Research paper

$\mathrm{Be}_{3}{ }^{-}$, an ab initio study

Apostolos Kalemos

National and Kapodistrian University of Athens, Department of Chemistry, Laboratory of Physical Chemistry, Panepistimiopolis, Athens 157 71, Greece

HIGHLIGHTS

- Chemical elucidation of $\mathrm{Be}_{3}{ }^{-}$.
- Bonding mechanism of ground and excited $\mathrm{Be}_{3}{ }^{-}$states.
- Excited states of $\mathrm{Be}_{3}{ }^{-}$.

ABSTRACT

We present high quality $a b$ initio results (MRCI/aug-cc-pV5Z) on eleven Be_{3}^{-}states of $\widetilde{X}^{2} \mathrm{~B}_{1}, 1^{2} \mathrm{~A}_{1}, 2^{4} \mathrm{~B}_{1}, 3^{4} \mathrm{~A}_{2}, 4^{2} \Pi_{u}, 5^{4} \Pi_{g}, 6^{2} \mathrm{~B}_{2}, 7^{4} \Sigma_{g}^{-}, 8^{2} \mathrm{~B}_{1}, 9^{2} \mathrm{~A}_{2}$, and $10^{2} \mathrm{~A}_{1}$ symmetry spanning an energy range of about $30 \mathrm{kcal} / \mathrm{mol}$. The ground anionic state is bound by $31.8 \mathrm{kcal} / \mathrm{mol}$ with respect to the ground $\widetilde{X}^{1} \mathrm{~A}_{1}$ neutral Be_{3} state. The ground ($\widetilde{X}^{2} \mathrm{~B}_{1}$) and first excited ($1^{2} \mathrm{~A}_{1}$) anionic states result naturally from the ground neutral state by grafting an additional electron to the π and σ frame, respectively.

1. Introduction

Beryllium (Be) is a very strange atom of the periodic table. Although its ground state features the electronic configuration of a rare gas element, i.e., $1 s^{2} 2 s^{2}\left({ }^{1} \mathrm{~S}\right)$, it is nevertheless a metal with a melting point of $\sim 1300{ }^{\circ} \mathrm{C}$. The Be_{2} ground $X^{1} \Sigma_{g}{ }^{+}$state has been a real headache for quantum chemists concerning the nature of its chemical bond since the early sixties. We have recently shown that the ground dimer state results from the interaction of two excited ${ }^{3} \mathrm{P}\left(2 s^{1} 2 p^{1}\right)$ Be atoms held together by two sigma bonds [1]. As strange as it may appear its anion $\mathrm{Be}_{2}{ }^{-}$exists in two electronic states of $X^{2} \Pi_{u}(\mathrm{EA}=0.499 \mathrm{eV})$ and $1^{2} \Sigma_{g}{ }^{+}$ $\left[\Delta \mathrm{E}\left(1^{2} \Sigma_{g}{ }^{+} \leftarrow X^{2} \Pi_{u}\right)=0.137 \mathrm{eV}\right]$ symmetry at the MRCI/aug-cc-pVQZ computational level [1]. The existence of two anionic states is indeed strange if one considers the small binding energy of the neutral molecule of just $\mathrm{D}_{e}(\exp)=934.9 \pm 0.4 \mathrm{~cm}^{-1}$ [2].

The ground state of the beryllium trimer, Be_{3}, may be considered as a singularity since it is overall a strongly bound system stabilized by at least $25 \mathrm{kcal} / \mathrm{mol}$ with respect to three $\mathrm{Be}\left({ }^{1} \mathrm{~S}\right)$ atoms [1]. But what about $\mathrm{Be}_{3}{ }^{-}$? Does it exist, and if yes in how many states? The only experimental study reports that "... $\mathrm{Be}_{3}{ }^{-}$is either stable or has a lifetime of $>500 \mu \mathrm{~s}$." [3]. The theoretical literature is limited to a handful of papers discussing several anionic states of a linear and triangular structure [4-7] at a rather low computational level. The purpose of the present paper is to study $\mathrm{Be}_{3}{ }^{-}$in all of its possible electronic states at the highest possible computational level available today. To this end we
have employed multi reference (MRCI) computational methods coupled with the aug-cc-pV5Z (A5Z) basis set [8] as implemented in the MOLPRO code [9].

