The Journal of Chemical Physics -- January 22, 2004 -- Volume 120, Issue 4, pp. 1813-1819

Full Text:  [  HTML    Sectioned HTML    PDF (102 kB)   GZipped PS  ]    Order

On symmetry breaking in BNB: Real or artifactual?

Apostolos Kalemos and Thom H. Dunning, Jr.
Joint Institute for Computational Sciences, University of Tennessee–Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Aristides Mavridis
Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, P.O. Box 64004, 157 10 Zografou, Athens, Greece

(Received 5 August 2003; accepted 31 October 2003)

The ground state of the linear BNB molecule has been examined with multireference-based ab initio methods coupled with quantitative basis sets. Previous computational studies on BNB, even those using highly correlated single reference-based methods, e.g., the CCSD(T) and BDT methods, suggested that the two BN bond lengths were unequal. In this paper, the BN(X 3Pi) + B(2Pu) potential energy curve is constructed using a state-averaged multireference-based correlated method (SA-CASSCF+PT2). The four lowest states of BN were included in the state averaging procedure. These calculations reveal no symmetry breaking along the antisymmetric stretching mode of the molecule. ©2004 American Institute of Physics.


doi:10.1063/1.1635797
PACS: 31.15.Ar, 31.50.Bc, 31.25.Eb, 31.15.Md        Additional Information

View ISI's Web of Science data for this article: [ Source Abstract  | Related Articles  ]


Full Text:  [  HTML    Sectioned HTML    PDF (102 kB)   GZipped PS  ]    Order

References

Citation links [e.g., Phys. Rev. D 40, 2172 (1989)] go to online journal abstracts. Other links (see Reference Information) are available with your current login. Navigation of links may be more efficient using a second browser window.
  1. P. B. Mirkarimi, K. F. McCarty, and D. L. Medlin, Mater. Sci. Eng. 21, 47 (1997).
  2. S. Becker and H.-J. Dietze, Int. J. Mass Spectrom. Ion Processes 73, 157 (1986). [INSPEC] [ChemPort]
  3. G. Seifert, B. Schwab, S. Becker, and H.-J. Dietze, Int. J. Mass Spectrom. Ion Processes 85, 327 (1988). [INSPEC] [ChemPort]
  4. J. M. L. Martin, J.-P. François, and R. Gijbels, J. Chem. Phys. 90, 6469 (1989). [ISI] [ChemPort]
  5. J. M. L. Martin, J.-P. François, and R. Gijbels, Chem. Phys. Lett. 172, 354 (1990). [INSPEC] [ISI] [ChemPort]
  6. L. B. Knight, Jr., D. W. Hill, T. J. Kirk, and C. A. Arrington, J. Phys. Chem. 96, 555 (1992). [ChemPort]
  7. J. M. L. Martin, J.-P. François, and R. Gijbels, Chem. Phys. Lett. 193, 243 (1992). [INSPEC] [ISI] [ChemPort]
  8. P. Hassanzadeh and L. Andrews, J. Phys. Chem. 96, 9177 (1992). [ChemPort]
  9. L. Andrews, P. Hassanzadeh, T. R. Burkholder, and J. M. L. Martin, J. Chem. Phys. 98, 922 (1993). [ISI] [ChemPort]
  10. C. A. Thompson and L. Andrews, J. Am. Chem. Soc. 117, 10125 (1995). [ISI] [ChemPort]
  11. C. A. Thompson, L. Andrews, J. M. L. Martin, and J. El-Yazal, J. Phys. Chem. 99, 13839 (1995). [ChemPort]
  12. J. M. L. Martin, J. El-Yazal, J.-P. François, and R. Gijbels, Mol. Phys. 85, 527 (1995). [INSPEC] [ISI] [ChemPort]
  13. Z.-X. Wang, M.-B. Huang, and P. von Ragué Schleyer, J. Phys. Chem. A 103, 6475 (1999). [ISI] [ChemPort]
  14. (a) K. R. Asmis, T. R. Taylor, and D. M. Neumark, Eur. Phys. J. D 9, 257 (1999); [INSPEC] [ISI] [ChemPort]
    (b) K. R. Asmis, T. R. Taylor, and D. M. Neumark, J. Chem. Phys. 111, 8838 (1999). [ISI] [ChemPort]
  15. G. Meloni, M. Sai Baba, and A. Gingerich, J. Chem. Phys. 113, 8995 (2000). [ISI]
  16. S. R. Gwaltney and M. Head-Gordon, Phys. Chem. Chem. Phys. 3, 4495 (2001). [ISI] [ChemPort]
  17. S. Mahalakshmi and D. L. Yeager, Mol. Phys. 101, 165 (2003). [INSPEC] [ISI] [ChemPort]
  18. E. R. Davidson and W. T. Borden, J. Phys. Chem. 87, 4783 (1983). [INSPEC] [ChemPort]
  19. I. B. Bersuker, Chem. Rev. 101, 1067 (2001). [ISI] [MEDLINE] [ChemPort]
  20. T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989). [ChemPort]
  21. MOLPRO, a package of ab initio programs designed by H.-J. Werner and P. J. Knowles, version 2002.6, R. D. Amos, A. Bernhardsson, A. Berning et al.
  22. H. Bredohl, I. Dubois, Y. Houbrechts, and P. Nzohabonayo, J. Mol. Spectrosc. 112, 430 (1985). [INSPEC] [ISI] [ChemPort]
  23. K. A. Peterson, J. Chem. Phys. 102, 262 (1995). [ISI] [ChemPort]
  24. K. R. Asmis, T. R. Taylor, and D. M. Neumark, Chem. Phys. Lett. 295, 75 (1998). [INSPEC] [ISI] [ChemPort]
  25. M. Lorenz, J. Agreiter, A. M. Smith, and V. E. Bondybey, J. Chem. Phys. 104, 3143 (1996). [ISI] [ChemPort]

  The American Institute of Physics is a member of CrossRef.


Full Text:  [  HTML    Sectioned HTML    PDF (102 kB)   GZipped PS  ]    Order

Copyright © American Institute of Physics
Copyright Statement : Rights & Permissions : Permitted/Prohibited Uses