Synthesis and functionalization of step-growth polymers prepared by the A³ multi-component coupling reaction

<u>Dimitrios Giannopoulos</u>^a, Leandros Zorba^a, Christos Zisis^b, Marinos Pitsikalis^{*b} and Georgios C. Vougioukalakis^{*a}

^aLaboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou GR-15771, Greece ^bLaboratory of Polymers, Department of Chemistry, National and Kapodistrian University of Athens, Zografou GR-15771, Greece e-mail: jim97giann@gmail.com

Multicomponent reactions offer a streamlined method for synthesizing organic compounds in a one-pot manner. The A³ or KA² coupling of aldehydes or ketones with amines and alkynes is an efficient route to propargylamines, compounds with diverse chemical properties.¹ Extending this strategy to polymer synthesis enables the production of polymers with varied properties and applications. This study presents a sustainable, air-tolerant approach for synthesizing novel polymeric propargylamines using a highly-reactive, widely available copper catalyst, yielding excellent results.² The post-functionalization of polymers is vital for developing functional materials. Our work further explores two post-functionalization strategies of A³ polymeric propargylamines to create poly-electrolytes and diverse polymeric structures with unique physical and chemical characteristics.³

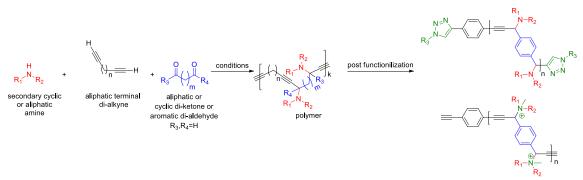


Figure: Step-growth polymerization reaction and post functionalization strategies.

References:

- 1. Zorba, L. P.; Vougioukalakis, G. C. Coord. Chem. Rev. 2021, 429, 213603.
- 2. Giannopoulos, D. K.; Zorba, L. P.; Zisis, C.; Pitsikalis, M.; Vougioukalakis, G. C. *Eur. Polym. J.* 2023, 191 (March), 112056.
- a) Johansson, J. R.; Beke-Somfai, T.; Said Stålsmeden, A.; Kann, N. *Chem. Rev.* 2016, *116* (23), 14726–14768.
 b) Johansson, J. R.; Beke-Somfai, T.; Said Stålsmeden, A.; Kann, N. *Chem. Rev.* 2016, *116* (23), 14726–14768.

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "1st Call for H.F.R.I. Research Projects to support Faculty Members & Researchers and the procurement of high-cost research equipment grant" (Project Number: 16).