2. Results and discussion

As we have recently shown [1] the valence bond Lewis (vbL) diagram picturing the wavefunction of the ground Be_{3} state is displayed in Scheme 1. Its equilibrium equilateral distance is $2.203 \AA$ at the MRCI/ A5Z level, see Table 1. It seems plausible to consider that an additional electron can be hosted either by the π or the σ molecular frame. And indeed the drafting of an electron to its π frame gives rise to the $\widetilde{X}^{2} \mathrm{~B}_{1}$ anionic state (under $\mathrm{C}_{2 v}$ notation) bound by $\mathrm{EA}=1.379 \mathrm{eV}$ with respect to $\mathrm{Be}_{3}\left(\widetilde{X}^{1} \mathrm{~A}_{1}\right)$. The charged species features a considerable shorter bond length, $\mathrm{r}_{e}\left(\mathrm{Be}_{3}{ }^{-} ; \widetilde{X}^{2} \mathrm{~B}_{1}\right)=2.106 \AA$ versus $\mathrm{r}_{e}\left(\mathrm{Be}_{3} ; \widetilde{X}^{1} \mathrm{~A}_{1}\right)=2.203 \AA$ and that means that there is a new bond present, the delocalized one electron π bond. Similarly, the extra electron can be put along the molecular plane giving rise to a $1^{2} \mathrm{~A}_{1}$ state just $\Delta \mathrm{E}_{e}\left(\widetilde{X}^{2} \mathrm{~B}_{1} \leftarrow\right.$ $\left.1^{2} \mathrm{~A}_{1}\right)=0.359 \mathrm{eV}$ higher. Its bond distance $\mathrm{r}_{e}\left(\mathrm{Be}_{3}{ }^{-} ; 1^{2} \mathrm{~A}_{1}\right)=2.177 \AA$ is certainly longer than that of the ground anionic state but still shorter than the equilibrium distance of the neutral ground state. That means once again that the sigma bonds of the $\mathrm{Be}_{3}{ }^{-}$triangular structure appear stronger due to the enhanced polarization of the hybrid orbitals due to the presence of the additional minus charge. Needless to say that both $\widetilde{X}^{2} \mathrm{~B}_{1}$ and $1^{2} \mathrm{~A}_{1} \mathrm{Be}_{3}{ }^{-}$states retain the perfect $\mathrm{D}_{3 h}$ nuclear framework of

[^0]https://doi.org/10.1016/j.cplett.2019.136964
Received 23 September 2019; Received in revised form 12 November 2019; Accepted 14 November 2019
Available online 18 November 2019
0009-2614/ © 2019 Elsevier B.V. All rights reserved.

