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Abstract: The tetrahedral copper(I) diimine complex [Cu(pq)2]BF4 displays high photocatalytic
activity for the H2 evolution reaction with a turnover number of 3564, thus representing the first type
of a Cu(I) quinoxaline complex capable of catalyzing proton reduction. Electrochemical experiments
indicate that molecular mechanisms prevail and DFT calculations provide in-depth insight into the
catalytic pathway, suggesting that the coordinating nitrogens play crucial roles in proton exchange
and hydrogen formation.

Keywords: photocatalytic hydrogen evolution; copper diimine; photocatalyst; electrocatalyst;
DFT mechanism

1. Introduction

Copper catalysts for proton reduction have recently gained special attention in facilitating solar and
electrochemical energy storage via the formation of hydrogen fuel. The abundance, price and diverse
redox activity of copper have attracted particular interest [1–4] and many copper complexes have been
used as photosensitizers [5,6] redox mediators [7,8] and catalysts for CO2 reduction [9,10] and water
oxidation [11–13]. Several Cu-based H2 evolution heterogeneous [14–16] electrocatalysts with good
performance have been reported, involving Cu(0), Cu2O [17–22], and Cu2S [23] materials. However,
there are only a few examples of molecular copper catalysts with well-defined, rationally tunable
structures and a comprehensive H2 formation mechanism.

Distorted trigonal bipyramidal and square pyramidal Cu(II) complexes bearing polypyridine
chelates, which are supposed to minimize the inherent lability of the d10 Cu(I) ion, have been extensively
explored as proton reduction electrocatalysts and photocatalysts. Their proposed catalytic pathways
involve proton coupled electron transfer (PCET) processes leading to a Cu(II)-hydride that evolves H2

via intramolecular coupling between the hydride and the proton of a pendant pyridine nitrogen [24–27].
Square planar copper corroles can evolve H2 electrocatalytically via an heterolytic pathway, where a
Cu hydride reacts with a solution proton [28], while a Cu(II) complex bearing a non-innocent
thiosemicarbazone ligand exhibits metal-assisted ligand-centered electrocatalytic H2 evolution [29].
Other Cu(II) molecular catalysts involving tetradendate triazenido [30], Schiff base [31,32], oxamato [33],
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oxamido [34], phenanthroline [35] and imidazole-based [36] ligands have been recently presented.
Notably, many of those catalysts decompose under reductive conditions to afford H2 evolving materials,
thus part of their activity is attributed to heterogeneous deposits of nanoparticles [19].

Herein, we examined the photocatalytic H2 production behavior of [CuI(pq)2](BF4) ([1]BF4),
a homoleptic tetrahedral Cu(I) diimine complex bearing the bidentate 2-pyridin-2-yl-quinoxaline
(pq) ligand (Figure 1a). A complex like [1]+ but carrying two methyl groups on quinoxaline
ring, has been previously reported to be an intermediate in CO2 fixation catalysed by molecular
[Cu(pq)2(H2O)](ClO4)2 [9]. Evaluation of the H2 evolution mechanism by electrochemical and density
functional theory (DFT) methods indicates that the quinoxaline nitrogen atoms are primarily protonated
and subsequent metal centered PCET leads to the formation of a Cu(II)-hydride, that can evolve H2 via
a low energy transition state.
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2. Results and Discussion

2.1. Synthesis

Complex [1]+ was readily prepared from one equivalent of the Cu(I) starting [Cu(MeCN)4BF4] [37]
and two equivalents of 2-pyridin-2-yl-quinoxaline (pq) [38] in acetonitrile. All operations were performed
under a pure nitrogen atmosphere, using Schlenk and syringe techniques. [Cu(I)(MeCN)4BF4] [37]
1.0 mmol were dissolved in 5 mL acetonitrile and after a few minutes, 2-pyridin-2-yl-quinoxaline (pq) [38]
2.0 mmol dissolved in 10 mL acetonitrile was added and the mixture was stirred for 2 h. After this time,
a deep purple solution was formed. Then the solvent was evaporated to dryness. The product was
isolated in crystalline form with a yield of 63%. Calculated elemental analysis: C, 55.29; H, 3.21; N, 14.88;
Found: C 55.46, H, 3.49; N, 15.01.

