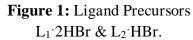
New Pyridine Dicarbene Pincer Ligands with Ring Expanded N-Heterocyclic Carbene Donors and their Transition Metal Complexes

<u>Evangelos Papangelis</u>^a, Dr. Katrin Pelzer^b, Dr. Christophe Gourlaouen^{c*}, Prof. Dominique Armspach^b, Prof. Pierre Braunstein^{b*}, Prof. Andreas A. Danopoulos^{a*}, Dr. Corinne Bailly^d, Prof. Nikolaos Tsoureas^a

^a Inorganic Chemistry Laboratory, Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis Zografou, 15771 Athens, Greece

^b Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS-90032, 67081 Strasbourg Cedex, France

^c Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, UMR7177 CNRS, Université de Strasbourg,4, rue Blaise Pascal CS-90032, 67081 Strasbourg Cedex, France


^d Fédération de Chimie "Le Bel" - UAR2042 BP 296R8 1, rue Blaise Pascal, 67008 Strasbourg Cedex, France

email: epapangelis@chem.uoa.gr

Imidazol-based N-Heterocyclic Carbenes (abbr. NHCs) are without doubt one of the most prominent and well-explored class of the NHC family and exploited as ancillary ligands^[1]. Conversely, Ring-Expanded NHCs (abbr. RE-NHCs), despite displaying as ligands superior σ -donor characteristics and distinct steric effects, have been less explored and rarely employed as donors in ligand architectures^[2]. Attracted by the versatility of the rigid Pincer architecture and the increased thermal stability of their transition metal complexes^[3], two novel pyridine dicarbene Pincer ligand precursors with RE-NHCs were synthesised (Figure 1).

In situ generation of the free dicarbene L₁ by deprotonation of the L₁[·]2HBr and concomitant reaction with suitable metal precursors, or metalation of the L₁·2HBr by aminolysis with metal bis(trimethylsilyl)amide metal precursors, afforded the complexes in Figure 2. depicted However, the coordination chemistry of L₂ has not yet been

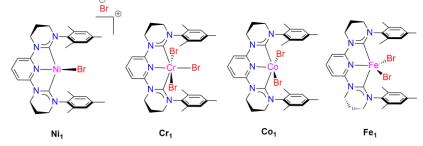


Figure 2: Metal Complexes of L₁.

studied due to its inherent instability. The complexes Ni_1 and Cr_1 , when activated with MAO, were catalysts of moderate activity for the oligomerisation and polymerisation of ethylene, respectively. Experimental data supported by DFT calculations showcased that compared to imidazolylidene analogues, L_1 acts as a stronger electron donor and can indirectly modulate geometries and electronic structures of metals by sterics effected through the arrangement of wingtips^[4].

References : [1] Bellotti P., Koy M., Hopkinson M. N., Glorius F., Nat. Rev. Chem. 5, 711-725 (2021).

[2] Vermersch F., Wang V.T., Abdellaoui M., Jazzar R., Bertrand G., Chem. Sci. 15, 3707-3710 (2024).

[3] Peris E., Crabtree R. H., Chem. Soc. Rev. 47, 1959–1968 (2018).

[4] Papangelis E., Pelzer K., Gourlaouen C., Armspach D., Braunstein P., Danopoulos A. A., Bailly C., Tsoureas

N., Gerokonstantis D. T., Chem. Asian J. 19, e202400169 (2024).