Scheme 1. vbL diagram of the $\mathrm{Be}_{3}\left(\widetilde{X}^{1} \mathrm{~A}_{1}\right)$ state.
their neutral ancestor. It is also worth saying that both these states are the Renner-Teller components of the linear $4^{2} \Pi_{u} \mathrm{Be}_{3}{ }^{-}$state (see Fig. 1) lower than the $\widetilde{X}^{1} \mathrm{~A}_{1} \mathrm{Be}_{3}$ state by 0.479 eV . This linear configuration is a stationary point on the doublet spin surface separated by the minima of the $\widetilde{X}^{2} \mathrm{~B}_{1}$ and $1^{2} \mathrm{~A}_{1} \mathrm{Be}_{3}{ }^{-}$states by a potential barrier of 1.19 (at 135°) and 1.85 (at 120°) $\mathrm{kcal} / \mathrm{mol}$, respectively. The above two anionic states are pretty much straightforward to conceive. We simply add an electron to the ground neutral species either along its molecular π or σ frames. But are there other anionic states? In order to find out we should first study the low-lying neutral states that can act as potential precursors for the anion. Those studied are, in ascending energy order, of $\widetilde{X}^{1} \mathrm{~A}_{1}$, $1^{1} \Sigma_{g}^{+}, 2^{3} \Sigma_{u}^{+}, 3^{3} \mathrm{~B}_{1}, 4^{3} \mathrm{~A}_{2}$, and $5^{3} \Pi_{u}$ symmetry, see Table 1 and Fig. 2. The $\mathrm{D}_{3 h}$ ground state has an equilibrium wavefunction (under $\mathrm{C}_{2 v}$ notation, counting only valence electrons while linear configurations lie on the y axis) $\left|\widetilde{X}^{1} \mathrm{~A}_{1}\right\rangle \cong 0.87\left|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{2} 1 \mathrm{~b}_{2}^{2}\right\rangle$ and has been already discussed. At linearity it becomes the $1^{1} \Sigma_{g}^{+}$state $\left(\mathrm{T}_{e}=10.1 \mathrm{kcal} / \mathrm{mol}\right)$ with a potential barrier of $2.68 \mathrm{kcal} / \mathrm{mol}$ (at 115°) (see Fig. 1) with the following
equilibrium wavefunction $\left|1^{1} \Sigma_{g}^{+}\right\rangle \cong\left|1 a_{1}^{2}\left(0.77 \times 2 a_{1}^{2}-0.53 \times 2 b_{2}^{2}\right) 1 b_{2}^{2}\right\rangle$. Its triplet analog, $2^{3} \Sigma_{u}^{+}\left(\cong 0.94\left|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{2}^{2} 2 \mathrm{~b}_{2}^{1}\right\rangle\right)$, is situated slightly higher, $\mathrm{T}_{e}=15.0 \mathrm{kcal} / \mathrm{mol}$, and it is practically degenerate with two triangular configurations $\left(\mathrm{C}_{2 v}\right)$ of $3^{3} \mathrm{~B}_{1}\left(\mathrm{~T}_{e}=16.4 \mathrm{kcal} / \mathrm{mol}, \theta_{e}=68.7^{\circ}\right)$ and $4^{3} \mathrm{~A}_{2}\left(\mathrm{~T}_{e}=16.8 \mathrm{kcal} / \mathrm{mol}, \theta_{e}=53.9^{\circ}\right)$ symmetry. Their equilibrium wavefunctions are $\left|3^{3} \mathrm{~B}_{1}\right\rangle \cong\left|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{1}^{1}\left(0.90 \times 1 \mathrm{~b}_{2}^{2}-0.20 \times 3 \mathrm{a}_{1}^{2}\right)\right\rangle$ and $\left|4^{3} \mathrm{~A}_{2}\right\rangle \cong\left|1 \mathrm{a}_{1}^{2}\left(0.89 \times 2 \mathrm{a}_{1}^{2}-0.22 \times 3 \mathrm{a}_{1}^{2}\right) 1 \mathrm{~b}_{1}^{1} 1 \mathrm{~b}_{2}^{1}\right\rangle$ while at linearity they become of ${ }^{3} \Pi_{u}$ and ${ }^{3} \Pi_{g}$ symmetry, respectively. Under C_{s} symmetry these two minima $\left(3^{3} \mathrm{~B}_{1}, 4^{3} \mathrm{~A}_{2}\right)$ are on the same adiabatic potential surface. The linear ancestor, $5^{3} \Pi_{w}$, of the $3^{3} \mathrm{~B}_{1}$ Jahn-Teller component lies at $\mathrm{T}_{e}=22.6 \mathrm{kcal} / \mathrm{mol}$ and has the following equilibrium wavefunction $\left|5^{3} \Pi_{u}\right\rangle_{{ }_{B_{1}}} \cong 0.88\left|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{1}^{1} 1 \mathrm{~b}_{2}^{2}\right\rangle-0.22\left|1 \mathrm{a}_{1}^{2} 1 \mathrm{~b}_{2}^{2} 2 \mathrm{~b}_{2}^{1} 1 \mathrm{a}_{2}^{1}\right\rangle,\left|5^{3} \Pi_{u}\right\rangle_{{ }_{3}{ }_{A_{1}} \text {. It re- }}$.

