Supporting Information

for

Chalcogen Bonding and Hydrophobic Effects Force Molecules into Small Spaces

Faiz-Ur Rahman,¹ Demeter Tzeli,^{2,3} Ioannis D. Petsalakis,² Giannoula Theodorakopoulos,² Pablo Ballester,⁴ Julius Rebek Jr.,^{*,1,5} Yang Yu^{*,1}

¹Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China

²Theoretical and Physical Chemistry Institute, The National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens 11635, Greece

³Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 157 71, Greece

⁴Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007, Tarragona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain.

⁵Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA

*Corresponding authors: Julius Rebek, Jr.: jrebek@scripps.edu, Yang Yu: yangyu2017@shu.edu.cn

Keywords: Cavitands, Nano-capsule, Molecular recognition, Confined spaces in water

Contents

Experimental	2
General experimental	2
Procedure for the synthesis of cavitand 2	2
Procedure for the synthesis of cavitand 3	3
Procedure for the synthesis of water soluble cavitand 1	4
¹ H NMR, ¹³ C NMR spectra of cavitands	5
Mass (HR) spectra of cavitands	9
¹ H NMR spectra of 1 in water in the presence of <i>n</i> -alkane as guest	10
¹ H NMR spectra of 1 in water in the presence of cycloalkane	18
¹ H NMR spectra of 1 in water showing assembly with different branched chain or cyclic carbox	cylic acid
¹ H NMR spectra of 1 in water in the presence of different carboxylic acid amide	27
Capsular assembly confirmation by ¹ H DOSY NMR spectroscopy	31
¹ H DOSY NMR confirmation of the capsule formed by 1 in the presence of guest	31

Binding selectivity for saturated cyclic hydrocarbons over their unsaturated ones	35
Binding selectivity of 1 for benzene and cyclohexane	35
Binding selectivity for toluene and methyl cyclohexane	40
¹ H NMR spectra of 1 in water in the presence of miscellaneous binding guest	45
Crystallographic details for single crystal analysis of 3	50
Theoretical Calculations	50
References	65

Experimental

General experimental

All analytical grade solvents and reagents purchased from commercial sources were used without further purification. SeO₂ was purchased from Energy Chemical Company Ltd., Shanghai China. D₂O, DMSO- d_6 , CDCl₃ and CD₃OD were used as NMR analysis solvents. ¹H and ¹³C NMR analyses were performed using Bruker AVANCE III HD 600 MHz spectrophotometer. Positive ions high-resolution mass analyses were performed on Bruker micrOTOF II machine.

Procedure for the synthesis of cavitand 2

A solution of 60 mg (0.54 mmol) of SeO_2 in 5 mL of water was added dropwise to a stirred solution of 121 mg (0.1 mmol) of octa-amino cavitand^{1, 2} in 25 mL of ethanol at rt. The light orange mixture obtained was heated in an oil bath and maintained at reflux for 5 h. The mixture was cooled to rt and a pale solid precipitated. It was filtered washed successively with water and ethanol and dried under high vacuum. The product **2** (140 mg) was obtained in 93% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 8.56 (s, 8H), 8.19 (s, 4H), 7.84 (s, 4H), 5.70 (t, J = 8.1 Hz, 4H), 3.81 (t, J = 6.5 Hz, 8H), 2.61 (d, J = 7.9 Hz, 8H), 1.84 (p, J = 6.7 Hz, 8H). ¹³C NMR (150 MHz, DMSO- d_6) δ 157.5, 155.0, 154.7, 135.6, 124.8, 116.9, 116.2, 45.4, 33.4, 31.4, 29.0.

Procedure for the synthesis of cavitand 3

A solution of 300 mg (0.2 mmol) of **2** in 20 mL of DMF was treated with 8 equivalents (1.6 mmol) of K₂CO₃ and 5 equivalents (1 mmol) of morpholine. The mixture was stirred and heated at 90 °C for 20 h. The mixture was cooled to rt and 80 mL of water was added. The solid precipitate obtained was filtered and washed successively with water and ethanol. The solid was further suspended in 30 mL ethanol, sonicated for 1 h, then filtered and washed with ethanol. After drying under high vacuum 250 mg of a pale colored compound was obtained in 73% yield. HR-MS (ESI): Calcd. for chemical formula $C_{80}H_{77}N_{12}O_{12}Se_4$: [M+H]¹⁺ = 1715.2482, found: 1715.2479, $C_{80}H_{78}N_{12}O_{12}Se_4$: [M+2H]²⁺ = 572.4209, found: 572.4221, ¹H NMR (600 MHz, chloroform-*d*) δ 7.85 (s, 8H), 7.51 (s, 4H), 7.43 (s, 4H), 5.86 (t, *J* = 8.1 Hz, 4H), 3.78 (q, *J* = 4.7 Hz, 16H), 2.62 – 2.53 (m, 24H), 2.40 (q, *J* = 7.3 Hz, 8H), 1.69 – 1.62 (m, 8H). ¹³C NMR (150 MHz, chloroform-*d*) δ 156.9, 155.3, 154.6, 135.6, 123.5, 116.0, 115.1, 66.9, 58.9, 53.9, 33.5, 29.9, 24.8.

Procedure for the synthesis of water-soluble cavitand 1

A solution of 100 mg 2 in 10 mL of 1,2-dimethylimdazole and heated and stirred at 100 °C for 24 h. The mixture was cooled to rt and 50 mL of acetonitrile was added. The precipitated solid was filtered and washed thoroughly with acetonitrile. The pale solid recovered was suspended in 30 mL of acetonitrile and heated with stirring at 80 °C for 3 h. The solid precipitate from the cooled mixture was filtered and washed with acetonitrile and dried under high vacuum to give 113 mg 1 (90% yield) was recovered. (The ¹H NMR spectrum of the product showed acetonitrile solvent signals) HR-MS (ESI): Calcd. for chemical formula $C_{84}H_{76}N_{16}O_8Se_4Cl_3$: [M-Cl]¹⁺ = 1859.1779, found: 1859.1782. $C_{84}H_{76}N_{16}O_8Se_4Cl_2$: [M-2Cl]²⁺ = 912.1046, found: 912.1062, $C_{84}H_{76}N_{16}O_8Se_4Cl$: [M-3Cl]³⁺ = 596.4134, found: 596.4145, ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.50 (s, 8H), 8.27 (s, 4H), 8.12 (s, 4H), 8.08 (s, 4H), 7.79 (s, 4H), 5.55 (t, J = 7.9 Hz, 4H), 4.37 (s, br, 8H), 3.85 (s, 12H), 2.84 (s, br, 8H), 2.76 (s, 12H), 1.77 (s, br, 8H). ¹³C NMR (150 MHz, DMSO d_6) δ 156.8, 154.4, 154.1, 144.4, 135.2, 125.8, 122.2, 121.1, 116.0, 115.5, 47.8, 34.7, 33.6, 28.2, 27.8, 9.5.

¹H NMR, ¹³C NMR spectra of cavitands

Fig. S1 ¹H NMR spectrum of 2 in DMSO- d_6 , analyzed at rt

Fig. S2 ¹³C NMR spectrum of 2 in DMSO- d_6 , analyzed at rt

Fig. S4 ¹³C NMR spectrum of 3 in CDCl₃, analyzed at rt

Fig. S6 ¹³C NMR spectrum of 1 in DMSO- d_6 , analyzed at rt

Fig. S8 ¹H NMR spectrum of 1 in methanol- d_4 , analyzed at rt

Mass (HR) spectra of cavitands

Fig. S9 Mass spectrum of 3, cationic species formed by the addition on nH cations

Fig. S10 Mass spectrum of 1, cationic species formed by the loss of nCl anions

¹H NMR spectra of 1 in water in the presence of *n*-alkane as guest

General procedure for the binding analyses

1 mM, 0.5 mL of **1** in D₂O was taken in the NMR tube and excess pure *n*-alkane (~0.5 μ L or ~0.5 mg) was added to the tube, it was shaken well to mix the guest in water. The sample was sonicated for 1 h at rt and analyzed by ¹H NMR spectroscopy at rt.

Fig. S11 ¹H NMR spectra of the complexes formed between 1, 1 mM + from bottom to top, *n*-pentane, *n*-hexane, *n*-heptane, *n*-octane, *n*-nonane, *n*-decane, *n*-undecane, *n*-tridecane, *n*-tetradecane, *n*-pentadecane and *n*-hexadecane in D_2O , each mixture was sonicated for 1 h at rt and analyzed at rt

Fig. S12 ¹H NMR spectra of the capsular complexes formed between 1 and particular guest; 2 + 2 complex in which two host molecules make a capsule by encapsulation of two molecules of the guest (n-hexane); 2 + 1 complex in which the host capsule encapsulate one molecule of particular guest (*n*-heptane, *n*-octane, *n*-nonane, *n*-decane, *n*-undecane, *n*-dodecane, *n*-tridecane); The NMR spectra were taken in D₂O at rt

Fig. S13 ¹H NMR spectrum of the complex formed between 1, 1 mM + n-pentane in D₂O, analyzed at rt

Fig. S14 ¹H NMR spectrum of the complex formed between 1, 1 mM + n-hexane in D₂O, analyzed at rt

Fig. S15 ¹H NMR spectrum of the complex formed between 1, 1 mM + n-heptane in D₂O, analyzed at rt

Fig. S16 ¹H NMR spectrum of the complex formed between 1, 1 mM + n-octane in D₂O, analyzed at rt

Fig. S17 ¹H NMR spectrum of the complex formed between 1, 1 mM + n-nonane in D₂O, analyzed at rt

Fig. S18 ¹H NMR spectrum of the complex formed between 1, 1 mM + n-decane in D₂O, analyzed at rt

Fig. S19¹H NMR spectrum of the complex formed between 1, 1 mM + n-undecane in D₂O, analyzed at rt

Fig. S20 ¹H NMR spectrum of the complex formed between 1, 1 mM + n-dodecane in D₂O, analyzed at rt

Fig. S21 ¹H NMR spectrum of the complex formed between 1, 1 mM + *n*-tridecane in D_2O , analyzed at rt

Fig. S22 ¹H NMR spectrum of the complex formed between 1, 1 mM + *n*-tetradecane in D_2O , analyzed at rt

Fig. S23 ¹H NMR spectrum of the complex formed between 1, 1 mM + *n*-pentadecane in D_2O , analyzed at rt

Fig. S24 ¹H NMR spectrum of the complex formed between 1, 1 mM + *n*-hexadecane in D_2O , analyzed at rt

¹H NMR spectra of 1 in water in the presence of cycloalkane

General procedure for the binding analyses

1 mM, 0.5 mL of **1** in D₂O was taken in NMR tube and excess pure cycloalkane (0.5 μ L or ~0.5 mg) was added to the tube, it was shaken well to mix the guest in water. The sample was sonicated for 1 h at rt and analyzed by ¹H NMR spectroscopy at rt.