Complex [1]BF4 was also characterized by X-ray crystallography (Figure 1a, Tables S1–S7),
UV-visible (Figure 1b) 1H-NMR (Figure S1) and cyclic voltammetry. Although its crystal structure
was reported before [39], we repeated it for accuracy reasons and for taking into consideration the
different anion of the complex. Time dependent density functional theory (TD-DFT) calculations with
the B3LYP functional adequately reproduce the key features of the absorption spectrum and, thus,
allow a reliable band assignment (Figure 1b, Table S8). The absorption bands centered at 550 nm are
attributed to metal to ligand charge transfer (MLCT) transitions of the Cu(I) d orbitals to the pq π*
antibonding orbitals.

2.2. Photocatalytic H2 Production

The photocatalytic H2 production activity of [1]+ was assessed in a multicomponent artificial
photosynthesis system in N,N-dimethylformamide-water (DMF:H2O) mixture, using fluorescein (Fl)
as a photosensitizer (PS) and triethanolamine (TEOA) as a sacrificial electron donor and the sample pH
was 10.55. Under optimal conditions ([PS] = 0.3 mM, [1]+ = 0.85 µM, [TEOA] = 0.5 M in Ar saturated
DMF:H2O 2:8, v/v solution under λ > 400 irradiation) [1]+ can photocatalyze H2 production efficiently,
achieving 3564 TON (turnover number) with respect to the catalyst after 24 h (Table 1). Importantly,
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[1]+ can also serve as a photocatalyst for water reduction in a fully aqueous solution, reaching 182 mol
of H2 per mole of catalyst. Keeping concentrations of [1]+, Fl and TEOA unchanged, the effect of solvent
on H2 evolution was investigated as shown in Figure 2a which compares the catalytic efficiencies
of three different solvent mixtures, namely H2O, DMF/H2O 2:8 and DMF/H2O 1/13. Photocatalytic
systems with [1]+ as catalyst and CdTe quantum dots (QDs) as the photosensitizer showed a maximum
performance of 132.53 TON after 24 h with TEOA as the electron donor, while systems with ascorbic
acid as electron donor were inactive (Table S9).

Table 1. Performance of the photocatalytic system under various conditions.

Catalyst Photosensitizer e− Donor Solvent Evolved H2

[1]+, µM Fluorescein, mM Triethanolamine, M DMF:H2O TON24 h

100 1 0.5 1:2 28.04
10 1 0.5 1:2 154.96
1 1 0.5 1:2 855.45

0.1 1 0.5 1:2 1130.72
1 2 0.5 1:2 381.85
1 1.5 0.5 1:2 724.77
1 0.8 0.5 1:2 204.83
1 0.5 0.5 1:2 773.89
1 0.3 0.5 1:2 791.50
1 1 0.1 1:2 836.91
1 1 1 1:2 781.31

0.85 0.3 0.5 1:4 3564.31
8.5 0.3 0.5 1:4 547.98

0.85 0.3 0.5 1:13 2643.75
0.85 1 0.3 0.5 1:13 1837.82
0.85 0.3 0.5 H2O 182.00

1 In the presence of ca. 1 mL of mercury.
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Figure 2. (a) Light-driven hydrogen production from system containing complex [1]+ as catalyst
(8.5*10−7 M), Fl 0.3 mM, TEOA (0.5 M) in DMF: H2O (1:13)(10.0 mL) (green), in DMF: H2O (2:8)(10.0 mL)
(red) and in H2O (blue) (b) Photoluminescence spectra of fluorescein as a function of [1]+ and
Stern-Volmer plot of quenching by [1]+.

