Previous Article
Single switch surface hopping for molecular dynamics with transitions
A trajectory surface hopping algorithm is proposed, which stems from a mathematically rigorous analysis of propagation through conical intersections of potential energy surfaces. Since nonadiabatic tr...
Next Article
Improved transition path sampling methods for simulation of rare events
The free energy surfaces of a wide variety of systems encountered in physics, chemistry, and biology are characterized by the existence of deep minima separated by numerous barriers. One of the centra...

The electron affinity of gallium nitride (GaN) and digallium nitride (GaNGa): The importance of the basis set superposition error in strongly bound systems

J. Chem. Phys. 128, 144103 (2008); DOI:10.1063/1.2883997

Published 8 April 2008
Your access to this article is provided through the subscription of University of Athens-Physics . What is this?

Demeter Tzeli1 and Athanassios A. Tsekouras2
1Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Av., GR-11635 Athens, Greece
2Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, GR-15771 Zografou, Athens, Greece

The electron affinity of GaN and Ga2N as well as the geometries and the dissociation energies of the ground states of gallium nitrides GaN, GaN, Ga2N, and Ga2N were systematically studied by employing the coupled cluster method, RCCSD(T), in conjunction with a series of basis sets, (aug-)cc-pVxZ(-PP), x=D, T, Q, and 5 and cc-pwCVxZ(-PP), x=D, T, and Q. The calculated dissociation energy and the electron affinity of GaN are 2.12 and 1.84  eV, respectively, and those of Ga2N are 6.31 and 2.53  eV. The last value is in excellent agreement with a recent experimental value for the electron affinity of Ga2N of 2.506±0.008  eV. For such quality in the results to be achieved, the Ga 3d electrons had to be included in the correlation space. Moreover, when a basis set is used, which has not been developed for the number of the electrons which are correlated in a calculation, the quantities calculated need to be corrected for the basis set superposition error. ©2008 American Institute of Physics
History: Received 3 December 2007; accepted 28 January 2008; published 8 April 2008
Download HTML Download Sectioned HTML Download PDF (514 kB) View Cart


  • 33.15.Ry
    Molecular ionization potentials, electron affinities, molecular core binding energy
  • 33.15.Bh
    General molecular conformation and symmetry; stereochemistry
    Coupled-cluster theory
  • YEAR: 2008


0021-9606 (print)   1089-7690 (online)
AIP is a member of CrossRef AIP


  1. Y. Mochizuki and K. Tanaka, Theor. Chem. Acc. 101, 292 (1999). [ISI] [ChemPort]
  2. M. Zhou and L. Andrews, J. Phys. Chem. A 104, 1648 (2000). [ISI]
  3. L. T. Uneo, O. Roberto-Neto, S. Canuto, and F. B. C. Machado, Chem. Phys. Lett. 413, 65 (2005). [ChemPort]
  4. P. A. Denis and K. Balasubramanian, Chem. Phys. Lett. 423, 247 (2006). [Inspec]
  5. C.-S. Wang and K. Balasubramanian, Chem. Phys. Lett. 404, 294 (2004).
  6. D. Tzeli, I. D. Petsalakis, and G. Theodorakopoulos, J. Phys. Chem. A 111, 8892 (2007). [Inspec] [MEDLINE] [ChemPort]
  7. D. Tzeli, I. D. Petsalakis, and G. Theodorakopoulos, J. Phys. Chem. A (submitted for publication).
  8. S. M. Sheehan, G. Meloni, B. F. Parsons, N. Wehres, and D. M. Neumark, J. Chem. Phys. 124, 064303 (2006).
  9. A. Halkier, W. Klopper, T. Helgaker, P. Jørgensen, and P. R. Taylor, J. Chem. Phys. 111, 9157 (1999);
    G. J. Halász, Á. Vibóc, S. Suhai, and I. Mayer, Int. J. Quantum Chem. 89, 190 (2002); [ISI]
    D. Tzeli, A. Mavridis, and S. Xantheas, J. Phys. Chem. A 106, 11327 (2002); [Inspec] [ISI] [ChemPort]
    A. Fornili, M. Sironi, and M. Raimondi, J. Mol. Struct.: THEOCHEM 632, 157 (2003). [ISI]
  10. S. Simon, M. Duran, and J. J. Dannenberg, J. Chem. Phys. 105, 11024 (1996).
  11. T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
  12. K. A. Peterson, J. Chem. Phys. 119, 11099 (2003).
  13. K. A. Peterson, personal communication (2007).
  14. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970);
    B. Liu and A. D. McLean, J. Chem. Phys. 59, 4557 (1973); [ISI] [ChemPort]
    H. B. Jansen and P. Ros, Chem. Phys. Lett. 3, 140 (1969).
  15. J. D. Watts, M. Urban, and R. J. Bartlett, Theor. Chim. Acta 90, 341 (1995). [ISI] [ChemPort]
  16. T. J. Lee, J. E. Rice, G. E. Scuseria, and H. F. Schaefer III, Theor. Chim. Acta 75, 81 (1989); [Inspec] [ISI]
    T. J. Lee and P. R. Taylor, Int. J. Quantum Chem., Symp. 23, 199 (1989).
  17. D. Feller, J. Chem. Phys. 96, 6104 (1992).
  18. MOLPRO 2006.1 is a package of ab initio programs written by H.-J. Werner, P. J. Knowles, R. Lindh et al.
  19. L. Demovič, I. Černušák, G. Theodorakopoulos, I. D. Petsalakis, and M. Urban, Chem. Phys. Lett. 447, 215 (2007). [Inspec] [ChemPort]
  20. M. Hargittai and Z. Varga, J. Phys. Chem. A 111, 6 (2007). [Inspec] [MEDLINE] [ChemPort]
  21. H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 14, 731 (1985). [SPIN]