Fig. S25 ¹H NMR spectrum 1H NMR spectra of the complexes formed between 1, 1 mM + from bottom to top, cyclopentane, cyclohexane, cyclohexane, cyclohexane, cyclohexane, cyclohexane, cyclohexane, cyclohexane in D₂O, each mixture was sonicated for 1 h at rt and analyzed at rt

Fig. S26 ¹H NMR spectrum of the complex formed between 1, 1 mM + cyclopentane in D₂O, analyzed at rt

Fig. S27 ¹H NMR spectrum of the complex formed between 1, 1 mM + cyclohexane in D_2O , analyzed at rt

Fig. S28 ¹H NMR spectrum of the complex formed between 1, 1 mM + cycloheptane in D₂O, analyzed at rt

Fig. S29 ¹H NMR spectrum of the complex formed between 1, 1 mM + cyclooctane in D_2O , analyzed at rt

Fig. S30 ¹H NMR spectrum of the complex formed between 1, 1 mM + cyclodecane in D_2O , analyzed at rt

¹H NMR spectra of 1 in water showing assembly with different branched chain or cyclic carboxylic acid

General procedure for the binding analyses

1 mM, 0.5 mL of **1** in D₂O was taken in NMR tube and excess pure branched chain or cyclic carboxylic acid (~0.5 μ L or ~0.5 mg) was added to the tube, it was shaken well to mix the guest in water. The sample was sonicated for 1 h at rt and analyzed by ¹H NMR spectroscopy at rt.

Fig. S31 ¹H NMR spectra of the complexes formed between 1, 1 mM + from bottom to top, 2-methylpropanoic acid, 3methylbutanoic acid, cyclopentane carboxylic acid, cyclohexane carboxylic acid, cycloheptane carboxylic acid and adamantane carboxylic acid in D_2O , each mixture was sonicated for 1 h at rt and analyzed at rt; 3-methylbutanoic acid and cyclopentane carboxylic acid formed 2 + 2 capsule stabilized by inter molecular acid-acid hydrogen bonding, while the other acid formed 1 + 1 cavitand complex

Fig. S32 1 H NMR spectrum of the complex formed between 1, 1 mM + 2-methylpropanoic acid in D₂O, analyzed at rt

Fig. S33 ¹H NMR spectrum of the complex formed between 1, 1 mM + 3-methylbutanoic acid in D₂O, analyzed at rt

Fig. S34 1 H NMR spectrum of the complex formed between 1, 1 mM + 3-methylbutanoic acid in 10% $D_{2}O$ in $H_{2}O$, analyzed at rt

Fig. S35 ¹H NMR spectrum of the complex formed between 1, 1 mM + 3-methylbutanoic acid in 10% D₂O in H₂O, analyzed at rt

Fig. S36 ¹H NMR spectrum of the complex formed between 1, 1 mM + cyclopentane carboxylic acid in D₂O, analyzed at rt

Fig. S37 ¹H NMR spectrum of the complex formed between 1, 1 mM + cyclohexane carboxylic acid in D₂O, analyzed at rt

Fig. S38 ¹H NMR spectrum of the complex formed between 1, 1 mM + cycloheptane carboxylic acid in D₂O, analyzed at rt

Fig. S39 ¹H NMR spectrum of the complex formed between 1, 1 mM + adamantane carboxylic acid in D₂O, analyzed at rt

¹H NMR spectra of 1 in water in the presence of different carboxylic acid amide

General procedure for the binding analyses

1 mM, 0.5 mL of **1** in D_2O was taken in NMR tube and 0.5 equivalent of acid amide (as stock solution in acetonitrile- d_3) was added to the tube, it was shaken well to mix the guest in water. The sample was sonicated for 1 h at rt and analyzed by ¹H NMR spectroscopy at rt.

(cyclohexylmethyl)cyclohexanecarboxamide in D_2O , stock solution of amide in CD_3CN (50 mM), 5 μ L was added to 0.5 mL 1 mM solution of 1, each mixture was sonicated for 1 h at rt and analyzed at rt; every amide formed a stable capsule

Fig. S41 ¹H NMR spectrum of the complex formed between 1, 1 mM + 0.5 equivalent of 4-methyl-N-(p-tolyl)pentanamide in D_2O , analyzed at rt

Fig. S42 ¹H NMR spectrum of the complex formed between **1**, 1 mM + 0.5 equivalent of Ncycloheptylcycloheptanecarboxamide in D₂O, analyzed at rt

Fig. S43 1 H NMR spectrum of the complex formed between 1, 1 mM + 0.5 equivalent of N-cyclohexylcyclohexanecarboxamide in D₂O, analyzed at rt

Fig. S44 ¹H NMR spectrum of the complex formed between 1, 1 mM + 0.5 equivalent of N-(p-tolyl)cyclohexanecarboxamide in D_2O , analyzed at rt

Fig. S45 ¹H NMR spectrum of the complex formed between 1, 1 mM + 0.5 equivalent of N-(4methylcyclohexyl)cyclohexanecarboxamide in D₂O, analyzed at rt

Fig. S46 ¹H NMR spectrum of the complex formed between **1**, 1 mM + 0.5 equivalent of N-(cyclohexylmethyl)cyclohexanecarboxamide in D₂O, analyzed

Capsular assembly confirmation by ¹H DOSY NMR spectroscopy

We prepared a solution containing an equimolar mixture of **1** and cyclohexane carboxylic acid. The ¹H NMR spectrum of the mixture evidenced that the cyclohexane carboxylic acid formed the 1+1 cavitand complex with the expected orientation of the guest included in **1**. As mentioned above, the size of cyclohexane carboxylic acid appears to be too large for the assembly of 2+2 capsular complex and possibly too small to template a 2+1 host-guest capsular counterpart (ESI Figure S47). We also dissolved in water one equivalent of the cyclohexane carboxylic acid anhydride with two equivalents of **1**. The cyclohexane carboxylic acid anhydride with two equivalents of **1**. The cyclohexane carboxylic acid anhydride in any of the guest's chemical shifts, demonstrating that the capsule protected the anhydride from being hydrolyzed by water (ESI Figure S48-S49). As shown in Scheme, we mixed both solution to obtain a complex mixture that was analyzed using ¹H DOSY NMR spectroscopy (ESI Figure S50-S52). The two assemblies were identified in the DOSY spectrum of the mixture owing to the different diffusion constants assigned to the protons of **1** in the two assemblies and the slow chemical exchange regime that was operative between them in both the chemical shift and diffusion timescales. The 2+1 cyclohexane carboxylic acid anhydride capsule's methine and benzoselenadiazole protons' chemical shifts are downfield shifted compared to those of the 1+1 cavitand complex formed by the cyclohexane carboxylic acid.

¹H DOSY NMR confirmation of the capsule formed by 1 in the presence of guest

General procedure for preparation of the samples for binding analyses

- 1 mM, 0.5 mL of cavitand solution in D₂O was taken in NMR tube and 1 equivalent of cyclohexane carboxylic acid was added to the tube, it was shaken well to mix the guest in water. The sample was sonicated for 1 h at rt and analyzed by ¹H NMR spectroscopy at rt Fig. ESI. S47.
- Similarly, 1 mM, 0.5 mL of cavitand solution in D₂O was taken in NMR tube and 0.5 equivalent of cyclohexane carboxylic acid anhydride was added to the tube, it was shaken well to mix the guest in water. The sample was sonicated for 1 h at rt and analyzed by ¹H NMR spectroscopy at rt Fig. ESI. S48.
- Both of the above samples were mixed and analyzed by ¹H NMR (Fig. ESI S52) and DOSY spectroscopy at rt.

Fig. S47 ¹H NMR spectrum of the complex formed between 1, 1 mM in $D_2O + 1$ equivalent of cyclohexane carboxylic acid,

Fig. S48 ¹H NMR spectrum of the complex formed between 1, 1 mM in D₂O + 0.5 equivalent of cyclohexane carboxylic acid anhydride (added as 5 μL, 100 mM stock solution in CD₃CN), analyzed at rt

Fig. S49 ¹H NMR spectrum of the complex formed between 1, 1 mM in D₂O + 0.5 equivalent of cyclohexane carboxylic acid anhydride (added as 5 μL, 100 mM stock solution in CD₃CN), analyzed over mentioned time points at rt

Fig. S50 ¹H NMR spectrum of the complex formed between 1, 1 mM in $D_2O + 0.5$ equivalent of cyclohexane carboxylic acid and 1, 1 mM in $D_2O + 0.5$ equivalent of cyclohexane carboxylic acid anhydride (added as 5 μ L, 100 mM stock solution in CD₃CN), mixed and analyzed by ¹H NMR spectroscopy (mixture of sample displayed in Fig. S47 and Fig. S48)

Fig. S51 ¹H NMR spectrum of the complex formed between 1, 1 mM in $D_2O + 1$ equivalent of cyclohexane carboxylic acid (bottom), 1, 1 mM in $D_2O + 0.5$ equivalent of cyclohexane carboxylic acid anhydride (added as 5 µL, 100 mM stock solution in CD₃CN) (top), mixture of both these samples (middle)

Fig. S52 ¹H DOSY NMR spectrum of the cavitand and capsule mixture formed by **1** in the presence of cyclohexane carboxylic acid and cyclohexane carboxylic acid anhydride respectively; 1 mM of **1** was added with 1 equivalent of cyclohexane carboxylic acid anhydride separately and then both these samples were mixed and analyzed by DOSY NMR spectroscopy.

