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1. Introduction

The study of the energy levels and transitions of atoms and one-atom ions is critical for

understanding many features of the ISM:

B Spectra: Many of the strongest spectral lines from the ISM (both in UV /optical and

FIR) are due to atoms and ions.

B Thermal balance: Excitation of atoms, followed by radiative decay, is a major cooling

mechanisms for many ISM phases.

This lecture covers the energy level structure and radiative transition schemes of H, He,
and the light metals. The transition metals are not covered due to their complexity, and
also because most of the major lines we will be discussing are due to lighter elements,
particularly C/N/O. The most abundant of the heavier metals is Fe, which we will discuss
primarily in the context of dust (and in the case of X-ray processes where the inner

electrons play a key role).

2. Hydrogen Atoms and One-Electron Ions

The ultimate reference for this material is Bethe & Salpeter, Quantum Mechanics of

One- and Two-Electron Atoms.



A. BASIC STRUCTURE

Hydrogen is the simplest atom, consisting of a single electron and a nucleus. We will
treat the hydrogenlike atoms generally, allowing for a nuclear charge Z. For example, Z=2
corresponds to the He* (He 1) ion, whereas Z=26 corresponds to Fe25* (Fe XxVI).

The atom can be treated by writing the Schrédinger equation for the single electron,
with the potential

2
vin=-2,
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and the wave function can be separated in spherical coordinates as

Rnl (I")
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where Y is a spherical harmonic, R is the radial wave function, and nlm; are quantum
numbers. The angular quantum numbers are integers with 120, |m|<L.

Spherical symmetry guarantees that the different values of m have the same energy
and the same radial wave function; this energy can be shown to be:

Z*'m 7Z?
< =—(13.6 eV)?,

where the radial wave functions have quantum numbers n=l. We note that due to an
accidental degeneracy the different values of [ for the same n have the same energy.

For a given value of (n,I) there are 2/+1 possible wave functions, and for a given
value of n there are n? wave functions (after including all legal values of [). To account for
electron spin (up or down; ms=+%2), the number of states should be doubled to 2(2/+1) or
2n?.

The ground state of H is n=1, which has only one wave function (and two spin
states).

The angular momentum number [ is frequently denoted with a letter: s (I=0), p (I=1),
d(I/=2), f (I=3), g (I=4), etc. Thus the ground state is 1s.

B. RADIATIVE TRANSITIONS
Radiation can be emitted by an atom in an excited state with a frequency v given by
hv=FE-E'

where E is the energy of the upper level and E" is that of the lower level. For a hydrogenlike
atom, the frequencies are then given by
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where nz<ni are positive integers.
The transition wavelengths for the hydrogen atom are:

Lyman series (n2=1) Paschen series (nz2=3)
Lya 2>1 1216 A Paa 4->3 1.875 um
Lyp 3>1 1026 A Pap 53 1.282 um
Lyy 4>1 973 A Pay 63 1.094 pm
Ly 5>1 950 A Pad 7> 3 1.005 pm
Balmer series (nz2=2) Brackett series (n2=4)
Ha 3>2 6563 A Bra 54 4.05 um
HP 4->2 4861 A Brp 6> 4 2.63 um
Hy 52 4340 A Bry 7> 4 2.17 ym
HS 62 4102 A Bré 84 1.95 um

In our studies, we will also want to know the rate of emission of photons (the
radiative decay rates). A correct calculation requires QED, but we may estimate the decay
rate semi-classically. In classical physics (Ph 1c), the rate at which energy is emitted from
an electric dipole of moment p is:

P = —=
3¢’ 3¢’

If we think of this power as being emitted in discrete units of energy 7w, the rate of
emission of photons I' (with units of counts per second) is

_ 2(03‘112
3hc®
For a given transition, we know w=2mv, but we do not yet know the dipole moment p. We

do know the expectation value of the dipole moment for a superposition of the initial and
final states Y1 and Y2:

w(X) = Cﬂl’] (X) + Cﬂpz(x),
w=—e(x) = —elc,[ (y,[Xw,) - eles| (W [xw,) - 2e Re(cse, (v, [x]y,)).