Control experiments in the absence of light or any component of the system led to zero catalytic
activity under the same conditions. In addition, mercury poisoning test was employed to investigate if
catalytically active colloidal particles were formed during the catalytic process. Addition of mercury to
this catalytic system resulted in a 30% reduction of the catalytic activity after 24 h of irradiation (Table 1),
suggesting that the complex acts as a molecular photocatalyst, even though hydrogen evolution is
partly attributed to in situ formed heterogeneous species.
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In photocatalytic H2 evolution, the catalyst may accept electrons either from the excited PS or
the reduced PS, resulting in oxidative and reductive quenching, respectively. The luminescence of
the excited photosensitizer FL*, in a deaerated H2O solution of fluorescein, was plotted as a function
of catalyst concentration and Stern-Volmer analysis yielded a quenching constant ksv = 1.3*105 M−1,
indicating that the excited fluorescein can provide the potential needed to drive reduction of the
catalyst (Figure 2b). However, the reductive quenching possibly predominates the photocatalytic
process, because the TEOA concentration is six orders of magnitude higher than the concentration of
the catalyst.

Due to the non-innocent nature of the pq ligand and the proposed ligand centered proton
reduction mechanism (vide infra), a zinc analogue of complex [1]+, [Zn(pq)2]2+ was synthesized and
was employed as a photocatalyst in identical conditions to complex [1]+, in order to elucidate whether
the process is entirely ligand centered or mediated by the participation of the metal center (Figure S2).
The zinc complex showed no catalytic activity. In addition, photocatalytic hydrogen production
experiments were performed using pq as a catalyst where the catalytic performance did not exceed
3 TON proving that copper is an essential component in the proton reduction process.

2.3. Electrocatalytic Proton Reduction

The cyclic voltammogram (CV) of [1]+ recorded in DMF with 0.1 M tetrabutylammonium
hexafluorophosphate (n-Bu4NPF6) as supporting electrolyte (Figure 3a) features an irreversible
redox process at −0.18 V vs. ferrocenium/ferrocene (Fc+/Fc), which may be assigned to CuII/CuI.
Two irreversible reduction events at −1.70 V and −1.97 V are attributed mostly to the pq ligand with
some contribution from the Cu metal center. The free ligand reduction potential in DMF is −2.0 V vs.
Fc+/Fc (Figure S3). The assignment of these reduction waves to the ligand-centered reduction processes
is further supported by the calculated spin density of 0.18 on Cu at the reduced intermediate [1]0, as well
as by the fact that the homoleptic Cu(I) complex with 2,2’-biquinoline (bq) has a similar redox process
at the same potential window, which is attributed to bq/bq•− reduction [40]. The computationally
derived oxidation and reduction potentials of [1]+ are −0.25 V, −1.77 V and −2.18 V, respectively,
which supports a reliable peak assignment.
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Figure 3. (a) Cyclic voltammogram (CV) of complex [1]+ (1mM) in DMF solution of n-Bu4NPF6 (0.1 M)
on a glassy carbon electrode at a scan rate of 0.1 V s-1 (b) CVs of [1]+ 1 mM in DMF (0.1 M Bu4NPF6)
with increasing equivalents of TFA.

Subsequently, [1]+ was investigated with respect to its activity for electrocatalytic H2 production.
As displayed in Figure 3b, upon addition of trifluoroacetic acid (TFA, pKaDMF = 6.0) [41] in a DMF
solution of [1]+, a new reduction peak appears at −1.10 V and a significant catalytic current was
observed over the potential of −1.66 V, attributed to catalytic H2 evolution. The overpotential of the
catalyst was calculated [42] to be 720 mV, based on the reduction potential of TFA in a 5 mM DMF
solution was calculated to be −0.94 V [43]. Several pieces of evidence suggest that the catalytic system
is homogeneous. The linear dependence of catalytic current on the square of the scan rate (Figure 4a,b)
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indicates that the copper complex functions in a diffusion-controlled regime under the experimental
conditions, and that it is a molecular catalyst. Also, rinse test experiment (Figure 4c) indicates that
absorbed materials on the electrode surface are not catalytically active. Furthermore, the current
increases linearly with an increase in the acid concentration (Figure 4d).
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(b) Plot of icat/ip vs the square root of the scan rate (c) CV of [1]+ 1 mM in DMF (0.1 M Bu4NPF6)
with 15 mM TFA added (black) and a subsequent CV (red) using the same electrode after performing
electrolysis at a potential of −1.7 V for 5 min, then rinsing with DMF and transfer to fresh DMF/0.1 M
Bu4NPF6 solution without adding [1]+ with 15 mM TFA (d) Dependence of the catalytic current, icat/ip,
on the concentration of TFA in a 1 mM [1]+ and 0.1 M Bu4NPF6 DMF solution.