Binding selectivity for saturated cyclic hydrocarbons over their unsaturated ones

When benzene was added as a guest to a D_2O solution of 1, the broadened signal around 7.2 ppm indicated the relatively fast exchange of benzene in and out of the cavitand, rather than the formation of a dimeric capsule (ESI Figure S53). This was also deduced from the methine proton's chemical shift of the 1+1 cavitand complex of 1 with benzene, observed upfield as compared to that of 2+2 capsule of 1 formed with cyclohexane (ESI Figure S53 and S56). Additional competitive binding experiments using 1:1 host-guest ratios showed the same binding preference for cyclohexane (ESI Figure S58-S60).

Addition of toluene to 1 in D₂O formed a 1+1 cavitand complex that was easily recognized from its methine proton chemical shift and integration of the bound toluene methyl's protons (ESI Figure S62). Toluene was bound in a way that its methyl group was deep in the cavity with a ¹H signal of the -CH₃ protons resonating at -2.27 ppm with $\Delta \delta$ = - 4.47 ppm (ESI Figure S62). The addition of a 1:1 mixture of toluene and methyl cyclohexane to 1 gave only a dimeric capsule with two molecules of methyl cyclohexane in the inner space (ESI Figure S64). Furthermore, methyl cyclohexane replaced toluene from its complex with 1 to generate a 2+2 capsular assembly (ESI Figure. S63). Selectivity in equivalent quantities of host and guests showed the same binding preference for methyl cyclohexane (ESI Figure S66-S68).

Binding selectivity of 1 for benzene and cyclohexane

General procedure for the binding analyses using excess guest

1 mM, 0.5 mL of cavitand solution in D_2O was taken in NMR tube and excess of the guest was added to the tube, it was shaken well to mix the guest in water. The sample was sonicated for 1 h at rt and analyzed by ¹H NMR spectroscopy at rt.

General procedure for the binding analyses using 1:1 host and guest ratio

1 mM, 0.5 mL of **1** in D₂O was taken in NMR tube and 0.5 equivalent of the guest (as stock solution in acetonitrile- d_3) was added to the tube, it was shaken well to mix the guest in water. The sample was sonicated for 1 h at rt and analyzed by ¹H NMR spectroscopy at rt.

Fig. S53 ¹H NMR spectrum of the complex formed between 1, 1 mM + excess benzene, in D_2O , analyzed at rt

Fig. S54 1 H NMR spectrum of the complex formed between 1, 1 mM + excess cyclohexane, in D₂O, analyzed at rt

Fig. S55 ¹H NMR spectrum of the complex formed between 1, 1 mM + excess cyclohexane and benzene (1:1) mixture, in D_2O , analyzed at rt

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3. PPM

Fig. S56 ¹H NMR spectrum of the complex formed between 1, 1 mM + excess benzene sonicated for 1 h and analyzed by ¹H NMR spectroscopy (bottom), Then excess cyclohexane was added sonicated for 1 h and analyzed by ¹H NMR spectroscopy (top), in D₂O, analyzed at rt

Fig. S57 ¹H NMR spectrum of the complex formed between 1, 1 mM + excess cyclohexane sonicated for 1 h and analyzed by ¹H NMR spectroscopy (bottom), Then excess benzene was added sonicated for 1 h and analyzed by ¹H NMR spectroscopy (top), in D_2O , analyzed at rt

Fig. S58 ¹H NMR spectrum of the complex formed between 1, 1 mM in $D_2O + 1$ equivalent benzene (added as 5 μ L, 100 mM stock solution in CD_3CN), analyzed at rt

Fig. S59 ¹H NMR spectrum of the complex formed between 1, 1 mM in $D_2O + 1$ equivalent cyclohexane (added as 5 μ L, 100 mM stock solution in CD₃CN), analyzed at rt

Fig. S60 ¹H NMR spectrum of the complex formed between 1, 1 mM in $D_2O + 1$ equivalent each benzene and cyclohexane (each one added as 5 μ L, 100 mM stock solution in CD₃CN), analyzed at rt

Binding selectivity for toluene and methyl cyclohexane

General procedure for the binding analyses using excess guest

1 mM, 0.5 mL of cavitand solution in D_2O was taken in NMR tube and excess of the guest was added to the tube, it was shaken well to mix the guest in water. The sample was sonicated for 1 h at rt and analyzed by ¹H NMR spectroscopy at rt.

General procedure for the binding analyses using 1:1 host and guest ratio

1 mM, 0.5 mL of **1** in D₂O was taken in NMR tube and 0.5 equivalent of the guest (as stock solution in methanol- d_4) was added to the tube, it was shaken well to mix the guest in water. The sample was sonicated for 1 h at rt and analyzed by ¹H NMR spectroscopy at rt.

Fig. S61 ¹H NMR spectrum of the complex formed between 1, 1 mM, in D₂O + excess methyl cyclohexane, analyzed at rt

Fig. S63 ¹H NMR spectrum of the complex formed between 1, 1 mM + excess toluene sonicated for 1 h and analyzed by ¹H NMR spectroscopy (bottom), Then excess methyl cyclohexane was added sonicated for 1 h and analyzed by ¹H NMR spectroscopy (top), in D₂O, analyzed at rt, toluene was completely replaced by methyl cyclohexane to covert unstable cavitand to stable capsule while encapsulating two molecules of methyl cyclohexane

Fig. S64 ¹H NMR spectrum of the complex formed between 1, 1 mM, in D_2O + excess methyl cyclohexane and toluene (1:1) mixture, analyzed at rt

Fig. S65 ¹H NMR spectrum of the complex formed between 1, 1 mM in D₂O + excess cyclohexane sonicated for 1 h and analyzed by ¹H NMR spectroscopy (bottom), Then excess toluene was added sonicated for 1 h and analyzed by ¹H NMR spectroscopy (top), methyl cyclohexane was not replaced by toluene as a stable capsule encapsulating two molecules of methyl cyclohexane will not covert to unstable cavitand bearing toluene in the cavity.

Fig. S66 ¹H NMR spectrum of the complex formed between 1, 1 mM in $D_2O + 1$ equivalent methyl cyclohexane (added as 5 μ L, 100 mM stock solution in methanol- d_4), analyzed at rt

Fig. S67 ¹H NMR spectrum of the complex formed between 1, 1 mM in $D_2O + 1$ equivalent toluene (added as 5 μ L, 100 mM stock solution in methanol- d_4), analyzed at rt

Fig. S68 ¹H NMR spectrum of the complex formed between 1, 1 mM in D₂O + 1 equivalent of toluene and 1 equivalent of methyl cyclohexane (each one added as 5 μL, 100 mM stock solution in methanol-d₄), analyzed at rt

¹H NMR spectra of 1 in water in the presence of miscellaneous guests

General procedure for the binding analyses

A 1 mM solution of **1** in 0.5 mL D₂O was placed in an NMR tube and 0.5 equivalent of guest (4,4'dimethylbiphenyl, as stock solution in DMSO- d_6) or excess (dibromooctane, or halooctane) was added, and the tube was shaken well to mix the guest in water. The sample was sonicated for 1 h at rt and analyzed by ¹H NMR spectroscopy at rt.

Fig. S69 ¹H NMR spectra comparative plot of the complexes formed between 1, 1 mM in D_2O + from bottom to top, 0.5 equivalent of 4,4'-dimethylbiphenyl (added as 2.5 μ L, 100 mM stock solution in DMSO- d_6) or excess of 1-chlorooctane, 1-bromooctane, 1-iodooctane or 1,8-dibromooctane, analyzed at rt

Fig. S70 ¹H NMR spectrum of the complex formed between 1, 1 mM in $D_2O + 0.5$ equivalent of 4,4²-dimethylbiphenyl (added as 2.5 μ L, 100 mM stock solution in DMSO- d_6), analyzed at rt

Fig. S71 ¹H NMR spectrum of the complex formed between 1, 1 mM in D₂O + excess 1-chlorooctane, analyzed at rt

Fig. S72 ¹H NMR spectrum of the complex formed between 1, 1 mM in D₂O + excess 1-bromooctane, analyzed at rt

Fig. S73 ¹H NMR spectrum of the complex formed between 1, 1 mM in D_2O + excess 1-iodooctane, analyzed at rt

Fig. S74 ¹H NMR spectrum of the complex formed between 1, 1 mM in D₂O + excess 1,8-dibromooctane, analyzed at rt

Table S1: Crystal structure parameters of 3					
CCDC Number ^[1]	1967953				
Empirical formula	$C_{166}H_{164}N_{24}O_{24}Se_8$				
Formula weight	3510.88				
Crystal system	Triclinic				
Temperature (K)	173(2)				
Wavelength (Å)	1.34139				
Space group	P-1				
Unit cell dimensions					
a (Å)	23.5179(18)				
b (Å)	41.767(4)				
c (Å)	43.084(4)				
α (°)	84.628(5)				
β (°)	89.020(5)				
γ (°)	79.679(5)				
Volume (Å ³)	41453(6)				
Z	8				
Density (calculated) (Mg/m ³)	1.125				
Absorption coefficient (mm ⁻¹)	1.405				
F(000)	14336				
Crystal size (mm ³)	0.100 x 0.100 x 0.100				
Theta range for data collection (°)	1.661 to 51.741				
Index ranges	-27<=h<=27, -48<=k<=48, -50<=l<=50				
Reflections collected	569355				
Independent reflections	136738 [R(int) = 0.1571]				
Completeness to theta = 51.741°	98.2				
Refinement method	Full-matrix-block least-squares on F2				
Data / restraints / parameters	136738/10392/7948				
Goodness-of-fit on F ²	1.002				
Final R indices [I>2sigma(I)]	R1 = 0.1521, $wR2 = 0.3570$				
R indices (all data)	R1 = 0.2449, WR2 = 0.4054				
Largest diff. peak and hole(e.Å ⁻³)	2.095 and -0.831				
^[1] Crystallographic data for 3 , CCDC	C: can be obtained from Cambridge				
Crystallographic Data Center 12 Uni	on Road, Cambridge CB2 1EZ, UK; Tel: +44-				
1223336408; fax: +44-1223336003; e-mail: deposit@ccdc.cam.ac.uk.					

