… that major non-pharmaceutical
interventions—and lockdowns in particular—have had a large effect on reducing transmission”. Our approach quantifies
this large effect on the basis of Eq. 4, which captures the dynamics of the disease under “herd kinetics’” and “fractal
kinetics’” conditions. In addition, our herd kinetics’ period results are in full agreement with the observations of the
distinctive subexponential increase of confirmed cases during the early phase of the epidemic in China, contrasting an
initial exponential growth expected for an unconstrained outbreak.6 The present fractal SI model can be extended to its
SIR analogue, with the caveat that the corresponding differential equations require numerical solution. In conclusion, the
fractal kinetics SImodel with the kinetically established herd period as well as the (HFF)2 or (HFF) kinetic motifs opens
up a new era in the field of epidemiological models for airborne pandemics.
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