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Cassie's statistical treatment of multimolecular adsorp­
tion on a free surface, leading to the BET equation, is 
criticized and corrected. The method is generalized to 
include adsorption when the maximum number of layers 
of adsorbate is restricted. The isotherm equation obtained 
is the same as that found by Brunauer, Emmett, and 
Teller for this case, rather than the equation proposed by 
Pickett. The BET equation, though not completely satis­
factory, is apparently the correct equation for the partic­
ular model used. Real improvements in the theory should 
follow from refinements in the model rather than from modi­
fications in the treatment of the BET modeI.' A more refined 

SEVERAL papers have appeared recently 
which direct attention to the foundations of 

the Brunauer-Emmett-Teller1 theory of multi­
molecular adsorption. Cassie2 has derived the 
BET equation for adsorption on a free surface 
(Eq. (15» using a statistical argument. Pickett3 

has proposed a modification of the BET equation 
for adsorption when the number of layers of 
adsorbate is restricted (Eq. (27». Actually, it 
appears to the present writer that Cassie has 
obtained the correct result by an incorrect argu­
ment and that Pickett's modification lacks theo­
retical justification,4 though it seems to extend 
the range of agreement with experiment in some 
cases. The work of Cassie and of Pickett will be 
discussed further below in the light of results 
obtained here. We consider only localized ad­
sorption in this paper. 

MULTIMOLECULAR ADSORPTION ON A 
FREE SURFACE 

We adopt the notation of Cassie as far as 
convenient and the BET model. That is, we 
suppose that there are B' localized sites per unit 
surface area of adsorbent, that X of these sites 
are occupied by adsorbed molecules (first layer 
of adsorbate), and that A -X molecules have 
been adsorbed on top of the X molecules in the 

1 S. Brunauer, P. H. Emmett, and E. Teller, J. Am. 
Chern. Soc. 60, 309 (1938). 

2 A. B. D. Cassie, Trans. Faraday Soc. 41, 450 (1945). 
3 G. Pickett, J. Am. Chern. Soc. 67, 1958 (1945). 
4 T. L. Hill, J. Am. Chern. Soc. (March, 1946). 

model is proposed and the general method of using it is 
discussed. The BET model is shown to be a crude special 
case of the model suggested here, but it has the advantage 
of presenting no mathematical difficulties. Preliminary 
results, based on improved models, indicate that a some­
what refined multimolecular adsorption theory is capable 
of predicting capillary condensation for suitable values of 
parameters, thus suggesting that the ideas of multi­
molecular adsorption and capillary condensation are not 
really in conflict, as is generally assumed. Further discus­
sion is deferred to a subsequent paper. 

first layer (thus forming second and higher 
layers). Also, molecules in the first adsorbed 
layer are characterized by a potential energy - El 
and those in the second and higher layers by - EL 

(assumed the same as in the liquid state), both 
referred to infinite separation as energy zero. 
The partition function for a molecule in the 
first layer is then jsexp (Et!kT) and that for a 
molecule in higher layers is h exp (EdkT). One 
can approximate j sand j L by harmonic oscillator 
models: 6 

js = (kT /hIlS)3j, 

jL=(kT/hIlL)3je, 

(1) 

(2) 

where j is the partition function for all internal 
degrees of freedom. This approximation is not 
essential to the argument. 

The separate partition functions for the X 
molecules in the first layer and the A - X in 
higher layers are then 

B! 
Qs= [js exp (El/kT)]X, (3) 

(B-X)!X! 

(A-1)! . 
QL [J exp (EL/kT)]A-X (4) 

(A-X)!(X-1)! L • 

The factor B!/ (B - X) !X! is the number of 
distinguishable ways X identical molecules may 
be distributed among B sites. The factor 

6 See Eqs. (802,7) and (803,4) of Fowler and Guggen­
heim, Statistical Thermodynamics (Cambridge University 
Press, London, 1939). 
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264 TERRELL L. HILL 

(A -1) !I(A -X) !(X -I)! is the number of dis­
tinguishable ways A - X identical molecules may 
be distributed on top of the X molecules of the 
first layer (that is, the number of ways A-X 
objects may be placed in X boxes, there being 
no restriction on the number per box). 

The complete partition function of the system 
is then 

k { A!B! 

=X~l (A-X)!(B-X)!(X!)2 

X[jsexp (EI/kT)JX[jLexp (EL/kT)Y-X} (5) 

k=A (A <B). 

k=B (A >B) 

in which we have neglected unity as compared 
to A and X. The difference between the present 
treatment and that of Cassie should now be 
evident. Essentially, he omitted 6 the factorial ex­
pression in Eq. (4) and then incorrectly 7 intro­
d uced a factor A !I X! (A - X) ! on combining Q s 
and QL. The two errors happened to cancel each 
other because unity may be neglected compared 
to A and X in Eq. (4). 