Crystallographic details for single crystal analysis of 3

Theoretical Calculations

DFT geometry optimization calculations were carried out at the M06-2X³/LANL2DZ⁴ level of theory. Dipole moments, dipole electric field isotropic and anisotropic polarizabilities, and NMR spectra were calculated at the PBE0⁴/6-31G(d,p)⁵//M06-2X/LANL2DZ level of theory.⁶ NMR shielding tensors have been computed with the Gauge-Independent Atomic Orbital (GIAO) method.⁷ All calculations were carried out via the Gaussian16 program.⁸

Table S2: Dipole moments μ (Debye), isotropic polarizability (au) and anisotropic polarizabilities (au) at PBE0/6-31G(d,p)//M06-2X/LANL2DZ.

	Figure 4A /Scheme 3(first)		Figure 4B /Scheme 3(second)		Figure 4C /Scheme 3(third)	
	capsule	capusle+C ₉ H ₂₀	capsule	capusle+C ₉ H ₂₀	capsule	capusle+C ₉ H ₂₀
μ	0.045	0.332	0.973	0.565	0.015	1.617
isotropic polarizability	1518	1579	1858	1931	1273	1329
anisotropic						
polarizability	920	960	1303	1350	540	599

Fig. S75 Calculated structures and ¹H NMR shifts for the 2+1 C₉H₂₀ capsule (4B) and the corresponding capsules for the –(NH)2CO (4A) and –(CO)₂NH (4C) panels corresponding to Scheme 3.

Table	S3 (XYZ geometries)
Table	S3-1 Capsule+C9H20 (Figure 4A)

Center Number	Atomic Number	Atomic Type	Coord	linates (Angsti Y	roms) Z
	(0 022121	2 952407	<u>)</u>
1	6	0	ð.923121 8 342086	-2.852497	-2.233304
2	0	0	0.343980 8 317160	-3.093333 -1 596798	-0.041004
с Л	0	0	0.31/408 8 606004	-1.370/98	-2.033201
4	1	0	0.000994 8 861109	-3.093/80	-2.033/14
5	6	0	7 263873	-2.770777	-0 664397
7	6	0	8 847640	-0.310795	-2 640891
8	6	0	7 198302	-1 703531	-3 694719
9	6	õ	8 356294	-2,705572	1.596873
10	6	õ	6.743547	-4.244246	0.599767
11	8	Õ	6.714871	-4.651016	-1.782129
12	6	Õ	8.296032	0.843878	-3.227539
13	6	Õ	6.642142	-0.587873	-4.315989
14	8	0	6.662855	-2.982993	-3.980210
15	6	0	8.956502	-2.053051	2.838590
16	6	0	7.275909	-3.595547	1.711523
17	1	0	5.957882	-4.979560	0.721599
18	6	0	5.471242	-4.185656	-2.248410
19	6	0	8.885958	2.237422	-3.019208
20	6	0	7.177424	0.673034	-4.057089
21	1	0	5.834635	-0.703244	-5.027739
22	6	0	5.445776	-3.326477	-3.365501
23	1	0	8.644095	-2.660373	3.694246
24	6	0	8.372641	-0.659225	3.059101
25	8	0	6.738858	-3.894455	2.989335
26	6	0	8.319063	2.889312	-1.760481
27	1	0	8.551575	2.846343	-3.865329
28	8	0	6.610998	1.797829	-4.704908
29	6	0	8.905534	0.498607	2.467687
30	6	0	7.267497	-0.494581	3.908531
31	6	0	5.502097	-3.294564	3.293351
32	6	0	3.086177	-4.128408	-2.146248
33	6	0	8.862458	2.668560	-0.483043
34	6	0	1.22/331	3.767703	-1.849156
35	6	0	5.395295	2.285786	-4.192862
30 27	6	0	3.002139	-3.2/0635	-3.209333
3/ 20	0	0	0.3808/0	1./020/0	2.094328 1 196000
38 20	0	0	0./38090	0./03034	4.180888
59 40	8 6	0	0./13820	-1.024/0/ _2.118408	4.337009 1 060650
40	6	0	2.492/30 8 350162	-2.110400	4.009030
41 ⊿2	6	0	6 71650/	5.279057 1/1/270	-0 725894
42	Q Q	0	6 65/10394	4 053581	-0.723094
44	6	0	5 41585/	3 444694	-3 391469
44	6	0	8 966887	3 041886	2.058926
46	6	0	7 280938	1 883392	3 560178
47	1	0	5 946139	0 874042	4 916523
48	6	0	3 117689	-3 248753	3 185627
49	6	õ	7 265654	4 146463	0 526273
50	1	õ	5.925105	5.146486	-0.829684
51	6	õ	3 016217	2 205726	-4 017800
52	1	õ	8.657276	3.882741	2.687863
53	8	Ő	6.744263	3.159054	3.861123
54	6	Ő	3.110552	-2.058309	3.947730
55	8	õ	6.733944	4.817193	1.656630
56	6	õ	3.034708	3.374991	-3.223778
57	6	Õ	5.510243	3.491279	3.273843
58	6	0	5 504005	4 345687	2 153061

59	6	0	3.124442	3.413813	3.230467
60	6	0	3.116153	4.279010	2.112507
61	6	0	4.290395	-1.491558	4.419965
62	6	0	4.309699	-3.892245	2.864990
63	6	0	4.286397	-4.617230	-1.637332
64	6	0	4.234666	-2.874935	-3.905358
65	6	0	4.315081	3.029082	3.839787
66	6	0	4.301630	4.770430	1.571419
67	6	0	4.188687	1.659989	-4.531262
68	6	0	4.229743	4.019014	-2.915116
69	1	0	4.291586	-0.619346	5.061235
70	1	0	4.333914	-4.829584	2.323007
71	1	0	4.332373	2.420984	4.735367
72	1	0	4.321168	-5.319165	-0.813364
73	1	0	4.312665	5.475499	0.749603
74	1	0	4.226298	-2.263631	-4.798934
75	1	0	4.182288	0.801703	-5.191038
76	1	0	4.258788	4.943272	-2.351794
77	6	0	0.960805	-2.639118	3.531352
78	6	0	0.920567	-3.673957	-2.645181
79	6	0	0.873745	2.752838	-3.520777
80	6	0	0.964213	3.817790	2.668736
81	7	0	1.769157	4.504094	1.785579
82	7	0	1.784455	3.139262	3.543349
83	7	0	1.697702	3.681666	-2.924906
84	7	0	1.671095	1.838555	-4.171575
85	7	0	1.714421	-2.999128	-3.545654
86	7	0	1.749528	-4.350406	-1.778366
87	7	0	1.776364	-3.578076	2.939021
88	7	0	1.767918	-1.701540	4.134257
89	1	0	1.392160	-4.699565	-0.876646
90	1	0	1.400292	-0.778508	4.417718
91	1	0	1.387705	4.849284	0.892831
92	1	0	1.304459	0.915137	-4.453864
93	1	0	9.772085	0.399333	1.818734
94	1	0	9.706952	-1.799612	0.194387
95	1	0	9.719079	-0.205123	-2.007147
96	1	0	9.712604	1.998461	-0.389942
97	6	0	10.510562	3.029269	2.023804
98	6	0	11.117114	2.968770	3.434010
99	1	0	10.843397	3.941316	1.513481
100	1	0	10.888002	2.188513	1.427637
101	1	0	12.210278	3.009194	3.394644
102	1	0	10.766572	3.811225	4.040713
103	1	0	10.829774	2.045246	3.949053
104	6	0	10.430563	2.235059	-3.028689
105	6	0	10.998627	1.735932	-4.366184
106	1	0	10.831920	1.622758	-2.210847
107	1	0	10.769391	3.260866	-2.839065
108	1	0	12.091285	1.801146	-4.377462
109	1	0	10.718599	0.693083	-4.551354
110	1	0	10.613171	2.337699	-5.196914
111	6	0	10.467089	-2.822924	-2.236425
112	6	0	11.068665	-4.155059	-1.763132
113	1	0	10.850403	-2.007895	-1.609071
114	1	0	10.798250	-2.605476	-3.259574
115	1	0	12.161131	-4.139024	-1.830107
116	1	0	10.794921	-4.364841	-0.723211
117	1	0	10.701853	-4.984025	-2.378787
118	6	0	10.500750	-2.052977	2.805921
119	6	0	11.104389	-1.572233	4.134341
120	1	0	10.880710	-1.430517	1.985543
121	1	0	10.833608	-3.076624	2.593935
122	1	0	12.197655	-1.621478	4.110897

123	1	0	10 815587	-0 537147	4 348519
123	1	0	10.752008	2 10/201	4.064754
124	1	0	1 226222	-2.194801	4.904/34
125	1	0	1.330223	-2.200232	-4.087080
120	1	0	1 242280	4 207260	2.208337
12/	1	0	1.342369	4.29/300	-2.1/8555
120	1	0	1.425555	2.545070	4.069912
129	8	0	-0.311333	3.822035	2.085990
130	8	0	-0.402501	2./5248/	-3.493233
131	8	0	-0.315807	-2.651397	3.544608
132	8	0	-0.355946	-3.683535	-2.631699
133	6	0	-8.8410/9	-3.5/4394	0.644530
134	6	0	-8.262/18	-3.1291/0	-0.6969/5
135	6	0	-8.231945	-2.761097	1.782249
136	I	0	-8.523/4/	-4.611/08	0./93048
137	6	0	-8.791621	-2.058296	-1.437563
138	6	0	-7.164369	-3.806831	-1.24/4/4
139	6	0	-8.745437	-1.515613	2.182867
140	6	0	-7.118036	-3.250878	2.482780
141	6	0	-8.26/169	-1.652351	-2.67/201
142	6	0	-6.635174	-3.458070	-2.487369
143	8	0	-6.608403	-4.915339	-0.565122
144	6	0	-8.191583	-0.761782	3.231549
145	6	0	-6.552466	-2.545212	3.541998
146	8	0	-6.578681	-4.518589	2.152930
147	6	0	-8.858058	-0.500051	-3.484248
148	6	0	-7.170416	-2.373266	-3.176325
149	1	0	-5.841980	-4.047788	-2.928955
150	6	0	-5.368155	-4.716850	0.067401
151	6	0	-8.772517	0.573425	3.690152
152	6	0	-7.074559	-1.300900	3.887574
153	1	0	-5.744474	-2.978236	4.117835
154	6	0	-5.352509	-4.523093	1.463001
155	1	0	-8.537662	-0.647110	-4.520909
156	6	0	-8.271583	0.836971	-3.035094
157	8	0	-6.617221	-2.039209	-4.437314
158	6	0	-8.204026	1.728721	2.871726
159	1	0	-8.432501	0.722493	4.720163
160	8	0	-6.495962	-0.602219	4.974082
161	6	0	-8.806292	1.588530	-1.974677
162	6	0	-7.165632	1.378654	-3.708577
163	6	0	-5.382188	-1.364470	-4.410955
164	6	0	-2.982864	-4.627893	0.025585
165	6	0	-8.753461	2.128354	1.641397
166	6	0	-7.107179	2.461761	3.351811
167	6	0	-5.277238	0.056746	4.731636
168	6	0	-2.966840	-4.441607	1.426903
169	6	0	-8.283237	2.831416	-1.578720
170	6	0	-6.636968	2.621821	-3.368822
171	8	0	-6.604465	0.683879	-4.806366
172	6	0	-5.377473	0.033084	-4.584307
173	6	0	-8.253770	3.210619	0.896522
174	6	0	-6.597639	3.555990	2.656502
175	8	0	-6.527567	2.127135	4.600892
176	6	0	-5.292348	1.454213	4.553004
177	6	0	-8.868447	3.647811	-0.429695
178	6	0	-7.182231	3.323502	-2.296681
179	1	0	-5.842514	3.057324	-3.961199
180	6	0	-3.000989	-1.356285	-4.247304
181	6	0	-7.156049	3.904940	1.429116
182	1	0	-5.802968	4.153359	3.085380
183	6	0	-2.900021	0.054236	4.520404
184	1	0	-8.559728	4.685315	-0.593453
185	8	0	-6.648397	4.595045	-1.975268
186	6	0	-2.998301	0.048046	-4.410071

