I  U  P  A  C




News & Notices

Organizations & People

Standing Committees




. . CI
. . PAC
. . Macro. Symp.

. . Books
. . Solubility Data



Links of Interest

Search the Site

Home Page


Pure Appl. Chem. 76(1), 203-213, 2004

Pure and Applied Chemistry

Vol. 76, Issue 1

Translational and rotational dynamics in supercritical methanol from molecular dynamics simulation

M. Chalaris and J. Samios

Physical Chemistry Laboratory, Department of Chemistry, National and
Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece


The purpose of this paper is to review our latest molecular dynamics (MD) simulation studies on the temperature and density dependence of the translational and reorientational motion in supercritical (SC) methanol. In the present treatment, Jorgensen's [W. L. Jorgensen. J. Phys. Chem. A 102, 8641 (1998)] transferable potential model, tested in a recent MD study of hydrogen bonds in this fluid [M. Chalaris and J. Samios, J. Phys. Chem. B 103, 1161 (1999)], was employed to simulate the dynamics of the system. The simulations were performed in the canonical (NVT) ensemble along the isotherms 523, 623, and 723 K and densities corresponding to the pressures from 10 to 30 MPa. Several dynamical properties of the fluid have been obtained and analyzed in terms of appropriate time-correlation functions (CFs). With respect to the translational dynamics, the self-diffusion coefficients obtained have been used to test the applicability of the well-known Chapman-Enskog kinetic theory. We have found that the theoretical predictions for the self-diffusion coefficients are only in qualitative agreement with the MD results over the whole temperature and density range studied. Finally, the inspection of the reorientational CFs and their corresponding correlation times lead to the conclusion that the reorientational motion of the SC methanol molecules in the sample is anisotropic.

*Lecture presented at the European Molecular Liquids Group (EMLG) Annual Meeting on the Physical Chemistry of Liquids: Novel Approaches to the Structure, Dynamics of Liquids: Experiments, Theories, and Simulation,Rhodes, Greece, 7-15 September 2002. Other presentations are published in this issue, pp. 1-261.

Page last modified 3 March 2004.
Copyright © 2004 International Union of Pure and Applied Chemistry.
Questions or comments about IUPAC, please contact, the Secretariat.
Questions regarding the website, please contact web manager.