Now we note that the initial and final wave functions have definite parity, that is,

P (x)=+Y(-x). In the case of hydrogen, the + parity applies to even / and the - to odd . The
situation will be more complicated for heavier atoms, but the wave functions will still have
definite parity (i.e. when the coordinates of all electrons are sign-reversed, the overall wave



function has a + or - sign) since the parity operation commutes with the Hamiltonian. This
implies that <yr1|x|{1>=0, so only the overlap integral contributes to pu. Thus the classical
emission rate is

8w’e’ "
r= %[Re(czcl@pz |X|1p1>)]2.

Now we know from elementary quantum mechanics that ¢; « exp(-iEjt/#), so in the above
the real part is oscillating as a function of time and the square of the real part averages to %2
of the square of the absolute value. One might guess that during a radiative transition, both
c1 and c are of order unity. In fact, this argument is correct: the exact QED result is

3
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In most practical cases, we are interested in the total decay rate to all m-sublevels of the
final state. This decay rate is often called the Einstein A-coefficient and symbolized by A12:
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Note that transitions are only allowed if they flip parity (otherwise the matrix element is
zero by symmetry). This is an example of a selection rule. For hydrogen, this means >-11
is odd.

For the case of hydrogen, the A coefficients can be determined exactly. We separate
the matrix element into radial and angular pieces:

(wolxlw) = [ R, (MR, , (Ndr [RY,, @)Y, @)dh
s? .

The integral involving the spherical harmonic is only nonzero if [>-I1=%1 (the triangle
inequality for angular momentum forbids larger changes; alternatively, write Y as a
polynomial of order [ in the Cartesian components of n and observe that nY, is a
polynomial of order I+1, hence must be composed exclusively of spherical harmonics of
order </+1). This is a general rule.

For the allowed transitions and small values of n, the matrix element is of order the
Bohr radius (10-8 cm), the angular frequencies are of order 101¢/s, and so we get decay
rates of the order of 109/s (lifetimes ~ 1ns). This is indeed correct. Actual calculations give
the following rates (in units of 109/s):

2p > 1s 0.625

3s>2p 0.0063

3p~>1s 0.164 3p > 2s 0.022
3d > 2p 0.064



4s 2> 2p 0.0025 4s 2 3p 0.0018

4p 2> 1s 0.068 4p > 2s 0.0095 4p > 3s 0.0030
4p - 3d 0.0003
4d > 2p 0.0204 4d - 3p 0.0070

4f - 3d 0.0137

For heavier atoms, the transition frequencies scale as wxZ?, the radii scale as 1/Z, and so
the transition rates scale as Z*, e.g. they are 16x larger for He 11 than for H I.

One notable feature of the above is that the 2s level of hydrogen cannot decay: the
only lower energy level is 1s, and the parity selection rule forbids this. The 2s level instead
decays by two-photon decay:

H(2s) > H(1s) +y +Y.

The sum of the energies of the two emitted photons is E2s—E1s = 10.2 eV. The photons have
a continuous spectrum since there is no other constraint on their energies. This is a major
contributor to the UV/optical continuum from many nebulae.

Quantum mechanically, this corresponds to emitting one photon and landing in an
intermediate 2p state, and then emitting the second photon. The uncertainty principle
allows the hydrogen atom to “borrow” the energy to emit the first photon, for a period of
time of order At~%/AE~10-1%s. Semi-classically, we would expect the rate coefficient for 2s
decay to be of order 10?/s, multiplied by the probability for the 2p state to decay within
10-16s,i.e. 10-7. This calculation gives 10-2/s. Itis in fact correct to an order of magnitude.
The rate coefficient for this process is 8.2Z°/s, so the lifetime of the 2s state in hydrogen is
0.12s.

Excited states with unusually long lifetimes due to the absence of allowed decays
(with nonzero dipole moments) are said to be metastable.

C. ELECTRON SPIN & FINE STRUCTURE

So far we have treated the electron spin as an unimportant auxiliary variable.
However in some cases, particularly for heavier atoms, it matters.

We can define the total angular momentum of the electron by the vector sum of its
orbital and spin angular momenta, j =1+ s. This is important because when we account for
the magnetic moment of the electron, it is the total angular momentum that is conserved
and hence j,m; represent good quantum numbers. For given values of n and /, and recalling
that the electron has spin s=%2, we can then use the triangle inequality to write the possible
values of j:

j=1lx).