We make the usual excellent approximation of 
setting log Q equal to the logarithm of the largest 
term in the sum. The value of X which gives 
this term is found from 

o. (6) 

On taking the logarithm and differentiating as 

indicated, there results 

with 
(A -X)(B-X) = {3X2, (7) 

jL 
{3=-:-exp [(EL-El)/kT]. (8) 

)s 

The chemical potential of the adsorbed molecules 
IS 

kT 
(9) 

A-X EL 
=log-A-- kT -log jL, (10) 

where X is to be obtained from Eq. (7). For the 
gas phase, we write 

/-tG IX 
-=-+logp 
kT kT ' 

(11) 

where IX is a constant which need not be further 
specified for our purposes. Equating /-tA and /-tG: 

A-X ELIX 
log -----log jL=-+log p. (12) 

A kT kT 

For the pure liquid: 

EL IX 
---log jL=-+log po. (13) 

kT kT 

Hence, we have 

x=p/Po= (A -X)/A. (14) 

Combining Eqs. (7) and (14) gives the BET 
equation 

with 
A/B =cx/(I-x)(1-x+cx) (15) 

c=I/{3. (16) 

MULTIMOLECULAR ADSORPTION WITH A LIMITED NUMBER OF LAYERS 

In this section we shall extend the above treatment to the case of n (the maximum number of 
layers) finite. 

If A molecules are adsorbed, suppose Xl are in the first layer, X 2 in the second, ... , and X n in 
the nth layer. Then 

(17) 

For given values of Xl, X 2 , ••• , X n, the number of distinguishable arrangements for the second 
and higher layers is found by taking the product of (1) the number of ways X 2 objects may be 
distributed among Xl sites, (2) the number of ways X3 objects may be distributed among X 2 sites, 

6 This resulted from his treatment of second and higher layers as being structureless-the BET model was not 
introduced. 

7 There is no entropy of mixing when identical molecules are exchanged between two energy levels. The argument in the 
introduction of Cassie's paper should refer to the corresponding factor in Eq. (4). 
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MULTI MOLECULAR ADSORPTION 265 

etc. That is, 

Xd 

X,,!(X,,-l-Xn ) ! 

Xd 
(X1-X2) !(X2-Xa)! ... (X,,-l-X,,) !Xnt' (18) 

Then 

and 

B! 
Qs [js exp (eI/kT)]Xl, 

(B-Xl)!Xd 

X1![jL exp (eL/kT)]A-Xl 
QL 

(X1-X2) !(X2-Xa)!··· (X,,_l-X,,) !X,,!' 

Q= L: ... L: QSQL, 
Xl X,,-l 

where the limits of summation in Eq. (21) are complicated, but are not needed here. 

(19) 

(20) 

(21) 

We again set log Q equal to the logarithm of the largest term in the sum. The values of Xl, X 2 , 

•. " X ,,-1 which give this term are found from 

a log QsQL/ax.=o, i= 1,2, . ", n-l, (22) 

using Eq. (17) for X". One finds, in the same way as Eq. (7) is obtained,. 

(B - X l)X,,={3(X l-X2)(X,,-1-X,,). 

(X1-X2)X,,= (X2-X~)(Xn_l-X,,), 

(X"_s-Xn _ 2)X,, = (Xn _ 2 -X,,_1)(Xn _ 1-X,,), 

(X,,_2-Xn _ 1)X,, = (X,,_I-X,,)2. 

Also, from Eqs. (9), (11), (13), and (17) (the steps are the same as for Eq. (14», 

_ X,,=x(Xn_1-X,,). 
Combining Eqs. (23) and (24), 

(B-X1)x 
X 1-X2 = , 

{3 

X,-Xi +1 = (Xi_1-X,)x= (X1 - X 2)xi-l 

(B-Xl)Xi 
(i=2,3, "', n-1), 

{3 

(B-X1)x" 
X,,= . 

{3 
Finally, by Eqs. (17) and (25), 

A (X1-X2)+2(X2-Xa)+··· +(n-l)(X"_l-Xn )+nX,, 
= 

B (B-X 1)+(X1-X2)+··· + (X,,_I-X,,) +X" 

B-Xl 
-_(X+2X2+ . .. +nx") 

{3 -
=-------------------------(B-X 1) , 

(B - X 1) + (X+X2+ ... +xn) 
{3 

cX[l- (n+ 1)x"+nxn+l] 
= , 

(l-x)(l-x+cx-cxn+l) 

which is the BET result. 

(23) 

(24) 

(25) 

(26) 

(27) 
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266 TERRELL L. HILL 

b 

FIG. 1. 

Pickett gives an alternative equation. How­
ever, the fact that Eq. (27) can be obtained from 
statistical mechanics (considering only possible 
states of the system, without recourse to a 
mechanism), as well as from the kinetic argument 
of the BET theory, indicates that it is certainly 
the correct equation for this model. The obvious 
implication is that real improvements in the 
theory must come from refining the model itself 
rather than from modifications of the type in­
troduced by Pickett. We begin the discussion of 
other models in the next section. 

INTRODUCTION TO A REFINED TREATMENT 

In this section we shall indicate how the BET 
model may be considerably refined, at least in 
principle. 8 A more detailed treatment of the 
subject will be presented in a later paper of 
this series. We shall also treat, in future papers, 
multimolecular adsorption on a mobile first 
layer, the transition from a localized to a mobile 
first layer, and the relations between the adsorp­
tion isotherm and the two-dimensional equation 
of state (in mobile monomolecular adsorption). 