$$
\cong 0.88\left|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{1} 3 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{2}^{2}\right\rangle-0.22\left|1 \mathrm{a}_{1}^{2} 1 \mathrm{~b}_{2}^{2} 2 \mathrm{~b}_{2}^{1} 3 \mathrm{~b}_{2}^{1}\right\rangle
$$

sults from the $2^{3} \Sigma_{u}^{+}$state through the $2 \mathrm{~b}_{2}^{1} \rightarrow 1 \mathrm{~b}_{1}^{1}$ electron transition.
As already mentioned the $\widetilde{X}^{2} \mathrm{~B}_{1}$ and $1^{2} \mathrm{~A}_{1} \mathrm{Be}_{3}{ }^{-}$states result from the $\tilde{X}^{1} \mathrm{~A}_{1} \mathrm{Be}_{3}$ state by adding an extra electron to its π or σ frame, and are the Renner-Teller components of the $4^{2} \Pi_{u}$ anionic state. The latter results from the $5^{3} \Pi_{u}$ neutral state by placing an electron to its $2 \mathrm{a}_{1}$ molecular orbital. We should remind at this point [1] that both Be atoms in $\mathrm{Be}_{2}{ }^{-}\left(\mathrm{X}^{2} \Pi_{u}\right)$ are found in situ in their excited ${ }^{3} \mathrm{P}$ state. The Mulliken population analysis shows an extremely low $2 s^{0.80}$ density for the middle Be atom and a rather low $2 s^{1.60}$ density for the terminal ones, both indicative of the excited state character of the constituent Be atoms. The next excited state is of $2^{4} \mathrm{~B}_{1}$ symmetry, practically degenerate to the $3^{4} \mathrm{~A}_{2}$ one. Interestingly enough the $2^{4} \mathrm{~B}_{1}$ state becomes the $7^{4} \Sigma_{g}^{-}$state at linearity with a small potential barrier of $0.7 \mathrm{kcal} / \mathrm{mol}$ (see Fig. 1). The quartet spin symmetry dictates its constituents fragments, i.e., Be $\left({ }^{3} \mathrm{P}\right)+\mathrm{Be}_{2}{ }^{-}\left(X^{2} \Pi_{u}\right)$. It results from the $3^{3} \mathrm{~B}_{1}$ neutral state by adding an electron to the $3 a_{1}$ molecular orbital. On the contrary the $3^{4} \mathrm{~A}_{2}$ state results as the Jahn-Teller component of the $5^{4} \Pi_{g}$ state after passing a potential barrier of $7.6 \mathrm{kcal} / \mathrm{mol}$ at an angle of $\sim 95^{\circ}$. Its companion ${ }^{4} \mathrm{~B}_{2}$ Jahn-Teller component is clearly repulsive (see Fig. 1). The $5^{4} \Pi_{g}$ state is the high spin analog of the $4^{2} \Pi_{u}$ state resulting from an $2 \mathrm{a}_{1}^{1} \rightarrow 2 \mathrm{~b}_{2}^{1}$ excitation. It correlates also to the $4^{3} \mathrm{~A}_{2}$ neutral state through the addition of an $3 \mathrm{a}_{1}$ electron.

There are four more states practically degenerate of doublet spin

Table 1
Energies E (hartree), bond distances $\mathrm{r}_{e}(\AA \AA)$, bond angles $\theta_{\mathrm{Be}_{2} \mathrm{Be}_{1} \mathrm{Be}}$ (degrees), energy gaps $\Delta \mathrm{E}(\mathrm{kcal} / \mathrm{mol})$ with respect to $\mathrm{Be}_{3}\left(\widetilde{X}^{1} \mathrm{~A}_{1}\right)$, and main configurations of the Be ${ }_{3}$ and $\mathrm{Be}_{3}{ }^{-}$states presently studied at the MRCI/A5Z computational level. The states presented are tagged under $\mathrm{C}_{2 v}$ notation, r_{e} refers to the bond length between the middle $\left(\mathrm{Be}_{1}\right)$ and the terminal $\left(\mathrm{Be}_{2,3}\right)$ atoms while linear configurations lie on the y axis.