The electrocatalytic activity of [1]+ was also assessed in aqueous solution in the presence of acetic
acid as a source of protons (Figure 5a,b). A very useful method to investigate the possibility of a
concerted electron and proton transfer process (proton coupled electron transfer, PCET) instead of two
separate consecutive electron transfer (ET) and proton transfer (PT) processes is the construction of
the Pourbaix diagram, in which the reduction potential versus the pH of the solution is plotted [44].
The Pourbaix diagram (Figure 5c) shows that the reduction potential of the first reduction peak shifts
linearly with the pH value in the range of 2.5 to 6.0, with a slope of 66.1 mV, which indicates that
electron reduction is coupled with proton uptake. Similar ligand centered PCET processes have been
reported for polypyridine copper proton reduction catalysts [24–27].

2.4. Computational Study of the Catalytic Mechanism

DFT calculations were performed, in an effort to provide further insight on the electrocatalytic
mechanism by exploring the possible steps of the H2 formation. The computed structures of all the
intermediates involved in the catalytic pathways are presented in the Supplementary Information.
The proposed proton reduction mechanism derived from the calculated free energies of possible
intermediates of the reaction pathway is shown in Figure 6a.
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Figure 6. (a) Proposed mechanism for the electrocatalytic H2 formation by [1]+ based on DFT
calculations using the B3LYP-D3/6-311+g(2d,p) method for the calculation of redox potentials and
protonation energies (b) Structure of the transition state (TS) for H2 formation.

In the presence of TFA (pKa = 6.0 in DMF) the first reduction to generate the doublet species
[2]+ is a PCET process, in which ligand reduction is concomitant with a nitrogen atom protonation.
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Three different isomers can be considered in terms of whether the site of protonation is the coordinating
pyridine nitrogen (N1), the coordinating quinoxaline nitrogen (N2) or the non-coordinating quinoxaline
nitrogen (N3) (Figure S5).

The [Cu–N3–H]+ isomer was found to be the most stable one, while the free energies of [Cu–N2–H]+

and [Cu–N1–H]+ are 7.2 and 10.6 kcal mol−1 higher than that of [Cu–N3–H]+, respectively. Protonation
of CuI to form a CuIII hydride was also considered, but the energy of this step is found to be
28.5 kcal mol−1 higher than the most stable species.

This redox peak assignment is also supported by the cyclic voltammetry data of the free ligand,
where a new reduction peak at −1.1 V appears in the presence of TFA (Figure S3).

A second PCET step to afford intermediate [3]+ is feasible on the basis of thermodynamics with a
calculated potential of −0.90 V. The most favourable protonation site when the N3 is already protonated
is the N2 ligating atom, on the same quinoxaline ring, which takes a tetrahedral conformation,
thus it maintains the Cu–N2 bond as well as the N2–H bond. Protonation of the non-coordinating
quinoxaline N3 is accompanied by reduction of the quinoxaline moiety under applied potential,
which increases the basicity of the coordinating N2. Upon the second PCET, N2 protonation induces
loss of the π-conjugation of the pyrazine ring, which is reflected in the calculated C–C and C–N
bond lengths, and N2 now lies above the plane of the pyrazine C atoms without being dechelated
from the metal ([3]+, Figure S6). Other possible protonation sites and the corresponding relative free
energies are shown in Figure S6. Notably, the formation of a Cu hydride is 30.2 kcal mol−1 energetically
higher. Two further PCET processes result in protonation of the second quinoxaline ligand and the
4H+/4e− reduced intermediate [5]+ is generated. Since protonation of the ligating nitrogens induces
weakening of the Cu–N bonds, the possibility of [5]+ decomposition was examined, but was found
unfavorable (Figure S7). In the presence of acid, five oxidation peaks appear at the anodic scan of
the cyclic voltammogram at −0.70 V, −0.62 V, −0.41 and −0.26 V, which can be assigned to the four
ligand centered redox processes, and at −0.07 V which is attributed to CuI/CuII oxidation (Figure 3b).
Cyclic voltammogram within a narrow potential region (0.3 to −1.2 V) to prevent the formation of
Cu(0) species, show that the four anodic peaks are attributed to the first reduction peak (Figure 5b).
The reduction potential of intermediate [5]+ to generate Cu(0) species is calculated to be −2.58 V, while a
metal centered PCET at a calculated potential of −1.92 V (experimental −1.66 V) in the presence of TFA
affords a trigonal pyramidal Cu(II) hydride, [6]+, which is proposed to be the H2 evolving species.
[6]+ can evolve H2 via a low energy (+6.8 kcal mol−1) transition state (TS, Figure 6b) with a single
imaginary frequency at 1245.6, that corresponds to H2 formation, as confirmed by IRC (integrated
reaction coordinates) calculation. The energy coordinate diagram of the hydrogen evolution reaction
was generated from the free energy change of each step in the catalytic cycle (Figure 7).Catalysts 2020, 10, x FOR PEER REVIEW 8 of 14 
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3. Conclusions