The most general model to be considered here 
is the following. Molecules are adsorbed onto 
vacant sites of a lattice, with the restriction that 
a particular vacant lattice site cannot be occupied 
by a molecule unless at least op.e nearest neighbor 
site is already occupied or unless the site is in 
the first layer of the lattice (i.e., in the layer 
next to the surface of the adsorbent). The lattice 
is built up on the surface of the solid and sites 
correspond to possible equilibrium positions of 
molecules in the liquid state. Ordinarily the 
packing is assumed to be face-centered cubic, 
with 12 nearest neighbors (z = 12). As before, 
the potential energy of interaction between the 

8 See Chapter X of Fowler and Guggenheim (reference 5) 
for an analogous discussion of monolayers. 

adsorbent and adsorbed molecules in the first 
layer is - El and the average potential energy of 
a molecule in the liquid state is - EL. Hence, the 
potential energy associated with each pair of 
nearest neighbors is -2EL/Z. The total potential 
energy of the system is 

(28) 

where X is the number of adsorbed molecules in 
the first layer and N is the number of pairs of 
nearest neighbors in the particular configuration 
being consider~d, including pairs involving mole­
cules in the first layer. 

As an example, in the two-dimensional simple 
cubic configuration of Fig. la, z=4, X =3, and 
N = 11. This may be contrasted with a two­
dimensional BET configuration, illustrated in 
Fig. lb. The BET model allows (the same is true 
in three dimensions) only vertical additions to 
the lattice and also only takes into account verti­
cal nearest neighbors. Thus,_ z=2, N=A-X, 
and, from Eq. (28), 

U = - E1X - €L(A - X). (29) 

In Fig. lb, X=4 and N=A-X=7. 
We return now to the general problem. For 

given values of X, A, and B, there are p(X, A, B) 
distinguishable configurations such that each 
molecule has either at least one nearest neighbor 
or is in the first layer, or both. We group these 
configurations according to the value of N: there 
are g(N, X, A, B) configurations with exactly N 
pairs of nearest neighbors. Hence, 

LN g(N, X, A, B) =p(X, A, B). (30) 

We have implicitly been considering the case of 
adsorption on a free surface (n = <Xl). If n is 
finite, there is a new obvious restriction on 
acceptable configurations. In this case we may 
write 

IS 

LN G(N, X, A, B, n) =P(X, A, B, n), 
G(N, X, A, B, <Xl) =g(N, X, A, B), (31) 

P(X, A, B, <Xl) =p(X, A, B). 

The partition function for the system (n = <Xl ) 

k 

Q= L l[js exp (et/kT)JXjL A - X 

XLN g(N, X, A, B) exp (2e L N/zkT)}. (32) 

k=A (A <B), k=B (A >B). 
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MULTI MOLECULAR ADSORPTION 267 

For n finite replace g by G. The general pro­
cedure is the same as in the previous sections, 
with Eq. (13) still applying. 

The above formal treatment can easily be 
modified so as to apply to capillaries with two 
parallel walls, and with the same lattice sites 
available to molecules building up on either wall. 
This is a more satisfactory but more difficult 
approach than the above (n finite), where, 

A!B! 

essentially, an artificial ceiling is introduced half 
way between the walls. 

The BET model is a very crude special case of 
the present one. Eqs. (5) and (21) follow from 
Eq. (32) if only vertical configurations are 
allowed and only vertical nearest neighbors 
counted (z = 2). Then all configurations (for given 
values of A and X) have the same value of N: 
N=A-X. Also, 

p(X, A, B)=g(A-X, X, A, B) 
(A -X)! (B-X)! (X!)2' 

P(X, A, B, n) =G(A -X, X, A, B, n) 

(33) 

Obvious successive improvements in the BET 
model would follow from (1) taking into account 
non-vertical configurations, (2) taking into ac­
count non-vertical nearest neighbors, and (3) 
using a lattice more suitable than simple cubic. 
To what extent the mathematics can actually be 
carried out in these cases is, of course, another 
question. 

Although the subject will be discussed in more 
detail in a later paper, certain preliminary results 
for capillaries (n small), obtained by the use of 
improved models, may be mentioned briefly. 

If one takes into account, even though crudely, 
interactions between horizontal as well as verti­
cal nearest neighbors, the resulting somewhat 

refined theory of multimolecular adsorption 
predicts capillary condensation quite naturally 
for suitable values of the parameters. One obtains 
regions of instability, corresponding to a sudden 
jump in AlB from a small value to a large 
value. The phenomenon is analogous to the 
instabilities in monolayers discussed by Fowler 
and Guggenheim. 8 The multimolecular adsorp­
tion and the capillary condensation points of 
view are therefore really not in conflict, as is 
generally assumed, except that Kelvin's equation 
should not be considered valid on this micro­
scopic scale. 

The author is indebted to Professor W. A. 
Noyes, Jr. for helpful discussions. 
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