187	8	0	-6 631111	5 028334	0 742793
188	6	0	2 01/038	1 457285	4 340150
100	0	0	-2.914038	1.437263	4.349130
189	0	0	-3.410012	4.022488	-1.508150
190	6	0	-5.401329	4.850327	0.08246/
191	6	0	-3.024174	4.553217	-1.314579
192	6	0	-3.013567	4.787348	0.079645
193	6	0	-4.179318	0.757951	-4.603647
194	6	0	-4.188327	-2.082958	-4.263680
195	6	0	-4.178543	-4.787520	-0.669647
196	6	0	-4 146209	-4 404404	2 165911
197	6	Õ	-4 216946	4 490524	-2 029612
108	6	0	1.210710	1.150321	0.702347
198	0	0	-4.19//04	4.936339	4 722(07
199	0	0	-4.0/4518	-0.001184	4./3309/
200	6	0	-4.104932	2.177290	4.3/9808
201	I	0	-4.184190	1.823538	-4./94899
202	1	0	-4.204339	-3.163536	-4.195773
203	1	0	-4.237352	4.375709	-3.106054
204	1	0	-4.202931	-4.996267	-1.731784
205	1	0	-4.206436	5.194396	1.849137
206	1	0	-4 147601	-4 321723	3 245583
207	1	Ő	-4 071669	-1 726828	4 924437
207	1	0	1.071009	3 257078	4 303110
208	I (0	-4.120479	0.(40204	4.303119
209	0	0	-0.846457	-0.649204	-4.2/4913
210	6	0	-0.819852	-4.536882	0.700503
211	6	0	-0.755858	0.761758	4.323468
212	6	0	-0.862339	4.658242	-0.633658
213	7	0	-1.666212	4.840007	0.470950
214	7	0	-1.684386	4.470192	-1.723318
215	7	0	-1.576780	1.862205	4.217501
216	7	0	-1.556145	-0.346408	4.485869
217	7	0	-1 619162	-4 380851	1 812545
218	7	Ő	-1 644707	-4 673476	-0 393074
210	7	0	1.650057	1.754086	1 156488
219	7	0	-1.039037	-1./54980	4 407520
220	1	0	-1.030//9	0.455205	-4.40/320
221	1	0	-1.2/8054	-4.530833	-1.34/0/0
222	I	0	-1.290/65	1.410410	-4.262040
223	1	0	-1.283065	4.717901	1.419523
224	1	0	-1.190682	-1.300655	4.331489
225	1	0	-9.671497	1.197020	-1.445338
226	1	0	-9.647774	-1.522735	-1.035365
227	1	0	-9.614827	-1.120860	1.663825
228	1	0	-9.605637	1.579296	1.250496
229	6	Õ	-10 411655	3 617822	-0 399288
230	ő	Ő	-11 023325	4 219482	-1 673653
230	1	0	10.742501	1.219102	0.478107
231	1	0	10.742391	2 505514	0.4/810/
232	1	0	-10./00010	2.393314	-0.2017/4
233	1	0	-12.11632/	4.235423	-1.616346
234	l	0	-10.6/4/16	5.24/935	-1.820025
235	1	0	-10.738131	3.641792	-2.560027
236	6	0	-10.317036	0.574171	3.703891
237	6	0	-10.885992	-0.478912	4.667196
238	1	0	-10.722879	0.405333	2.698048
239	1	0	-10.650265	1.574621	4.005792
240	1	0	-11.978352	-0.422353	4.710178
241	1	Ő	-10 610395	-1 492070	4 354528
242	1	Ő	-10 497147	-0 324533	5 679994
242	6	0	10 28/612	2 548755	0.665540
245	0	0	-10.384012	-5.546255	0.003349
244	6	0	-10.990943	-4.501934	-0.3/5319
245	l	0	-10.766993	-2.533520	0.495461
246	1	0	-10.713114	-3.835689	1.672091
247	1	0	-12.083443	-4.514390	-0.307871
248	1	0	-10.716673	-4.202637	-1.392911
249	1	0	-10.628565	-5.524126	-0.218741
250	6	0	-10.402184	-0.507194	-3.466409

251	6	0	-10.993410	0.533346	-4.429682
252	1	0	-10.788422	-0.328727	-2.454552
253	1	0	-10.738306	-1.512096	-3.750635
254	1	0	-12.086940	0.485339	-4.438622
255	1	0	-10.700397	1.549399	-4.142551
256	1	0	-10.636296	0.359653	-5.450926
257	1	0	-1.238377	-3.953822	2.669827
258	1	0	-1.290063	-2.643181	-3.784471
259	1	0	-1.221265	2.752905	3.837693
260	1	0	-1.320235	4.031393	-2.581991
261	8	0	0.413034	4.676834	-0.648823
262	8	0	0.521047	0.772326	4.300027
263	8	0	0.430670	-0.651818	-4.294233
264	8	0	0.456164	-4.563143	0.689278
265	6	0	4.264102	-1.398656	0.226793
266	6	0	3.024799	-0.836593	-0.488949
267	1	0	5.191573	-1.150945	-0.305173
268	1	0	4.342709	-1.002540	1.249768
269	1	0	4.203006	-2.492898	0.299534
270	6	0	1.712073	-1.178838	0.236810
271	1	0	3.111898	0.254970	-0.585099
272	1	0	2.980703	-1.233062	-1.514753
273	1	0	1.668344	-2.263671	0.427303
274	1	0	1.700438	-0.684597	1.223634
275	6	0	0.464697	-0.763644	-0.562678
276	6	0	-0.843933	-0.923886	0.227142
277	1	0	0.406378	-1.362234	-1.485729
278	1	0	0.565063	0.284405	-0.887224
279	6	0	-2.097213	-0.747099	-0.647850
280	1	0	-0.866375	-1.915210	0.707245
281	1	0	-0.862158	-0.190821	1.049418
282	1	0	-1.988727	0.164945	-1.259620
283	1	0	-2.165179	-1.591719	-1.353972
284	6	0	-3.393176	-0.650560	0.173144
285	6	0	-4.653235	-0.461968	-0.688406
286	1	0	-3.310954	0.192994	0.876803
287	1	0	-3.509701	-1.557875	0.789550
288	6	0	-5.912888	-0.257628	0.169988
289	1	0	-4.512992	0.402303	-1.356823
290	1	0	-4.785419	-1.342214	-1.337497
291	1	0	-6.810803	-0.124258	-0.447575
292	1	0	-6.080381	-1.126464	0.823211
293	1	0	-5.810890	0.628835	0.813044

 Table S3-2 Capsule+C9H20 (Figure 4B)

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	8.364964	3.223322	-1.771107	
2	6	0	7.777011	2.016796	-2.499395	
3	6	0	7.772334	3.331393	-0.368536	
4	1	0	8.039276	4.111929	-2.320682	
5	6	0	8.324397	0.726375	-2.401875	
6	6	0	6.644407	2.176353	-3.310926	
7	6	0	8.304456	2.642653	0.732669	
8	6	0	6.656349	4.151889	-0.134071	
9	6	0	7.788002	-0.380454	-3.079022	
10	6	0	6.084499	1.107431	-4.009756	
11	8	0	6.118222	3.476186	-3.494177	
12	6	0	7.783511	2.758541	2.032337	
13	6	0	6.112557	4.302258	1.139669	