We have presented that the Cu(I) diimine complex [1]+ can serve as a molecular photocatalyst
for water reduction in combination with fluorescein as a photosensitizer and triethanolamine as a
sacrificial electron donor achieving 3564 turnovers, after 24 h of irradiation. Mechanistic studies based
on electrochemical experiments and DFT calculations support that protonation of the nitrogen atoms
of the pq ligand via consecutive PCET processes allows more anodic reduction potentials for the
Cu(II)-hydride formation and lowers the overpotential needed for proton reduction. Furthermore,
the non-ligating quinoxaline nitrogen also increases the stability of the catalyst under reductive
conditions and, thus, the present study provides important guidelines for future robust catalysts design.
Detailed mechanistic studies using spectroelectrochemistry experiments are at the center of ongoing
work, as well as the development of polydentate quinoxaline containing ligands, that are expected to
further stabilize the Cu(I) species.

4. Materials and Methods

4.1. General Information

Reagents (starting materials, solvents) used in the experiments were purchased from Sigma
Aldrich (Darmstadt, Germany) Merck (Darmstadt, Germany), Alfa Aesar (Heysham, Lancashire, UK)
and Panreac Applichem (Barcelona, Spain). It was at least analytical grade and underwent further
purification, where it was necessary to carry out the experiments. The solvents used to measure the
absorption and emission spectra were of spectroscopic purity and originated from the above companies.
Also, the water used in the experiments was from the Milli-Q instrument. In complex synthesis [39],
the reagents that were used were purchased from the above companies.

Absorption spectra were measured on a Cary 300 (Varian Inc.-Agilent Technologies, Grenoble,
France) or a U-2000 (Hitachi, Berkshire, United Kingdom ) spectrophotometers at 25 ◦C. Quartz alveoli
were used with a stopper, a 1.00 cm optical path. Emission spectra were measured on a RF-5301PC
spectrophotometer (Shimadzu, Hesse, Germany). Quartz alveoli were used with a 1.00 cm optical
path, using the software OriginPro 9.0 (Arezzo, Italia). 1H-NMR spectra were measured on a Unity
Plus 300/54 spectrophotometer (Varian, Grenoble, France).

For the X-ray diffraction studies, suitable crystals covered with paratone-N oil were placed onto the
tips of glass fibers or scooped up in cryo-loops at the end of a copper pin and transferred to a goniostat for
data collection with a SuperNova A diffractometer (Oxford Diffraction, Frankfurt, Germany,) equipped
with a CCD area detector and a graphite monochromator utilizing Mo-Kα radiation (λ = 0.71073 Å).
Empirical absorption corrections were applied using CrysAlis RED software [45] (multi-scan based
on symmetry-related measurements). Structures were solved using SIR92 [46] and refined on F2

using full-matrix least squares with SHELXL97 [47]. Software packages used: CrysAlis CCD for data
collection, CrysAlis RED for cell refinement and data reduction, WINGX for geometric calculations [48]
and MERCURY [49] for molecular graphics. The program SQUEEZE [50], a part of the PLATON
crystallographic software package, was used to remove contribution of highly disordered solvent
molecules. All non-hydrogen atoms were refined anisotropically, whereas the hydrogen atoms were
placed in calculated, ideal positions and refined as riding atoms with relative isotropic displacement
parameters. Unit cell data and structure refinement details are listed in Table S2.

