A novel CuNaTi₃O₈ Freudenbergite-type photocatalyst for efficient water purification under visible light irradiation

Panagiotis Tzevelekidis^a, and Christiana A. Mitsopoulou^a

^aLaboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou GR-15771, Greece e-mail: patzeve@chem.uoa.gr

In the field of heterogeneous photocatalysis, TiO_2 nanoparticles occupy a prominent position. Nevertheless, the main drawbacks of TiO_2 , - specifically, its inability to absorb visible light and the rapid recombination of excitons - overshadow its great advantages, such as chemical stability and low toxicity, thereby limiting its uses as a widely used photocatalyst [1]. Recently, composite materials based on the modification of the crystal structure of titanium dioxide have garnered interest in photocatalysis. The framework of TiO_2 can accommodate cations such as Na^+ , leading to sodium titanate, a material with interesting optical ad physical properties. To maintain charge balance, other cations, such as Fe^{3+} , Cr^{3+} , and Ni^{2+} , can also be incorporated into the lattice, resulting in Freudenbergite (FeNaTi₃O₈)- like structures that exhibit intriguing physical and optical properties [2], [3].

Herein, we report the synthesis of a novel CuNaTi₃O₈ nanoparticulate semiconductor through sol-gel chemistry. Several techniques have been employed to characterize this new material including powder X-ray diffraction (XRD), electron microscopy (SEM, TEM), dynamic light scattering (DLS), IR-ATR, UV-Vis, and Raman spectroscopies. The photocatalytic performance of this material was systematically evaluated under visible light irradiation using low-energy LED lamps, demonstrating significant degradation of Methylene Blue and Rhodamine B dyes. To elucidate the underlying photocatalytic mechanism, scavengers such as isopropanol (IPA), ethylenediaminetetraacetic acid (EDTA), and sodium sulfate (Na₂SO₄) were utilized to identify the active species involved in the degradation process. These findings highlight the potential of CuNaTi₃O₈ as an efficient photocatalyst for water purification under visible light conditions.

References:

[1] P. Tzevelekidis, M. Theodosiou, A. Papadopoulou, E. Sakellis, N. Boukos, A.K. Bikogiannakis, G. Kyriakou, E.K. Efthimiadou, C.A. Mitsopoulou, Heliyon. 17 (2024) 343-351

[2] H. Tang, R. Yang, W. Gao, Physica B Condens. Matter. 534 (2018) 120-124.

[3] J. Ding, Y. Li, Q. Wu, Q. Long, Y. Wang, Y. Wang, RSC Adv. 6 (2016) 8605-8611.