(If I=0, the - sign is forbidden.) There is also a projection of j onto the z-axis, the magnetic
quantum number mj:



m;=m;+m,

Since the number of possible values of mjis 2j+1, we can see that the total number of states
for a given (n,I), the total number of quantum states is:

g, =12(l=- )+ 11+ [2(1+ }5) +1]1 =221+ 1),

as found before.

We now come to the question of the energy of these levels, and in particular
whether the Rydberg formula E~-1/n? receives any corrections associated with the
electron spin. We can estimate at order of magnitude level the energy associated with the
magnetic moment by supposing that the electron sees a semiclassical magnetic field,

Exv Ze. Ze
= =—IXxV= 3l.
c cr m,cr

B

Since the electron’s magnetic moment is —es/mec, the energy of interaction is:

Ze*
AE =————1"s.
mfczr3

For a low-lying state, the typical value for the radius is r~ao/Z, where ao=A%/m.e? is the

Bohr radius. The orbital and spin angular momenta are ~%. So the correction to the energy
is, at order of magnitude level,

Z'm,e®
AB ==

This is of order ~(Za)? times the Schrodinger equation energy, where a is the fine
structure constant:

In fact, the semiclassical velocity of an electron in the first Bohr orbit is Zac, so we might
expect relativistic corrections to be important at the same level; they are. All of the order-
a? corrections result in a perturbation to the Schrédinger equation energies known as fine
structure corrections. The full result is
Z’a’( n 3
+—| = -—
n- \j+)y 4
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The lower-j levels have lower energy, as one would expect since 1¢s is negative. To this
order in perturbation theory, the levels with different / but the same j have the same
energy; for example, in the case of n=2, there are three levels:

nli= 2s12 (degeneracy 2)
2p1,2 (degeneracy 2)
2p3,2 (degeneracy 4).

The first two have the same energy and 2ps,; has higher energy (by 45 peV). In full QED,
the 2s1,2 level actually has slightly higher energy than 2p1,2 by 4 peV due to loop
corrections (which we won’t need to discuss in this class).

The fine structure effects are small on account of a<<1, and for hydrogen itself are
usually unimportant in the ISM. Nevertheless, they can be very important for two reasons:

B Metals: The fractional effect of fine structure scales as Z?, so for metals the spectral
lines can actually be resolved into multiple fine structure components. The ratios of
these lines are an important diagnostic.

B (Cooling: In hydrogen, the ground state has only one fine structure component, 1s1,>.
However for metals it is often the case that the ground state splits into two
components. In cold gas, one can collisionally excite the metal atom from its true
ground state into the fine-structure excited state. When the atom radiatively decays
to the ground state, it emits energy, thereby cooling the gas. Fine structure cooling
is dominant in some phases of the ISM.

D. HYPERFINE STRUCTURE

Although the n=1 level hydrogen atom has only one component, 1s1,2, when
considering only the electron, this is split when taking into account that the proton has spin
[=%. The combination of the electron and proton-spin angular momentum gives us the
total angular momentum of the atom, F = j + L. Since j=% in the 1s1,2 level, we may have
either F=0 or F=1, with degeneracies 2F+1. The interaction of the proton and electron
magnetic moments splits these energy levels: F=0 is lower than F=1. The difference is

2u.u,

3
0

AE,, = =59 ueV.

The existence of a splitting between the F=0 and 1 levels brings up the question of the
lifetime of the F=1 level. Since both levels have positive parity, the electric dipole matrix
element is zero and F=1 is metastable. The excited state can however decay by magnetic
dipole radiation (due to the magnetic moment of the electron), with rate

4’ 2
I'= %KQPEO U, l/JF=1>‘ .



This corresponds to a lifetime of 10 Myr. The photon frequency is 1.4 GHz and its
wavelength is 21 cm. This hydrogen line is thus in the radio, and it has played a key role in
our understanding of the structure of the Milky Way and nearby galaxies.

Spectral lines with no contribution from the electric dipole moment are described as
forbidden and are denoted with brackets, in this case [H 1] AZ1cm. This distinguishes them
from allowed transitions with no brackets, e.g. Ha, which we would denote as H 1 A6563A.