14	8	0	6.129790	4.916992	-1.202801
15	6	0	8.383909	-1.783660	-2.992515
16	6	0	6.647401	-0.158749	-3.867830
17	1	0	5.255258	1.268740	-4.686488
18	6	0	4.867619	3.791738	-2.951355
19	6	0	8.388797	2.013278	3.220868
20	6	0	6.671926	3.597333	2.205601
21	1	0	5.294558	4.991879	1.308877
22	6	0	4.873498	4.577920	-1.720080
23	1	0	8.075137	-2.317228	-3.896932
24	6	0	7.784683	-2.539215	-1.809917
25	8	0	6.115045	-1.244162	-4.600804
26	6	0	7.806767	0.603999	3.300079
27	1	0	8.063917	2.541843	4.122401
28	8	0	6.152695	3.803541	3.507796
29	6	0	8.300056	-2.415731	-0.510877
30	6	0	6.694667	-3.403728	-1.986956
31	6	0	4.873286	-1.775556	-4.237420
32	6	0	2.457351	3.866199	-2.992194
33	6	0	8.364375	-0.498860	2.630042
34	6	0	6.656789	0.375847	4.071793
35	6	0	4.893581	3.266535	3.809141
36	6	0	2.461534	4.667581	-1.756395
37	6	0	7.792856	-3.126531	0.588660
38	6	0	6.157022	-4.127996	-0.924958
39	8	0	6.166974	-3.604426	-3.286369
40	6	0	4.901061	-3.064666	-3.552425
41	6	0	7.810668	-1.788167	2.701792
42	6	0	6.086288	-0.890308	4.186405
43	8	0	6.132041	1.447068	4.831156
44	6	0	4.882291	1.983201	4.506372
45	6	0	8.405622	-2.996417	1.982079
46	6	0	6.701580	-3.977320	0.349345
47	1	0	5.351404	-4.832188	-1.094090
48	6	0	2.463287	-1.818359	-4.217655
49	6	0	6.655083	-1.949416	3.482068
50	1	0	5.247876	-1.057320	4.850044
51	6	0	2.481216	3.334116	3.874662
52	1	0	8.102124	-3.884463	2.546407
53	8	0	6.181100	-4.767919	1.403379
54	6	0	2.488621	-3.128439	-3.545886
55	8	0	6.126622	-3.250829	3.631102
56	6	0	2.471612	2.032416	4.565006
57	6	0	4.913312	-4.424193	1.894284
58	6	0	4.884718	-3.570664	3.078017
59	6	0	2.501999	-4.526060	1.892569
60	6	0	2.476264	-3.644604	3.071775
61	6	0	3.757254	-3.737496	-3.235908
62	6	0	3.698490	-1.171082	-4.574824
63	6	0	3.705837	3.458117	-3.582393
64	6	0	3.718207	5.023928	-1.147538
65	6	0	3.771117	-4.909446	1.327111
66	6	0	3.710110	-3.195874	3.660703
67	6	0	3.741577	3.939381	3.523791
68	6	0	3.717375	1.389638	4.894295
69	1	0	3.781859	-4.720040	-2.781330
70	1	0	3.667686	-0.243908	-5.132667
71	1	0	3.799176	-5.590324	0.485396
72	1	0	3.699324	2.930016	-4.527485
73	1	0	3.679256	-2.616462	4.574569
74	1	0	3.725691	5.657369	-0.269435
75	1	0	3.754399	4.918514	3.061557
76	1	0	3.704719	0.470488	5.466046
77	7	0	1.267054	-3.338075	3.528543

70	7	0	1 200010	1 00 15 (2	1 427005
/8	/	0	1.309810	-4.904563	1.43/095
79	7	0	1.268549	1.52/950	4.821307
80	7	0	1.283105	3.842796	3.598117
81	7	0	1.261783	4.989655	-1.280417
82	7	0	1.256221	3.564569	-3.474548
83	7	0	1.254922	-1.321212	-4.454064
84	7	0	1.297077	-3.651942	-3.270325
85	1	0	9.141130	-1.745821	-0.351682
86	1	0	9.206420	0.585560	-1.783141
87	1	0	9.166225	1.998603	0.577752
88	1	0	9.265202	-0.352270	2.041155
89	6	0	9.947002	-2.961771	1.936397
90	6	0	10.530522	-4.277689	1.395855
91	1	0	10.328840	-2.780012	2.947017
92	1	0	10.311852	-2.129358	1.318068
93	1	0	10.405551	-5.071925	2.140743
94	1	0	9.978435	-4.591977	0.497398
95	6	0	9.931205	2.015157	3.204741
96	6	0	10.502371	3.444088	3.244843
97	1	0	10.325268	1.496179	2.320154
98	1	Õ	10.279144	1.446435	4.077301
99	1	Õ	10 214080	3 992852	2 340888
100	1	Ő	10.084970	3 990859	4 098689
101	6	Ő	9 907886	3 222850	-1 752480
102	ő	Ő	10 498565	3 251436	-3 173753
102	1	0 0	10 303145	2 348953	-1 215995
103	1	0	10.238953	4 106625	-1 100500
104	1	0	10.230933	2 3/2200	-3 718677
105	1	0	10.219971	1 000301	-3.718077
100	1	0	0.027547	4.099391	-3.733232
107	0	0	9.92/34/	-1./05191	-2.930492
100	0	0	10.322744	-3.180908	-2.003019
109	1	0	10.299741	-1.162327	-2.101203
110	1	0	10.260739	-1.24/144	-3.839303
111	1	0	10.230101	-3.030079	-1.938270
112		0	10.118201	-3.8058/4	-3.088/23
113	0	0	12.042188	-3.130300	-2.980407
114	1	0	12.395479	-2.889393	-3.981213
115	l	0	12.485495	-2.458897	-2.248384
116	6	0	11.994411	-4.16/488	0.995961
117	1	0	12.420198	-5.116/11	0.676432
118	l	0	12.15/3/0	-3.410319	0.226017
119	6	0	12.016668	3.365014	-3.122178
120	l	0	12.349399	4.318483	-2.712044
121	1	0	12.475187	2.539659	-2.575729
122	6	0	12.021294	3.411018	3.353558
123	1	0	12.361887	2.996020	4.302136
124	1	0	12.484438	2.878258	2.521986
125	17	0	12.710191	5.142777	3.284277
126	17	0	12.727234	3.280233	-4.844192
127	17	0	12.754469	-4.819469	-2.595451
128	17	0	13.034433	-3.618563	2.454132
129	34	0	-0.051290	2.693689	4.211918
130	34	0	-0.067262	4.309385	-2.397284
131	34	0	-0.035785	-4.181191	2.505245
132	34	0	-0.052248	-2.510840	-3.867549
133	6	0	-8.375652	-3.562617	-0.724549
134	6	0	-7.780487	-2.645729	-1.790693
135	6	0	-7.772732	-3.221516	0.635087
136	1	0	-8.054716	-4.580376	-0.967467
137	6	0	-8.316355	-1.381366	-2.088941
138	6	0	-6.646749	-3.050460	-2.510154
139	6	0	-8.301385	-2.226623	1.473788
140	6	0	-6.637226	-3.911695	1.090920
141	6	0	-7.768650	-0.533562	-3.064224

142	6	0	-6.072020	-2.242479	-3.490662
143	8	0	-6.137930	-4.354372	-2.307376
144	6	0	-7.750095	-1.913089	2.727836
145	6	0	-6.067040	-3.642543	2.332713
146	8	0	-6.129309	-4.980995	0.316340
147	6	0	-8.348592	0.836890	-3.403933
148	6	0	-6.626910	-0.990295	-3.742660
149	1	0	-5.240347	-2.605507	-4.080855
150	6	0	-4.881350	-4.513801	-1.713050
151	6	0	-8.336628	-0.839833	3.643492
152	6	0	-6.619602	-2.640768	3.129821
153	1	0	-5.235315	-4.234671	2.693424
154	6	0	-4.876578	-4.855258	-0.294403
155	1	0	-8.033537	1.071837	-4.425502
156	6	0	-7.740864	1.906833	-2.500182
157	8	0	-6.088974	-0.185427	-4.772083
158	6	0	-7.758169	0.531484	3.299629
159	1	0	-8.000759	-1.076937	4.657917
160	8	0	-6.077631	-2.412770	4.418060
161	6	0	-8.265839	2.194431	-1.230795
162	6	0	-6.642741	2.667972	-2.926624
163	6	0	-4.841381	0.418795	-4.587337
164	6	0	-2.475312	-4.671453	-1.767660
165	6	0	-8.313311	1.371608	2.319799
166	6	0	-6.631012	1.007970	3.987129
167	6	0	-4.825841	-1.792101	4.503025
168	6	0	-2.470993	-5.027998	-0.339473
169	6	0	-7.760668	3.210668	-0.405945
170	6	0	-6.100164	3.679856	-2.134871
171	8	0	-6.116681	2.460678	-4.225722
172	6	0	-4.857008	1.853886	-4.319258
173	6	0	-7.787025	2.638692	2.017976
174	6	0	-6.088677	2.266801	3.733243
175	8	0	-6.082325	0.219528	5.026594
176	6	0	-4.828951	-0.366847	4.820865
177	6	0	-8.384360	3.544260	0.947065
178	6	0	-6.654434	3.932351	-0.881598
179	1	0	-5.291094	4.294242	-2.510317
180	6	0	-2.430937	0.441037	-4.581476
181	6	0	-6.658885	3.059197	2.739684
182	1	0	-5.266173	2.641257	4.329282
183	6	0	-2.415810	-1.782250	4.448119
184	1	0	-8.086406	4.569051	1.191553
185	8	0	-6.150838	5.006938	-0.110558
186	6	0	-2.445931	1.891795	-4.328553
187	8	0	-6.153345	4.362294	2.517138
188	6	0	-2.419739	-0.342143	4.758708
189	6	0	-4.897888	4.872049	0.500179
190	6	0	-4.898725	4.524544	1.919420
191	6	0	-2.489388	5.027577	0.530947
192	6	0	-2.489553	4.685902	1.963961
193	6	0	-3.706805	2.578625	-4.215849
194	6	0	-3.673457	-0.270643	-4.730448
195	6	0	-3.727547	-4.436289	-2.437816
196	6	0	-3.717840	-5.123839	0.374588
197	6	0	-3.741314	5.133197	-0.174391
198	6	0	-3.741583	4.453325	2.639258
199	6	0	-3.665411	-2.491800	4.350793
200	6	0	-3.671281	0.337725	4.968127
201	1	0	-3.719653	3.652062	-4.074924
202	1	0	-3.653960	-1.322070	-4.986958
203	1	0	-3.744986	5.447494	-1.210553
204	1	0	-3.733554	-4.244655	-3.503457
205	1	0	-3.743702	4.261378	3.704856