Species	-E	r_{e}	$\theta_{\mathrm{Be}_{2} \mathrm{Be}_{1} \mathrm{Be}_{3}}$	$\Delta \mathrm{E}$	Main configurations
$\mathrm{Be}_{3}\left(\widetilde{X}^{1} \mathrm{~A}_{1}\right)$	43.898160	2.203	60.0	0.0	$\left\|\widetilde{X}^{1} \mathrm{~A}_{1}\right\rangle \cong 0.87\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{2} 1 \mathrm{~b}_{2}^{2}\right\rangle$
$\mathrm{Be}_{3}\left(1^{1} \Sigma_{g}^{+}\right)$	43.882018	2.207	180.0	10.1	$\left\|1^{1} \Sigma_{g}^{+}\right\rangle \cong\left\|1 \mathrm{a}_{1}^{2}\left(0.77 \times 2 \mathrm{a}_{1}^{2}-0.53 \times 2 \mathrm{~b}_{2}^{2}\right) 1 \mathrm{~b}_{2}^{2}\right\rangle$
$\mathrm{Be}_{3}\left(2^{3} \Sigma_{u}^{+}\right)$	43.874237	2.145	180.0	15.0	$\left\|2^{3} \Sigma_{u}^{+}\right\rangle \cong 0.94\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{2}^{2} 2 \mathrm{~b}_{2}^{1}\right\rangle$
$\mathrm{Be}_{3}\left(3^{3} \mathrm{~B}_{1}\right)$	43.872020	1.991	68.7	16.4	$\left\|3^{3} \mathrm{~B}_{1}\right\rangle \cong\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{1}^{1}\left(0.90 \times 1 \mathrm{~b}_{2}^{2}-0.20 \times 3 \mathrm{a}_{1}^{2}\right)\right\rangle$
$\mathrm{Be}_{3}\left(4^{3} \mathrm{~A}_{2}\right)$	43.871463	2.134	53.9	16.8	$\left\|4^{3} \mathrm{~A}_{2}\right\rangle \cong\left\|1 \mathrm{a}_{1}^{2}\left(0.89 \times 2 \mathrm{a}_{1}^{2}-0.22 \times 3 \mathrm{a}_{1}^{2}\right) 1 \mathrm{~b}_{1}^{1} 1 \mathrm{~b}_{2}^{1}\right\rangle$
$\mathrm{Be}_{3}\left(5^{3} \Pi_{u}\right)$	43.862156	2.071	180.0	22.6	$\begin{aligned} & \left\|5^{3} \Pi_{u}\right\rangle_{3_{B 1}} \cong 0.88\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{1}^{1} 1 \mathrm{~b}_{2}^{2}\right\rangle-0.22\left\|1 \mathrm{a}_{1}^{2} 1 \mathrm{~b}_{2}^{2} 2 \mathrm{~b}_{2}^{1} 1 \mathrm{a}_{2}^{1}\right\rangle, \\ & \left\|5^{3} \Pi_{u}\right\rangle_{3_{1}} \cong 0.88\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{1} 3 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{2}^{2}\right\rangle-0.22\left\|1 \mathrm{a}_{1}^{2} 1 \mathrm{~b}_{2}^{2} 2 \mathrm{~b}_{2}^{1} 3 \mathrm{~b}_{2}^{1}\right\rangle \end{aligned}$
$\mathrm{Be}_{3}-\left(\widetilde{X}^{2} \mathrm{~B}_{1}\right)$	43.948849	2.106	60.0	-31.8	$\left\|\widetilde{X}^{2} \mathrm{~B}_{1}\right\rangle \cong 0.86\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{2} 1 \mathrm{~b}_{1}^{1} 1 \mathrm{~b}_{2}^{2}\right\rangle$
$\mathrm{Be}_{3}{ }^{-\left(1^{2} \mathrm{~A}_{1}\right)}$	43.935643	2.177	60.0	-23.5	$\left\|1^{2} \mathrm{~A}_{1}\right\rangle \cong 0.87\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{2} 3 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{2}^{2}\right\rangle$
$\mathrm{Be}_{3}-\left(2^{4} \mathrm{~B}_{1}\right)$	43.923337	2.011	65.6	-15.8	$\left\|2^{4} \mathrm{~B}_{1}\right\rangle \cong 0.88\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{1} 3 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{1}^{1} 1 \mathrm{~b}_{2}^{2}\right\rangle$