3. Helium Atoms and Two-Electron Ions

A. DESCRIPTION OF MULTI-ELECTRON ATOMS

We now consider two-electron atoms. In general, for multi-electron atoms, we will
introduce the following notation. Lower-case letters [, s, j will denote the quantum
numbers for an individual electron, whereas capital letters L, S, ] will denote angular
momenta for the sum of all electrons.

We will use the term symbol for an atomic level to describe its overall symmetry
properties. Specifically, we write:

25+1LP
J >

where the parity P is either even (e) or odd (0); the orbital angular momentum is specified
with a letter (e.g. S for L=0, P for L=1, etc.); and 25+1 is an integer. An atom is described by
its electron configuration (occupation of each type of orbital), its term symbol, and
possibly additional information to uniquely identify the level (usually required only for
complicated atoms such as the transition metals or rare earths). For example, a hydrogen
atom in the ground (1s1,2) state has a term symbol °S{,,, whereas in the 2ps3/2 level the term
symbol is *P;,.

In these notes, we will keep the parity in all cases, but many authors (including
Osterbrock & Ferland) only write the o for odd parity and leave the parity field blank for
even parity.

The transitions between different energy levels are governed by selection rules.
The selection rules for our most common types of transitions are:

Electric dipole:
Exact: AJ=-1,0,0or +1 (no 0>0); opposite parity
Approximate: AL=-1, 0, or +1 (no 0->0); AS=0.

Magnetic dipole:
Exact: AJ=-1,0,0r +1 (no 0>0); same parity
Approximate: AL=AS=0; same configuration.

Electric quadrupole:
Exact: |AJ|<2 (no 00, 021, or 1->0); same parity
Approximate: |AL|<2 (no 020, 0>1, or 1->0); AS=0.



Most of these are determined by the triangle inequality and by the requirement that the
integral for the matrix element be even under parity (so that it doesn’t cancel). The
exception is the magnetic dipole moment operator, which is unusual because the operators
L and S correspond to infinitesimal rotations of the orbital and spin wave functions.
“Approximate” rules depend on the fact that for non-relativistic wave functions L and S
commute with the Hamiltonian.

B. ENERGY LEVEL STRUCTURE

The energy levels of the helium atom are governed by two effects. One is the Pauli
exclusion principle, which tells us that the overall wave function must be antisymmetric
under interchange of the two electrons. That is,

Y(x,,7,,X,,T,) = -¥(X,,7,,X,,T)),

where T denotes the spin degree of freedom of each electron. The second is the repulsion
between the two electrons, which in quantum mechanics can manifest itself in an
unconventional way. The nonrelativistic Hamiltonian for a heliumlike ion of atomic
number Z is:

2 2 2 2

Ze~ Ze e
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Now we can see that the spin wave functions are not affected by the Hamiltonian, so we
may separate the orbital and spin variables:

lP(Xl )Ty 9X2’772) = ‘Porb(xl ’Xz)lpspin (TI’TZ)'
Since the overall wave function is to be antisymmetric, we may consider two possibilities:
* Singlets or para-helium: here the orbital wave function is symmetric and the spin

wave function is antisymmetric. Since the spin choices for an individual electron are
1(t) and | (t), the only antisymmetric choice is

W, (7,.7,) = %m (1)} ()= @) @),

which has spin §=0 and z-component Ms=0.
* Triplets or ortho-helium: the orbital wave function is antisymmetric and the spin
wave function is symmetric. There are three possible spin wave functions:



IIIspin (T] ’1/—2) =1\ (Tl) T (Tz)’
1
‘Pspin(tl’rz) = E[T (Tl) \l/ (T2)+ \l/ (171) T (172)]"

IPspin (Tl ’rz) =‘l/ (Tl) \|/ (Tz)a
which have spin S=1 and z-component Ms=1,0,-1.

The lowest energy level of helium should correspond to the 1s2 configuration, i.e.
placing both electrons in the lowest energy orbital. This requires a symmetric wave
function, so it must be a singlet state. It thus has orbital angular momentum zero, spin
zero, and even parity, so we write it as:

1s* 'S¢,

In the absence of repulsion between the two electrons, its energy would be twice the
energy of the n=1 level of the He* ion, i.e. -108.8 eV. In reality, the electrons repel each
other, so the total energy ends up being higher, -79.0 eV. The ionization energy - the
energy required to remove one electron - is then —24.6 eV (the difference between this
energy and that of He*).