• • •		0		- 100-100	1 11 0 0 0 0
206	1	0	-3.716619	-5.439769	1.410279
207	1	0	-3.659715	-3.559909	4.174458
208	1	0	-3.667325	1.380926	5.256791
209	7	0	-1.288987	4.603204	2.531559
210	7	0	-1.289216	5.204903	-0.014974
211	7	0	-1.225664	0.236953	4.776939
212	7	Ő	-1 218359	-2 320659	4 248039
212	7	Ő	-1 268021	-5 233515	0 194772
213	7	0	-1.208021	4 500221	0.194772
214	7	0	-1.2/390/	-4.390221	-2.542855
215	/	0	-1.226158	-0.113126	-4.652026
216	7	0	-1.252341	2.462125	-4.202444
217	1	0	-9.118491	1.617349	-0.882379
218	1	0	-9.196143	-1.052364	-1.542673
219	1	0	-9.179748	-1.678409	1.142747
220	1	0	-9.191507	1.032462	1.777574
221	6	0	-9.925270	3.491012	0.911557
2.2.2	6	0	-10 509066	4 564965	-0.020975
223	1	Ő	-10 308977	3 641212	1 926601
223	1	0	10 287333	2 503783	0.501102
224	1	0	-10.267555	2.303783	0.391102
225	1	0	-10.300083	5.550849	0.423297
226	I	0	-9.9691/1	4.563589	-0.9/9883
227	6	0	-9.879555	-0.836030	3.649183
228	6	0	-10.453277	-2.177616	4.139714
229	1	0	-10.284931	-0.612705	2.652667
230	1	0	-10.212996	-0.022783	4.307346
231	1	0	-10.174781	-2.984521	3.452241
232	1	0	-10.028856	-2.429502	5 118772
233	6	Ő	-9.917619	-3 547752	-0 704998
232	6	Ő	-10 509285	-4.027705	-2 042631
225	0	0	10.208044	-4.027705	-2.042031
233	1	0	-10.308044	-2.340170	-0.4/0821
230	1	0	-10.252095	-4.203708	0.110023
237	l	0	-10.224329	-3.344113	-2.850623
238	1	0	-10.102581	-5.013275	-2.297933
239	6	0	-9.892248	0.843632	-3.369583
240	6	0	-10.473274	2.222585	-3.730298
241	1	0	-10.271203	0.551129	-2.380552
242	1	0	-10.249705	0.082675	-4.076207
243	1	0	-10.180921	2.958515	-2.972194
244	1	Õ	-10.063726	2 571020	-4 685804
245	6	Ő	-11 993154	2 164595	-3 811218
246	1	Ő	-12 3/0000	1 633010	-4 693005
240	1	0	12.347770	1.033010	2 010856
247	1	0	-12.441237	1.740333	-2.910830
248	6	0	-11.980358	4.348652	-0.343203
249	l	0	-12.404000	5.14/441	-0.948877
250	1	0	-12.162548	3.384082	-0.821691
251	6	0	-12.027947	-4.110396	-1.960875
252	1	0	-12.365729	-4.869607	-1.255467
253	1	0	-12.483512	-3.147710	-1.724806
254	6	0	-11.970903	-2.105049	4.246909
255	1	0	-12.300527	-1.400282	5.010269
256	1	0	-12 443582	-1 873140	3 291 593
257	17	Ő	-12 659904	-3 761049	4 757983
258	17	Ő	-12 73/735	-4 606644	-3 613601
250	17	0	12 601297	2 201744	2 047400
239	17	0	-12.091287	5.691/44	-3.94/490
260	1/	0	-12.998929	4.318854	1.228850
261	34	0	0.109217	-1.029449	4.483105
262	34	0	0.043383	-5.001141	-1.100530
263	34	0	0.034373	4.978460	1.276059
264	34	0	0.090445	1.188251	-4.430605
265	6	0	4.882311	-0.731901	-0.468070
266	6	0	3.588970	-1.459761	-0.069018
267	1	0	5.774848	-1.265581	-0.118398
268	1	Õ	4.952788	-0.631662	-1.560982
269	1	õ	4 910017	0 279642	-0.041562
207	1	U	T.71001/	0.277072	-0.0-1302

270	6	0	2.325170	-0.697122	-0.499475
271	1	0	3.575150	-2.468789	-0.512701
272	1	0	3.567270	-1.600792	1.023909
273	1	0	2.362921	0.324122	-0.090743
274	1	0	2.314528	-0.592088	-1.597460
275	6	0	1.030526	-1.384507	-0.039181
276	6	0	-0.233672	-0.588210	-0.399636
277	1	0	1.067992	-1.533520	1.053578
278	1	0	0.977073	-2.387863	-0.490174
279	6	0	-1.539564	-1.306217	-0.020165
280	1	0	-0.199793	0.388977	0.106068
281	1	0	-0.236591	-0.379334	-1.482117
282	1	0	-1.612213	-2.255025	-0.579389
283	1	0	-1.512712	-1.575365	1.048812
284	6	0	-2.785504	-0.447519	-0.298373
285	6	0	-4.105227	-1.127833	0.103195
286	1	0	-2.821337	-0.191847	-1.369903
287	1	0	-2.693087	0.504501	0.246854
288	6	0	-5.324780	-0.210432	-0.093362
289	1	0	-4.237485	-2.044353	-0.493468
290	1	0	-4.046073	-1.447204	1.155644
291	1	0	-6.259848	-0.714711	0.183645
292	1	0	-5.238847	0.697233	0.520585
293	1	0	-5.412211	0.103133	-1.144277

Table S3-3 Capsule+C9H20 (Figure 4C)

	· · · · ·				
Center	Atomic	Atomic	Coor	dinates (Angst	roms)
Number	Number	Type	Х	Ŷ	Z
		J F -			
1	6	0	-8.276667	-0.783999	-3.236973
2	6	0	-8.863943	0.578369	-3.587085
3	6	0	-9.054976	1.348825	2.080713
4	6	0	-8.504901	2.579122	1.683883
5	6	0	-9.138583	3.457216	0.612880
6	6	0	-8.526779	3.197766	-0.756363
7	6	0	-8.956809	2.102255	-1.529234
8	6	0	-8.364619	1.752168	-2.752732
9	6	0	-8.841559	-1.601193	-2.245727
10	6	0	-8.965664	-3.673633	-0.788083
11	6	0	-8.392999	-3.287937	0.570798
12	6	0	-8.955547	-2.299450	1.391466
13	6	0	-8.409854	-1.953419	2.643937
14	6	0	-8.446528	0.538967	3.056018
15	6	0	-9.009160	-0.817512	3.463938
16	6	0	-7.311607	2.568635	-3.194412
17	6	0	-7.500670	3.993243	-1.290352
18	6	0	-6.887212	3.699455	-2.508298
19	6	0	-7.271169	-3.356873	-2.699743
20	6	0	-7.173912	-1.310464	-3.928191
21	6	0	-6.676175	-2.588971	-3.701817
22	6	0	-7.313744	2.984018	2.307733
23	6	0	-7.269742	1.023756	3.646290
24	6	0	-6.682942	2.240386	3.301195
25	6	0	-7.290831	-2.682788	3.077518
26	6	0	-7.244833	-3.933347	1.053217
27	6	0	-6.692286	-3.675954	2.300982
28	1	0	-5.775942	2.588456	3.782881
29	1	0	-9.984867	1.015322	1.624575
30	1	0	-9.003756	4.508261	0.878422
31	1	0	-10.211664	3.245440	0.568394
32	1	0	-9.777602	1.494573	-1.152753

			< 		
33	1	0	-6.084957	4.321110	-2.891497
34	1	0	-5.838938	-2.973462	-4.274695
35	1	0	-9.702038	-1.230066	-1.692295
36	1	0	-9.846980	-1.776078	1.051092
37	1	0	-5 823323	-4 217041	2,659440
38	1	Õ	-10 094003	-0.810223	3 317091
30	1	Ő	8 80/878	0.010223	4 523304
10	1	0	-0.004070	-0.989037	4.525504
40	1	0	-10.044/9/	-3.489506	-0.779942
41	1	0	-8.800148	-4./40393	-0.956311
42	1	0	-8.657080	0.786383	-4.640032
43	1	0	-9.950368	0.516489	-3.463360
44	8	0	-6.518651	-0.480593	-4.887492
45	8	0	-6.614885	2.190063	-4.381498
46	8	0	-6.675398	-4.915927	0.210568
47	8	0	-6 741395	-4 664479	-2.474998
48	8	Ő	-6 737918	-2 432051	4 365749
10	8	Ő	6 705252	0.236725	1.505715
50	0	0	-0.703232	5 129702	0.592246
50	0	0	-7.055479	5.158705	-0.383240
51	8	0	-0.816583	4.253172	1.939126
52	6	0	-5.435584	1.526987	-4.125891
53	6	0	-5.383509	0.127191	-4.398517
54	7	0	-4.302466	-0.612062	-4.124124
55	7	0	-4.412246	2.183733	-3.565180
56	6	0	-3.277386	0.066238	-3.588418
57	6	0	-3 331649	1 432063	-3 308833
58	6	Õ	-1 932437	-0 446689	-3 168673
50	6	Ő	-2 023966	1 830540	-2 685979
60	0	0	-2.023700	0.676707	2.003777
60	/	0	-1.232772	0.070707	-2.729079
01	8	0	-1.524972	-1.011109	-3.160820
62	l	0	-0.220485	0.709874	-2.522979
63	8	0	-1.690106	2.910948	-2.191853
64	6	0	-5.503641	-4.658037	-1.848350
65	6	0	-5.489870	-4.645662	-0.421193
66	6	0	-8.345757	-2.880399	-1.929763
67	7	0	-4.380472	-4.402401	0.279057
68	7	0	-4.382944	-4.598828	-2.571325
69	6	0	-5 499567	-0 380665	4 451857
70	6	Ő	-5 505119	-1.802605	1 355960
70	6	0	5 757492	-1.802005	4.353700
71	0	0	-3.737463	4.963046	-0.039084
72	0	0	-5.0408/0	4.402435	1.240145
/3	/	0	-4.384265	-2.51/686	4.220/81
74	7	0	-4.383118	0.339937	4.339382
75	7	0	-4.691490	5.335821	-0.779726
76	7	0	-4.471092	4.076992	1.779126
77	6	0	-3.253355	-4.447228	-1.850925
78	6	0	-3.402960	4.409142	1.028426
79	6	0	-3.267627	-4.281993	-0.464418
80	6	Õ	-3 266952	-0 389036	4 175485
81	6	Õ	-3 255689	-1 784387	4 147155
82	6	Ő	3 504871	5.063024	0.108740
02	0	0	-3.30+071	5 272461	-0.198749
03	0	0	-2.1155/4	3.3/2401	-0.092575
84	6	0	-1.94/084	4.215478	1.3511/5
85	6	0	-1.8189//	-4.389944	-2.314363
86	6	0	-1.868654	-4.000407	-0.001389
87	6	0	-1.866621	0.112696	3.983553
88	6	0	-1.819476	-2.233509	4.005835
89	7	0	-1.260322	4.840087	0.306066
90	7	0	-1.082937	-1.033394	3.894264
91	7	0	-1.081482	-4,114810	-1.136243
92	, 8	õ	-1 466011	3 635370	2 323207
93	8	ñ	_1 76/750	5 957/00	_1 7100/0
04	0	0	1 500502	1 286740	2 802064
94 05	0	0	-1.309302	1.200/49	3.003004
95	ð	U	-1.348806	-3.300402	4.009/35
96	8	0	-1.341048	-4.559236	-3.429190