$\mathrm{Be}_{3}{ }^{-}\left(3^{4} \mathrm{~A}_{2}\right)$	43.923088	2.107	55.9	-15.6	$\left\|3^{4} \mathrm{~A}_{2}\right\rangle \cong 0.89\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{2} 3 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{1}^{1} 1 \mathrm{~b}_{2}^{1}\right\rangle$
$\mathrm{Be}_{3}{ }^{-}\left(4^{2} \Pi_{u}\right)$	43.916155	2.148	180.0	-11.3	$\begin{aligned} & \left\|4^{2} \Pi_{u}\right\rangle_{B_{1}} \cong 0.81\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{2} 1 \mathrm{~b}_{1}^{1} 1 \mathrm{~b}_{2}^{2}\right\rangle-0.44\left\|1 \mathrm{a}_{1}^{2} 1 \mathrm{~b}_{1}^{1} 1 \mathrm{~b}_{2}^{2} 2 \mathrm{~b}_{2}^{2}\right\rangle, \\ & \left\|4^{2} \Pi_{u}\right\rangle_{A_{1}} \cong 0.81\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{2} 3 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{2}^{2}\right\rangle-0.44\left\|1 \mathrm{a}_{1}^{2} 3 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{2}^{2} 2 \mathrm{~b}_{2}^{2}\right\rangle \end{aligned}$
$\mathrm{Be}_{3}-\left(5^{4} \Pi_{g}\right)$	43.909228	2.084	180.0	-6.9	$\begin{aligned} & \left\|5^{4} \Pi_{g}\right\rangle_{4_{B 2}} \cong 0.95\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{1} 3 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{2}^{2} 2 \mathrm{~b}_{2}^{1}\right\rangle, \\ & \left\|5^{4} \Pi_{g}\right\rangle_{4_{A 2}} \cong 0.95\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{1}^{1} 1 \mathrm{~b}_{2}^{2} 2 \mathrm{~b}_{2}^{1}\right\rangle \end{aligned}$
$\mathrm{Be}_{3}-\left(6^{2} \mathrm{~B}_{2}\right)$	43.906703	2.086	54.8	-5.4	$\left\|6^{2} \mathrm{~B}_{2}\right\rangle \cong\left\|1 \mathrm{a}_{1}^{2}\left(0.87 \times 2 \mathrm{a}_{1}^{2}-0.21 \times 3 \mathrm{a}_{1}^{2}\right) 1 \mathrm{~b}_{1}^{2} 2 \mathrm{~b}_{2}^{1}\right\rangle$
$\mathrm{Be}_{3}{ }^{-}\left(7^{4} \Sigma_{g}^{-}\right)$	43.906322	2.030	180.0	-5.1	$\left.17^{4} \Sigma_{g}^{-}\right\rangle \cong 0.88\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{1} 3 \mathrm{a}_{1}^{1} 1 \mathrm{~b}_{1}^{1} 1 \mathrm{~b}_{2}^{1}\right\rangle$
$\mathrm{Be}_{3}-\left(8^{2} \mathrm{~B}_{1}\right)$	43.903714	2.021	66.6	-3.5	$\left\|8^{2} \mathrm{~B}_{1}\right\rangle \cong 0.85\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{1} 3 \mathrm{a}_{1}^{1} 1 \bar{b}_{1}^{1} 2 \mathrm{~b}_{2}^{1}\right\rangle$
$\mathrm{Be}_{3}-\left(9^{2} \mathrm{~A}_{2}\right)$	43.903302	2.128	55.5	-3.2	$\left\|9^{2} \mathrm{~A}_{2}\right\rangle \cong 0.82\left\|1 \mathrm{a}_{1}^{2} 2 \mathrm{a}_{1}^{2} 3 \mathrm{a}_{1}^{1} 1 \bar{b}_{1}^{1} 1 \mathrm{~b}_{2}^{1}\right\rangle$
$\mathrm{Be}_{3}-\left(10^{2} \mathrm{~A}_{1}\right)$	43.902245	2.304	56.3	-2.6	$\left\|10^{2} \mathrm{~A}_{1}\right\rangle \cong\left\|1 \mathrm{a}_{1}^{2}\left(0.76 \times 2 \mathrm{a}_{1}^{2} 4 \mathrm{a}_{1}^{1}+0.39 \times 2 \mathrm{a}_{1}^{1} 3 \mathrm{a}_{1}^{2}\right) 1 \mathrm{~b}_{1}^{2}\right\rangle$