The somewhat higher energy levels of helium have one electron in the 1s orbital and
one in a higher orbital, 1snl (n=2). These can be either singlet or triplet because the orbital
wave function can be either symmetric or asymmetric. To a first approximation, the
energies can be treated by supposing that the nucleus and 1s electron form a He* “core”
around which the nl electron orbits, i.e.:

E,, ~-(136 eV)(4 + iz)
n

However, particularly for small n and /, there is a correction due to the fact that the outer
electron occasionally penetrates into the core. This results in two effects. First, because
the second electron sees a higher nuclear charge, the energy levels are lowered,
particularly for the 1sns states (recall that the s wave functions are the ones that are
nonzero at the origin). Secondly, if we approximate the wave function as

1
W, (X,.X,) = E[%s(xl)wnz(xz) =, (XY (X,)],

then the electron-electron repulsion term is slightly more effective for the + sign (singlet)
than the - sign (triplet). This exchange interaction causes the singlet energy levels to be
slightly above the triplet energy levels. The general fact that larger values of S have lower
energy (for the same configuration) is called Hund’s first rule.

The orbital angular momentum L of the 1snl levels is simply /, and the parity is even
or odd according to whether [/ is even or odd.



It is possible to have doubly-excited states of helium, e.g. 2s2p. These states actually
have more energy than a He* ion and a free electron. Therefore they are unstable and
auto-ionize:

He(2s2p) — He"(Is) + €.

We therefore usually don’t observe spectral lines from these states (in fact the short auto-
ionization lifetime and the uncertainty principle AEAt=#/2 usually make such lines very
broad). But we will need to consider them when we discuss ionization and recombination
processes, particularly for metals.

Finally, the triplet levels (S=1) with L>0 have fine structure: the total angular
momentum can add up to J=L-1, L, or L+1.

We may now summarize the energies of the helium atom for the configurations up
through 1s2I:1

Configuration Spin Configuration + Energy (eV)
Term [relative to He*]
Singlet 1s2p 'P? -3.36937 eV
1s2p °Py -3.62317 eV
1s2p _ 3
Triplet 1s2p P’ -3.62329 eV
1s2p °Py -3.62330 eV
1525 Singlet 1s2s 'S¢ -3.97161eV
Triplet 1s2s °S; -4.76777 eV
1s2 Singlet 1s* 'S¢ -24.58739 eV

C. RADIATIVE TRANSITIONS

We now come to the radiative transitions in the helium atom. It is easily seen that
there can be no allowed transitions between singlet and triplet states (we will come back to
this later). Within the singlet and triplet schemes, the types of transitions are similar to
those of hydrogen, with the He* core being a spectator. The main exceptions are that (i) the
triplets don’t have a 1s? level, so there is no triplet analogue of the Lyman series; (ii) the
different energy levels due to different / values causes the Balmer-like series of helium to
be split into many more lines; and (iii) because the 1s2s levels are below the 1s2p levels,
decays of the form 1s2p = 1s2s are now possible.

The most notable of the allowed He I transitions are:

Analogue of Lyman-a: 1s2p 'P —1s* 'S 584 A
Analogues of Hat: 1s3p °Py,, = 1s2s °S; 3889 A
1s3p 'PY —1s2s 'S 5015 A

L Energies are from the NIST database,
http://physics.nist.gov/PhysRefData/ASD/index.html



1s3d °Df,, — 1s2p Py, , 5876 A

1s3d 'D — 1s2p 'P 6678 A
1s3s °’S; —=1s2p Py, 7065 A
1s3s 'S{ —1s2p 'P’ 7281 A
“New” 2p - 2s lines: 1s2p Py, —1s2s °S; 10830 A
1s2p 'PY —1s2s 'S 20587 A

The helium atom has two metastable levels with no allowed decays: the singlet and
triplet of 1s2s. The 1s2s 'S¢ level decays in a way similar to that for hydrogen 2s, with a
lifetime of 0.02 s:

He(1s2s 'S{) — He(Is* 'S{) + y + 7.