Photocatalysis experiments were performed in special led headlamps where the emitted radiation
is in the range of the visible radiation spectrum (λ > 400 nm). The samples were irradiated for at least
72 h until the maximum performance of each system was found. The gaseous composition of the mixture
and therefore the hydrogen detection was done by gas chromatography. The gas chromatograph
was a 430-GC type (Bruker, Karlsruhe, Germany) equipped with a thermal conductivity detector
(TCD) and operated under the following conditions: carrier gas: nitrogen, oven temperature 70 ◦C,
detector temperature 150 ◦C, injector temperature 80 ◦C, molecular sieves column 5Å. The analysis of
the chromatograms was done using the Galaxie software (Varian). The flask under the photocatalyst
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experiment was degassed by argon for 15 min and the system was sealed and illuminated for as long
as the experiment lasts to find the maximum hydrogen output. The hydrogen produced is measured
by integration of the chromatographic peaks and the quantification of the amount of hydrogen was
based on calibration using Zn in aqueous HCl solution. Turnover number (TON) is used to quantify
catalyst performance and represents the overall number of moles of H2 produced upon irradiation of a
photocatalytic system per mole of catalyst in the system.

4.2. Synthesis

[Zn(pq)2]Cl2 was synthesized with the following procedure: ZnCl2 (1.0 mmol) was dissolved
in EtOH (5 mL). After a few minutes, 2-pyridin-2-yl-quinoxaline (pq, 2.0 mmol) dissolved in EtOH
(10 mL) was added. The mixture was stirred for 2 h. Almost immediately white powder appeared.
The solution filtered off, washed with ethanol and dried, with a yield of 73%. Elemental Anal. Calc:
C, 66.08; H, 3.78; N, 17.51; Found: C 66.12, H, 3.90; N, 17.35 1H-NMR peaks CDCl3: 7.49 (s, 2H),
7.78 (d,4H), 7.94 (s, 2H), 8.19 (d, 6H), 8.62 (t, 2H), 8.81 (s, 2H).

CdTe QDs were prepared as reported previously [51] and the A-F notation in Table S9 refers to the
QDs’ preparation time according to this reference. A 50 mL aqueous solution of Cd(CH3COO)2•2H2O
(0.2 mmol), thioglycolic acid 90% (18 µL), K2TeO3 (0.04 mmol) and NaBH4 (80 mg) was refluxed under
open-air conditions for (A) 15 min, (B) 30 min, (C) 1 h, (D) 3 h, (E) 7 h or (F) 13 h.

4.3. Cyclic Voltammetry

All cyclic voltammetry (CV) measurements were recorded using an AFCBP1 (Pine Instrument
Company, Lyon, France) and using the Aftermath Data Organizer software version 1.4.7881.
Experiments were conducted in a three-electrode single-compartment cell with a glassy carbon
working electrode, Ag/AgCl reference electrode and Pt counter-electrode at room temperature and using
degassed solutions by purging with N2. All measurements were performed in N,N-dimethylformamide
(DMF) in the presence of 0.1 M tetrabutylammonium hexafluoro-phosphate (n-Bu4NPF6) as a supporting
electrolyte and ferrocenium/ferrocene (Fc+/Fc) redox couple was used as an internal potential reference.