Fig. 1. Evolution along the bending coordinate of several $\mathrm{Be}_{3}{ }^{-}$and one Be_{3} linear states at the MRCI/A5Z computational level. The bond distances are optimized at every bond angle.
symmetry spanning all four irreducible representations of the $\mathrm{C}_{2 v}$ point group, namely ${ }^{2} \mathrm{~A}_{1,2}$ and ${ }^{2} \mathrm{~B}_{1,2}$, see Table 1 and Fig. 2.

From all the above we understand that $\mathrm{Be}_{3}{ }^{-}$is a rich system existing into many electronic states, perhaps unexpectedly from a chemical intuition point of view.

We have also studied the rather exotic $\mathrm{Be}_{3}{ }^{2-}$ system that has attracted some attention the last years. In particular they have studied its stability, reactivity, aromaticity and bond stretch isomerism, see e.g. [10-14]. Our MRCI/A5Z calculations predict that all states studied, i.e., ${ }^{1,3} \mathrm{~A}_{1,2}$ and ${ }^{1,3} \mathrm{~B}_{1,2}$, are practically degenerate $(\mathrm{E}=-43.876$ hartree) and above the ground neutral Be_{3} state by $\sim 14 \mathrm{kcal} / \mathrm{mol}$ (see Fig. 2).

3. Conclusions

We have studied at the highest possible level (MRCI/A5Z) the $\mathrm{Be}_{3}{ }^{-}$ species. We report data on eleven states of both linear and bent configuration spanning en energy range of around $30 \mathrm{kcal} / \mathrm{mol}$ from $-31.8 \mathrm{kcal} / \mathrm{mol} \quad\left(\mathrm{Be}_{3}^{-}\left(\tilde{X}^{2} \mathrm{~B}_{1}\right) ; \quad \mathrm{EA}=1.379 \mathrm{eV}\right) \quad$ to $-2.6 \mathrm{kcal} / \mathrm{mol}$ $\left(\mathrm{Be}_{3}-\left(10^{2} \mathrm{~A}_{1}\right)\right)$ with respect to $\mathrm{Be}_{3}\left(\widetilde{X}^{1} \mathrm{~A}_{1}\right)$. In all of the calculated anionic states the bond distance is found shorter by around $0.1 \AA$ with respect to the bond distance of the ground neutral molecule. The ground and first excited anionic states result naturally from the ground neutral state by grafting an additional electron to the π and σ frame, respectively. This electron addition boosts the binding ability of the neutral $\mathrm{Be}_{3}\left(\widetilde{X}^{1} \mathrm{~A}_{1}\right)$ framework by $31.8\left(\mathrm{Be}_{3}^{-}\left(\tilde{X}^{2} \mathrm{~B}_{1}\right)\right)$ and $23.5\left(\mathrm{Be}_{3}^{-}\left(1^{2} \mathrm{~A}_{1}\right)\right) \mathrm{kcal} / \mathrm{mol}$.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Fig. 2. Energy diagram of all Be_{3} (red colour), $\mathrm{Be}_{3}{ }^{-}$(black colour) and $\mathrm{Be}_{3}{ }^{-2}$ (green colour) states presently studied at the MRCI/A5Z computational level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