The 1s2s °S{ level cannot decay via conventional two-photon emission since such a process
does not change the electron spin. It should not decay by magnetic dipole emission either
because the magnetic dipole moment operator,

pu=—2"(L+28),
2m ¢

e

cannot change the value of S. In reality it is possible for such a decay to occur because of (i)
relativistic corrections to the wave functions, and (ii) corrections to the dipole emission
formula from the finite size of the atom.? This endows metastable triplet helium with a
finite lifetime of 2 hours (!). This shortens as ~Z10 for heavy ions. In fact, the

1s2s °S¢ —1s” 'S¢ decays were observed in the solar corona for [C V] A42A and the
appropriate lifetime (0.03 s) derived, before the correct theory was developed.

4. The Light Metals

We are now ready to consider the energy level structure of light metals. For the
most part, we will focus our attention on the lowest several electronic configurations,
which are of the greatest astrophysical importance, both for cooling and for UV absorption
line studies. We will organize the discussion according to the number of valence electrons,
as this determines the organization of the energy level diagram.

The line information here is from the NIST database.

A. ONE VALENCE ELECTRON

We consider first the case of 1 valence electron (i.e. total number of electrons 3, 11,
or 19). Important examples include many of the species responsible for ISM and IGM

2 See Drake, Phys. Rev. A 3,908 (1971) for a discussion of these points.



absorption lines (C 1v, Nv, O vi, Na I, Mg 11, Al 111, Si 1v, Ca 11); and some (C 1v, O V1, Ne V11], etc.)
are also important to the cooling of hot gas.

Such an atom has its lowest orbitals filled, and one electron available in the valence
shell. Examples of ground states are:

* Lithium-like: 1s22s
* Sodium-like: 1s22s22p®3s
* Potassium-like: 1s22522p®3s23po4s

We will simply denote these by ns, where n=2, 3, or 4, and the inner electrons are implied.

For n=2 and n=3, the two lowest configurations for one-valence-electron atoms are
usually ns and np; the np level is fine-structure-split into a /=1/2 and a J=3/2 level. Thus,
the term symbols are:

ns °S;,, (ground), np *P/,, and np °P;,.

The np = ns decays are allowed by all symmetries. Moreover, they tend to have relatively
low frequencies (optical or near UV) because the energy splitting between ns and np is
relatively small.

The table shows the transitions for the major one valence electron ions. For
continuity we show the sequence of consecutive elements even though some (Li, Be, B, F)
are too rare to be of significance in the ISM. Note that the fine structure splitting becomes
more important for higher Z. Also note the “doublet” structure: these ions tend to have a
pair of lines at very closely spaced wavelengths.

n Atom or Ion Wavelength of Wavelength of

np 21)1(;2 —ns 2Sf/z np 2P30/2 —ns 2Sf/z
(A) (A)

Lil 6707.9 6707.8
Be 11 3131.1 3130.4
B 111 2067.2 2065.8
2 Civ 1550.8 1548.2
Nv 1242.8 1238.8
O VI 1037.6 1031.9
Fvil 890.8 883.1
Ne viII 780.3 770.4
Nal 5895.9 5890.0
3 Mg 11 2802.7 2795.5
Al 11 1862.8 1854.7
Silv 1402.8 1393.8
4 K1 7699.0 7664.9
Call 3968.5 3933.7




For Ca 11, there is an additional set of levels, 3d °Dj,, 5 ,, which lie at a lower energy than
4p °Py,,,,. We will not concern ourselves with them in this class.

B. TWO VALENCE ELECTRONS

We now move to the case of two valence electrons (e.g. total number of electrons 4
or 12). Like the case of the helium atom, the two valence electrons can form a spin singlet
or triplet. The ground state has both valence electrons in the 2s (or 3s) orbital, and hence
must be a singlet. Thus we have the ground term ns” 'S{, where n=2 (4 electrons) or n=3
(12 electrons).