4.4. Theoretical Studies

Geometry optimizations were carried out using the B3LYP density functional [52,53] in combination
with the 6-31 g(d,p) basis set [54,55] as implemented in the Gaussian16 software package [56]. The choice
of this functional was made based on agreement between the calculated optimized geometry and the
experimentally defined structure (Table S10) as well as on its successful implementation in previous
studies on copper-based catalysts. Gibbs free energies were calculated as single-point corrections on the
optimized structures employing the larger basis set 6-311+g(2d,p) and D3 dispersion corrections [57]
to obtain a more accurate value of the absolute free energy of each species. The solvent effects were
considered through single-point energy calculations using the SMD continuum solvation model [58].
Frequency calculations were performed on all the optimized structures at the same level of theory,
to identify all the stationary points as minima (zero imaginary frequency) or transition states (only one
imaginary frequency) and to obtain Gibbs free energy corrections at 298.15 K. Time-dependent DFT
(TD-DFT) calculations were performed to simulate the absorption spectra of [1]+.

The reduction potential was determined using the equation E = ∆Go/nF − E(Fc+/Fc0), where the
E(Fc+/Fc0) standard ferrocene couple (Fc+/Fc0 = 4.988) [59]. Trifluoroacetic acid (pKaTFA = 6.0) calculated
at the same level of theory was used for the calculation of the free energies of each protonation step
through following equation: A + CF3COOH→ AH+ + CF3COO−, pKaAH+ = ∆Go/1.364 + pKaTFA.
The redox potential for the PCET processes, A + e− + H+

→ AH, was calculated using the equation,
E(A/AH) = E◦(A/A−) + RTln(10)(pKaAH

− pKaTFA) (Table S11).

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/11/1302/s1,
Figure S1: 1H-NMR of [1]BF4 in CDCl3, Figure S2: 1H-NMR of [Zn(pq)2]2+ in CDCl3, Figure S3: Cyclic

http://www.mdpi.com/2073-4344/10/11/1302/s1
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voltammograms (CVs) of the pq ligand (5.0 mM) in the absence (black curve) and the presence (coloured curves)
of 1 mM (red), 2 mM (blue) and 4 mM (purple) of TFA recorded in a DMF solution of n-Bu4NPF6 (0.1 M) on a
glassy carbon electrode at a scan rate of 0.1 V s−1, Figure S4: Absorption spectra of [1]BF4 in H2O:DMF 1:8 mixture
with C = 2*10−4 M under visible light irradiation over a period of 24 h, Figure S5: Relative free energies of the
1H+ protonated and 1e− reduced species [2]+ tautomers, Figure S6: Relative free energies of the 2H+ protonated
and 2e− reduced species [3]+ tautomers, Figure S7: Possible decomposition pathways of the intermediate [5]+ in
water, Figure S8: Relative free energies of the 3H+ protonated and 3e− reduced species [4]+ tautomers, Figure S9:
Relative free energies of the 4H+ protonated and 4e− reduced species [5]+ tautomers, Figure S10: Higher occupied
molecular orbital diagrams of the catalytic intermediates and spin densities on Cu (ρCu) of intermediates with
unpaired electrons, Table S1: Crystallographic data for complex [1]BF4, Table S2: Selected bond distances (Å) and
angles (o) for [1]BF4, Table S3: Crystal data and structure refinement for C26 H18 B Cu F4 N6 at 100 K, Table S4:
Atomic coordinates (×104) and equivalent isotropic displacement parameters (Å2

× 103) for C26 H18 B Cu F4
N6 at 100 K with estimated standard deviations in parentheses, Table S5: Anisotropic displacement parameters
(Å2
× 103) for C26 H18 B Cu F4 N6 at 100 K with estimated standard deviations in parentheses, Table S6: Bond

lengths [Å] for C26 H18 B Cu F4 N6 at 100 K with estimated standard deviations in parentheses, Table S7: Bond
angles [◦] for C26 H18 B Cu F4 N6 at 100 K with estimated standard deviations in parentheses, Table S8: Electronic
transitions of [Cu(pq)2]+ calculated with the TDDFT method, Table S9: Performance of the photocatalytic systems
with [1]+ as catalyst, different CdTe QDs as the photosensitizer and different e− donors in DMF:H2O 1:2 solvent
mixture, Table S10: Comparison of the experimental (crystal structure) and DFT calculated (B3LYP/6-31G**,
gas phase) values of selected structural parameters of [Cu(pq)2]BF4 ([1]BF4), Table S11: The free energy of H2
self-elimination from AH2 was calculated from the following equations.
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