References

[1] A. Kalemos, The nature of the chemical bond in $\mathrm{Be}_{2}^{+}, \mathrm{Be}_{2}, \mathrm{Be}_{2}^{-}$, and Be , J. Chem. Phys. 145 (2016) 214302.
[2] V.V. Meshkov, A.V. Stolyarov, M.C. Heaven, C. Haugen, R.J. LeRoy, Direct-potential-fit analyses yield improved empirical potentials for the ground X ${ }^{1} \Sigma_{g}{ }^{+}$state of Be_{2}, J. Chem. Phys. 140 (2014) 064315.
[3] R. Middleton, J. Klein, Production of metastable negative ions in a cesium sputter source: verification of the existence of $\mathrm{N}_{2}{ }^{-}$and CO^{-}, Phys. Rev. A 60 (1999) 3786.
[4] K.D. Jordan, J. Simons, Electronic structure of small metal clusters. I. Anions of Be_{2}, Be_{3}, and Be_{4}, J. Chem. Phys. 67 (1977) 4027.
[5] K.D. Jordan, J. Simons, On the lowest sigma and pi anion states of Be_{2} and $B e_{3}$, J. Chem. Phys. 77 (1982) 5250.
[6] I.G. Kaplan, O. Dogounitcheva, J.D. Watts, J.V. Ortiz, Nondipole bound anions: $\mathrm{Be}_{2}{ }^{-}$ and $\mathrm{Be}_{3}{ }^{-}$, J. Chem. Phys. 117 (2002) 3687.
[7] I.G. Kaplan, C.C. Díaz, Comparative study of the electron affinities of beryllium and magnesium dimers and trimers, Int. J. Quantum Chem. 104 (2005) 468.
[8] T.H. Dunning Jr., Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys. 90 (1989) 1007.
[9] MOLPRO is a package of ab initio programs written by H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson and M. Wang. MOLPRO, version 2012.1, a package of ab initio programs; University College Cardiff Consultants Limited: Cardiff, U.K., 2008.
[10] M. Homray, S. Mondal, A. Misra, P.K. Chattaraj, Bond stretch isomerism in $\mathrm{Be}_{3}{ }^{2-}$ driven by the Renner-Teller effect, Phys. Chem. Chem. Phys. 21 (2019) 7996.
[11] T. Goswami, S. Paul, S. Mandal, A. Misra, A. Anoop, P.K. Chattaraj, Unique bonding pattern and resulting bond stretch isomerism in $\mathrm{Be}_{3}{ }^{2-}$, Int. J. Quantum Chem. 115 (2015) 426.
[12] S. Mondal, P.K. Chattaraj, Stability and structural dynamics of $\mathrm{Be}_{3}{ }^{2-}$ clusters, Chem. Phys. Lett. 593 (2014) 128.
[13] B.G.A. Brito, G.-Q. Hai, L. Cândido, Correlation effects on aromaticity of $\mathrm{Be}_{3}{ }^{2-}$ cluster: a quantum Monte Carlo study, Chem. Phys. Lett. 586 (2013) 108.
[14] D.R. Roy, P.K. Chattaraj, Reactivity, selectivity, and aromaticity of $\mathrm{Be}_{3}{ }^{2-}$ and its complexes, J. Phys. Chem. A 112 (2018) 1612.

[^0]: E-mail address: kalemos@chem.uoa.gr.