The lowest excitations will promote one electron to np. According to Hund’s first
rule, the triplet nsnp levels will lie below the singlet. Thus the ordering of the first three
sets of energy levels is:

nsnp 'P! 2nd excited; decays to ground
nsnp *Py,,  1stexcited; metastable
ns* 'S¢ ground

The triplet states cannot decay to the ground state on account of the change in S. However,
for the case of nsnp *P’, the angular momentum and parity are appropriate for an electric
dipole moment matrix element. This results in the decay being only semi-forbidden:
relativistic corrections that mix nsnp *P; with nsnp 'P allow nsnp °P to decay radiatively.
Semi-forbidden transitions are denoted with a one-sided bracket, e.g. C 111] A1909A.

Ion Allowed decay Semi-forbidden decay
nsnp 'P} — ns” 'S nsnp °P’ — ns” 'S¢
Wavelength Rate Wavelength Rate
C 977 A 1.8/ns 1909 A 110/s
N Iv 765 A 2.3/ns 1486 A 600/s
ov 629 A 2.8/ns 1218 A 2300/s
Si 11 1207 A 2.6/ns 1892 A

The nsnp 3P(i , levels have alternative decay paths, e.g. electric quadrupole decays to the

ground state (for /=2) and two-photon decay (for J=0). However, in most cases collisions
are a more important means of de-populating these states.

C. THE P-BLOCK ATOMS

We now come to the atoms with partially filled p sublevels. These will be extremely
important for the spectra and thermal balance of H 11 regions. Our principal concern will be
with the ground electron configurations.

The p sublevel (either 2p or 3p) can accommodate up to six electrons. Therefore the
partially filled levels consist of:



nplatoms: CI, N1, O1v,SiI, S1v
np?atoms: CI NI,011 Nev,Sii, S, Arv
np3atoms: NI, 01, Nelv,Sii, Ar v
np*atoms: O, Nelil S1, Ar III

np®atoms:  Nell, Arll

Since every p wave function has negative parity, the overall parity of the np*
configuration is (-1)k.

The ordering of energy levels is given by Hund’s rules. We already encountered the
first rule (that the largest S has the lowest energy for a given configuration). We will now
need:

* Hund’s second rule: For a given configuration and value of S, the largest orbital
angular momentum L corresponds to the lowest energy.

* Hund’s third rule: For a given configuration, §, and L, the lowest energy
corresponds to the lowest J for less than half-filled subshells (np?! or np?), and the
highest J for more than half-filled subshells (np* or np>).

Let’s explore how these rules work.
npt

For the np! atoms, there is only one electron in the p subshell, so we must have S=1/2 and
L=1. Therefore Hund’s third rule tells us that the ground level is np °P,,, and there is a fine
structure excited level, np *P,. The total number of quantum states is 2+4=6, in
accordance with the number of p spin-orbitals. The energy splitting between these states
is small (typically of order a few milli-eV) since it is due to fine structure. The transition
between these two states must be a magnetic dipole transition since there is no change in
parity. The key transitions of this type have wavelengths:

[Ci] 158 pm [N 1] 57 pm [0O1v] 25.9 pm
[Sin] 34.8 pm [Sv] 10.5 pm

The magnetic dipole moments are all equal (since the operator only depends on angular
momentum) so the lifetimes scale as «A3. For C 1], the lifetime is 5 days. These lifetimes
allow a significant abundance of excited ions to persist in the ISM.

np?

Now there are two electrons in the p subshell, so we may have the electron spins
either symmetric (S=1) or antisymmetric (5=0). Hund’s rules tell us that S=1 will have
lower energy; this corresponds to antisymmetric orbital wave functions. With the three p
orbitals (x, y, and z), there are 3 antisymmetric combinations:



¥, =27y, Dy, (2) -y, Dy, (2)]
W =27 [y (D, (2) -y, (D, (2)].
W =27y (Dy, (2) -y, (D, ()]

These have the same rotational properties as a vector (the cross product!) so they have
L=1. The triangle inequality then says we may have /=0, 1, or 2. Using Hund’s third rule,
we establish the ordering of energies: /=0 is the ground state.

If the atom is excited, it may have S=0. Then the orbital wave function must be
symmetric. The possible values of L are then either 0 or 2 (we know from the triangle
inequality that since the individual electrons have /=1, the possible values of L are 0, 1, and
2; and we have just seen that 1 is antisymmetric). For example, L=0 corresponds to:

W, =37y, (D, (2) + 9, Dy, (2) + . Dy, (2)].