97	8	0	-1.487890	-3.705849	1.138360
98	1	0	-0.051496	-4.047000	-1.122165
99	1	0	-0.059284	-1.042224	3.800811
100	1	0	-0.246903	4.988763	0.320604
101	1	0	10.147114	-2.599974	1.999848
102	6	0	9.072218	-2.786179	2.092080
103	6	0	8.409849	-1.547743	2.684609
104	6	0	8.515860	-3.137752	0.719736
105	1	0	8.925376	-3.630079	2.770224
106	6	0	8.915019	-0.251066	2.502615
107	6	0	7.240339	-1.671333	3.450003
108	6	0	9.013445	-2.497976	-0.432695
109	6	0	7.484677	-4.072561	0.537045
110	6	0	8.294803	0.884828	3.057250
111	1	0	9.823583	-0.117155	1.918925
112	6	0	6.608873	-0.592687	4.061008
113	8	0	6.736530	-2.980279	3.626788
114	6	0	8.479956	-2.710653	-1.713032
115	1	0	9.844088	-1.803387	-0.320638
116	6	0	6.918040	-4.322255	-0.712752
117	8	0	6.964424	-4.801547	1.649440
118	6	0	8.841846	2.282570	2.811118
119	6	0	7.157635	0.672445	3.852624
120	1	0	5.726693	-0.727819	4.677397
121	6	0	5.587476	-3.340465	2.968426
122	6	0	9.042925	-2.026294	-2.956182
123	6	0	7.403606	-3.608248	-1.801086
124	1	0	6.107422	-5.034469	-0.825436
125	6	0	5.689443	-4.398963	2.018389
126	1	0	9.928837	2.217792	2.696918
127	1	0	8.625753	2.910025	3.679272
128	6	0	8.268660	2.949941	1.566321
129	8	0	6.566447	1.785372	4.513776
130	7	0	4.432925	-2.728183	3.231703
131	6	0	8.417599	-0.665593	-3.225363
132	1	0	8.880961	-2.674878	-3.820651
133	1	0	10.121750	-1.898139	-2.820315
134	8	0	6.795870	-3.790605	-3.070461
135	7	0	4.6166/1	-4.950014	1.444/83
136	6	0	8.825744	2.762372	0.293312
137	6	0	7.156434	3.803472	1.646551
138	6	0	5.3438/2	2.199878	4.023924
139	6	0	3.368906	-3.251764	2.599839
140	6	0	8.941038	0.509189	-2.649/94
141	6	0	7.286928	-0.525321	-4.043585
142	6	0	5.594515	-3.153492	-3.274998
143	6	0	3.442468	-4.376089	1.77/166
144	6	0	8.317/01	3.385365	-0.863356
145	l	0	9.681631	2.098019	0.189274
146	6	0	6.660775	4.504880	0.554188
147	8	0	6.52/1/3	3.956344	2.905645
148	6	0	5.338485	3.285982	3.100390
149	1	0	4.224226	1.577883	4.403908
150	6	0	1.942599	-2.793756	2.664424
151	6	0	8.327253	1.761347	-2.806940
152	I	0	9.856515	0.440485	-2.065816
153	6	0	6.621997	0.689063	-4.212232
154	8	0	6./82408	-1.666361	-4./35012
155	6	0	5.569029	-2.10/3/0	-4.243159
156	1	0	4.508499	-5.503390	-2.580589
157	6	0	2.035937	-4./48962	1.3/25/3
158	6	0	8.900250	5.049325	-2.226927
159	6	0	1.254287	4.285/89	-0.689586
160	1	0	5.82/592	5.191297	0.664083

1/1	7	0	4 222110	2 ((0400	2 45(151
101	1	0	4.232118	3.008480	2.450151
162	6	0	3.103495	2.027695	3.810474
163	7	0	1.224984	-3.736000	1.945310
164	8	0	1.512001	-1.774602	3.216409
165	6	0	7 137605	1 794818	-3 551148
166	1	õ	5 733621	0 761424	-4 829566
167	1 7	0	1 4 4 0 1 2 9	1 407042	4 615205
107	1	0	4.440158	-1.49/942	-4.013203
168	6	0	3.388859	-2.84/938	-2.929374
169	8	0	1.630817	-5.710940	0.733091
170	1	0	8.701816	3.871275	-2.919225
171	1	0	9.984751	2.936108	-2.129635
172	8	0	6 703024	4 988816	-1 810269
172	6	Ő	2 116019	2 012671	2 822702
173	0	0	5.110016	5.0150/1	2.023/93
1/4	0	0	1.0/2323	1.01/993	4.048346
175	I	0	0.198951	-3.726957	1.845370
176	8	0	6.497144	3.048095	-3.670062
177	6	0	3.340684	-1.905070	-3.957975
178	6	0	2.013982	-2.988801	-2 353010
179	ő	õ	5 441399	4 505012	-2 124294
100	6	0	1 706094	2 211014	-2.12+2)+
100	0	0	1./00084	3.211914	2.551005
181	/	0	0.921358	2.421900	3.16288/
182	8	0	1.238558	0.776084	4.828420
183	6	0	5.373161	3.334374	-2.943179
184	6	0	1.912473	-1.458513	-4.126334
185	7	0	1 204885	-2 174697	-3 130229
186	8	Õ	1.661552	-3 668225	-1 3701/0
100	0	0	1.001002	5.051275	1 575250
10/	1	0	4.558050	3.031273	-1.3/3330
188	8	0	1.344/91	3.894524	1.365888
189	1	0	-0.105932	2.426021	3.156726
190	7	0	4.271810	2.584786	-3.018062
191	8	0	1.418154	-0.673257	-4.925826
192	1	0	0 178718	-2 127434	-3 060218
193	6	Õ	3 221029	4 351920	-1 759937
104	6	0	2 202145	2 102120	-1.757757
194	0	0	5.202145	5.105129	-2.382938
195	6	0	1.825015	4.683841	-1.313/03
196	6	0	1.823297	2.526762	-2.232637
197	7	0	1.067227	3.535529	-1.657292
198	8	0	1.385132	5.697665	-0.788627
199	8	0	1.429142	1.383646	-2.515490
200	1	Ő	0.047451	3 474562	-1 560586
200	6	0	4 702250	0.022002	0.206702
201	0	0	-4.792239	0.055882	0.800708
202	6	0	-3.446669	0.779216	0.776675
203	I	0	-5.627595	0.705304	1.042131
204	1	0	-5.002786	-0.445470	-0.159662
205	1	0	-4.774598	-0.765455	1.564114
206	6	0	-2.267214	-0.173101	0.510297
207	1	0	-3 470959	1 559151	-0.004454
208	1	Õ	-3 286647	1 309643	1 728455
200	1	0	-3.280047	0.002055	1.720433
209	1	0	-2.286030	-0.992055	1.249131
210	I	0	-2.398739	-0.663198	-0.4/1511
211	6	0	-0.894965	0.514615	0.572890
212	6	0	0.269409	-0.431645	0.241734
213	1	0	-0.749142	0.920963	1.583627
214	1	0	-0.872263	1 388174	-0 102238
215	6	Ő	1 633428	0 163213	0.625730
215	0	0	0.120171	1 200005	0.023730
210	1	0	0.129171	-1.380893	0.784085
217	l	0	0.264323	-0.690212	-0.8317/6
218	1	0	1.701875	1.201408	0.260200
219	1	0	1.692620	0.202814	1.723513
220	6	0	2.815753	-0.656429	0.092112
221	6	0	4.155770	-0.293412	0.752863
222	1	õ	2 890161	-0 516316	-1 000112
222	1	0	2.670101	_1 730062	0 252662
223		0	2.010300	-1.750005	0.232003
224	0	0	5.515115	-1.129062	0.182060

225	1	0	4.360993	0.779464	0.607713
226	1	0	4.075515	-0.456656	1.839689
227	1	0	6.254845	-0.959490	0.721177
228	1	0	5.071915	-2.202592	0.232714
229	1	0	5.487151	-0.887265	-0.877122

References

1. Rahman, F.-U.; Feng, H.-N.; Yu, Y., A new water-soluble cavitand with deeper guest binding properties. *Org. Chem. Front.* **2019**, *6* (7), 998-1001.

2. Mosca, S.; Yu, Y.; Rebek, J., Jr., Preparative scale and convenient synthesis of a watersoluble, deep cavitand. *Nat. Protoc.* **2016**, *11* (8), 1371-87.

3. (a) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215-241. (b) Zhao, Y.; Truhlar, D. G. Density Functionals with Broad Applicability in Chemistry. *Acc. Chem. Res.* **2008**, *41*, 157-167.

4. (a) Hay, P. J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. *J. Chem. Phys.* **1985**, *82*, 299-310. (b) Roy, L.E.; Hay, P.J.; Martin, R.L. Revised Basis Sets for the LANL Effective Core Potentials. *J. Chem. Theory Comput.* **2008**, *4*, 1029-1031.

5. (a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865-3868. (b) Enzerhof, M.; Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. *J. Chem. Phys.* **1999**, *110*, 5029-5036. (c) Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. *J. Chem. Phys.* **1999**, *110*, 6158-6170.

6. (a) Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. *Theoret. Chimica Acta* **1973**, *28*, 213-222. (b) Francl, M. M.; Petro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self-consistent molecular orbital methods. XXIII. A polarization type basis set for second-row elements. *J. Chem. Phys.* **1982**, *77*, 3654-3665. (c) Rassolov, V.; Pople, J. A.; Ratnerand, M.; Windus, T. L. 6-31G* basis set for atoms K through Zn. *J. Chem. Phys.* **1988**, *109*, 1223-1229.

7. London, F. The quantic theory of inter-atomic currents in aromatic combinations. *J. Phys. Radium*, **1937**, *8*, 397-409. (b) Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors. *J. Chem. Phys.* **1996**, *104*, 5497-509.

8. Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2016**.