Thus we have two possibilities: L=2 (implying /=2) has lower energy, and L=0 (J=0) has
higher energy. The energy levels within the np? configuration are thus ordered as:

3pe _3pe _3pe _lne _1ge
P, <'P'<’P, < Di<'S;.

We may check that the total number of quantum states is

6
5+3+1+5+1=(2)=15.

The np? atom supports several types of transitions. These include the fine structure

transitions within the *P;,, system, analogous to those of np’. The excited terms 'D; and

'S¢ can decay via magnetic dipole or electric quadrupole decays. All decays from 'D5 do

violate the approximate selection rules, which endows 'D with an unusually long lifetime.
The transition wavelengths are:

Decay: Type [N II] [O I1I] [S I1I]

'S¢—'D; El. Quad. 5755 A 4363 A 6312 A
'D:—P¢  Mag. Dipole 6548 A 4959 A 9069 A
'D:—Pf  Mag. Dipole 6583 A 5007 A 9531 A
Py =P Mag. Dipole 122 um 52 um 18.7 um
P =P Mag. Dipole 205 um 88 um 33.4 um

In O 111, the lifetimes are 11 hrs (°P), 3 hrs (°P;), 40 s ('D%), and 0.6 s ('S).



np3

We next consider having three p electrons. There are now

o

quantum states available. Our job is to find them all.

We first identify the ground state, which will have the maximum spin S. With three
electrons, this is achieved by taking S=3/2 (remember the triangle inequality!), which is a
purely symmetric spin wave function. The orbital wave function must then be purely
antisymmetric. The only purely antisymmetric combination of 3 orbitals is:

W (1,2,3) = 67" [y, (D, 2, (3) +, (D, 2, (3) + . Dy, 2, (3)
-, Wy, 2, (3) -y, Wy, 2, (3) -y Dy, (2, (3)].

It is rotationally invariant and thus has L=0. We then have J=3/2 and the ground level is
4S(S)/Z'

This identifies 4 of the states. The other 16 must have S=1/2, and be of mixed
symmetry (i.e. the spin and orbital wave functions are neither symmetric nor
antisymmetric, only the overall wave function is antisymmetric). The triangle inequality
tells us that they can only have L=0, 1, 2, and 3. But they cannot have L=3 since this would
imply a purely symmetric orbital wave function (and there is no purely antisymmetric spin
wave function with 2 spin states and 3 electrons); and L=0 can have only the wave function
we already described. Noting that a given L and S imply (25+1)(2L+1) quantum states,
combinatorics tells us that we must have one L=1 set of levels and one L=2. Hund’s rules
then give us the ordering (except for fine structure, which is determined either empirically
or via more detailed calculation):

4ao 217\0 21\0 2po 2po
S5,<"D5,, <" D5, < P, <Py,

The most important transitions are the forbidden doublet transitions from *D5,, 5,,—"S3,.
Its wavelengths are:

NI  5198,5200A

On 3726,3729 A
Su  6716,6731 A

Lifetimes of °D3,, 5,, range from tens of minutes to days.
Because the ground term has S=0, there are no fine structure lines of the np3 ions.

np*



The np* ions appear at first glance that they might be even more complicated to
investigate. However, it is profitable to think of them as being noble gases with two
missing electrons, or holes. The hole has the same orbital angular momentum (/=1) and
spin (s=%2) as the electron, and obeys the Pauli exclusion principle (it is nonsense to have
two holes in the same quantum state). But we have already solved the two-electron (np?)
problem, so we may use the same solution for the holes. The exception is that in
accordance with Hund'’s third rule, the fine structure ordering is reversed.

The transition wavelengths are:

3pe _3pe _3pe _lne _1ge
P, <P <Py < Di<'S;.

Decay: Type [01]
'S¢—'D; El. Quad. 5577 A
'D;—P Mag. Dipole 6300 A
'D;—’Pf Mag. Dipole 6364 A
P =Py Mag. Dipole 63 um
Py =P Mag. Dipole 146 pm

[Also observed from Earth’s atmosphere!]

np>

We finally come to the np® ions, which have one hole. This makes the energy level
structure similar to np?, but once again with the fine structure levels reversed:

2po 2po
Py, <P,

The transition wavelength in Ne 11 is 12.8 pm.



